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a  b  s  t  r  a  c  t

Multi-element modified bioactive hydroxyapatite bioceramic (mHAp) coatings were success-

fully  developed onto surgical grade titanium alloy material (Ti6Al4V). The coatings were

prepared by pulse current deposition from electrolyte containing adequate amounts of

calcium nitrate and ammonium dihydrogen phosphate at 70 C. The pure HAp layer was

doped and co-deposited with Ag, Zn, Mg, Sr ions. The biocompatible properties of lay-

ers  were investigated by seeding osteoblast-like MG-63 cells onto the samples’ surface.

The biocompatible measurements revealed enhanced bioactivity of modified HAp com-

pared to uncoated implant materials and pure bioceramic coating. The morphology and

structure of coatings and cells were characterized by scanning electron microscopy (SEM),

energy-dispersive X-ray spectroscopy (EDX) as well as FT-IR and XRD measurements. The

biodegradable properties of samples were investigated by electrochemical potentiodynamic
measurements.
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Desarrollo  y  caracterización  de  recubrimientos  biocerámicos  de
hidroxiapatita  dopados  con  multi-elementos  en  implantes  metálicos  para
aplicaciones  ortopédicas

Palabras clave:

Recubrimientos

Microestructura

Corrosión

Biocerámicas

r  e  s  u  m  e  n

Se han desarrollado con éxito recubrimientos biocerámicos de hidroxiapatita bioactiva mod-

ificada con multi-elementos (mHAp) sobre soportes de titanio de grado quirúrgico (Ti6Al4V).

Los recubrimientos se depositaron con la técnica de la corriente pulsada a partir de electról-

itos con cantidades adecuadas de nitrato de calcio y dihidrogenofosfato de amonio a 70 ◦C.

La  capa de HAp pura se dopó y co-depositó con iones Ag, Zn, Mg,Sr. La biocompatibilidad de

las capas se investigó mediante siembra de células de MG-63, similares a los osteoblastos,

en  la superficie de las muestras. Los resultados de los ensayos de biocompatibilidad reve-

laron una bioactividad mejorada de la HAp modificada en comparación con materiales de

implante no revestidos y de revestimiento biocerámico puro. La morfología y estructura de

los  revestimientos y las células fueron caracterizadas mediante microscopía electrónica de

barrido (MEB), espectrometría de dispersión de energía de rayos X (EDX), así como mediante

mediciones de FT-IR y DRX. La biodegradabilidad de las muestras se investigó mediante

ensayos potenciométricos dinámicos.

© 2017 SECV. Publicado por Elsevier España, S.L.U. Este es un artı́culo Open Access bajo
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Introduction

Great efforts are made to improve the biocompatibility
properties of commonly used metallic implant materials in
orthopedic surgery. One solution can be applying bioactive
coatings such as calcium phosphates. The phase, struc-
ture, composition and morphology of the CaP surfaces are
important parameters that must be accurately controlled
to influence their potential biofunctionality with respect to
osteoblasts since interaction between calcium phosphate
(CaP) thin layers and osteoblasts can be influenced by the
outermost surface properties of those materials. Hydroxyap-
atite (HAp) has been extensively studied due to the structural
and chemical similarities to the main inorganic constituent of
bone tissues. However, it is well documented that biological
hydroxyapatite, which forms the mineral phases of calci-
fied tissues (enamel, dentin and bone), differ from pure and
synthetically produced HAp [1–3]. Biological apatite consists
of a mixture of calcium phosphate phases, such as trical-
cium phosphate (TCP), carbonated hydroxyapatite (CHA) and
calcium-deficient hydroxyapatite (CDHA). In this regard, syn-
thetic HAp exhibits a Ca/P ratio of 1.67, while biological apatite
deviates significantly from this value and its Ca/P ratio is
known to be as low as 1.5. One promising way to modify the
osteoblastic response of HAp coatings, both in vitro and in
vivo, could involve the use of substituted HAp, incorporating
different ions, such as silicon [3], magnesium [5], zinc [6], sil-
ver [7], strontium [8] into the HAp lattice. Numerous research
works on the use of these substituted materials can be found
in the literature [3–11]. On the other hand, deep infection of
megaprostheses is still a serious complication in orthopedic
surgery. Bacterial adhesion and biofilm formation on these
Please cite this article in press as: M. Furko, et al., Development and charact
on metallic implants for orthopedic applications, Bol. Soc. Esp. Cerám. Vid

alloys can easily cause various human diseases after surgery
[12]. Removing bacteria in a biofilm is impossible and a local
or systemic antibiotic treatment is not effective. Therefore,

106
C BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

the inhibition of bacterial adhesion is the most critical step
in preventing implant-associated infections [13].

In view of the problem of bacterial resistance to antibiotics
and antiseptics, nano-structured silver-containing coatings
may be an effective way to prevent device related infections,
because its high and permanent antimicrobial activity com-
bines with a remarkably low human toxicity [14–16]. Silver
and in particular the free silver ion is well known for its
broad-spectrum antimicrobial activity and its low toxicity to
mammalian cells, but still allows for the independent use
of therapeutic antibiotics [13–16]. Strontium has been shown
to have the dual benefit of promoting bone formation and
reducing bone resorption. Furthermore, it has been shown
that strontium has the ability to enhance pre-osteoblastic
cell replication and can stimulate the formation of new bone
through osteogenesis and differentiation into osteoblasts and
has the ability to inhibit the activity of osteoclasts [17–22].
Mg2+ doping can enhance the osteoblast adhesion strength
as compared to pure HAp since incorporation of Mg into pure
calcium HAp makes it closer to the natural bone [23] while
the Zn content can promote the wound healing process after
implantation.

One of the most promising and cheapest methods to
deposit coatings onto metallic substrates is the electrodepo-
sition, more  specifically pulse current deposition. The main
advantages of applying pulse current instead of direct current
are that more  homogeneous, uniform coatings with smaller
grain size can be achieved thus improving the mechanical and
chemical properties of coatings. So far, many  research works
have been performed using this novel method for layer depo-
sition [24–30]. Gopi et al. [24] have prepared minerals doped
hydroxyapatite coating by pulse current on and off time in
seconds (from 1 s to 4 s) and investigated the effect of param-
BSECV 99 1–11
erization of multi-element doped hydroxyapatite bioceramic coatings
r. (2017), http://dx.doi.org/10.1016/j.bsecv.2017.09.003

eter change. Wang et al. [25], however, applied pulse-reverse
current for electrodeposition. In their experiments the posi-
tive and reverse pulse duty cycles were 0.1 and 0.5, and the
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Table 1 – Electrodeposition parameters for obtaining
pure hydroxyapatite layers.

Electrochemical deposition
Electrolyte Concentration/gL
Ca(NO3)2 115.6
NH4H2PO4 33.30
H2O2 (30%) 10 ml

Deposition parameters
ton/ms 1
toff/ms 10
ip/A cm−2 5
Bath temperature/◦C 70
pH 4.5
Deposition time/s 3

Surface treatment after deposition 1 M NaOH solution, 70 ◦C, 2 h

Table 2 – Electrodeposition parameters for obtaining
modified HAp layers.

Electrodeposition
Electrolyte Concentration/gL
Ca(NO3)2 115.6
Mg(NO3)2 2.56
Sr(NO3)2 2.10
NH4H2PO4 33.30
H2O2 (30%) 10 ml

Deposition parameters
ton/ms 1
toff/ms 10
ip/A cm−2 5
Bath temperature/◦C 70
pH 4.5
Deposition time/s 3

Surface treatment after
deposition

Soaking in solution containing
0.01 M Zn(NO3)2 and 0.0025 M
AgNO3 for 24 h and afterward in
1 M NaOH solution at 70 ◦C for 2 h
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ositive and reverse plating times were 10 and 2 ms.  They
ound that well adherent coating could be achieved by this

ethod without any post-treatment. The morphology of the
uch prepared coating was mainly plate-like with thickness of
round 100 nm.  In a more  recent study, Marashi-Najafi et al.
26] reported hydroxyapatite coating deposition onto Nitinol
uperelastic alloy by pulse current with duty cycle of 0.2 at
ifferent current densities. They also studied the effect of elec-
rolyte concentration on the morphology of coatings and they
evealed that the structure changed from needle like to plate
ike as the electrolyte concentration decreased. In addition, it
s worthwhile to mention that in some research works voltage
pulsed or direct) was used for deposition instead of current,
ccording to the authors’ reports [27–30].

In our present research work multi-element (Ag, Zn, Sr and
g)  doped hydroxyapatite coatings have been prepared by

ombination of pulse current electrodeposition method and
urface post-treatment. The morphology and structure of lay-
rs have been studied with SEM-EDX measurements. Layers
ave been also characterized by FT-IR spectroscopy and X-
ay diffraction measurements. The biocompatible properties
f layers have been assessed using MG-63 osteoblast-like cells
nd the biodegradable characteristics of samples have been
ested in simulated body fluid by electrochemical method.

xperimental

reparation  of  pure  and  substituted  calcium
hosphate/hydroxyapatite  coatings

itanium alloy (Ti6Al4V, ISO5832-3, Protetim Ltd.) discs
10 mm × 1 mm)  were used as substrates. One side of each disk
as roughened using a sandblasting procedure with a 180-grit

luminum oxide media (according to the standard procedure
pplied by the manufacturer similarly than in the cases of
ommercial implant materials). This surface pre-treatment is
ecessary to enhance the adherence of layers.

IGTV-4i/6t type pulse current generator was used to prepare
he different bioceramic coatings. In the pulse current wave-
orm ton is the time when current flows and toff is the
elaxation time when the current is zero. Applying toff time in
ulse current deposition gives the system time to recover dur-

ng the relaxation periods. The electrodeposition process was
arried out in a two-electrode cell under normal atmospheric
onditions, where the anode was a platinum sheet and the
etallic implant disk was used as a cathode. The deposition

arameters are summarized in Tables 1 and 2. The thickness
f layers was around 1–2 �m in all cases (Fig. 1). The mor-
hological properties of the layers were studied by SEM and
IB measurements with LEO 1540XB Crossbeam workstation.
he beam parameters in SEM imaging mode were 5 keV beam
nergy and 30 �m aperture size, Everhart-Thornley and InLens
econdary electron detectors were used. The ion beam param-
ters in FIB milling mode were 30 kV accelerating voltage and

 nA beam current. For SEM/FIB measurements the samples
Please cite this article in press as: M. Furko, et al., Development and charact
on metallic implants for orthopedic applications, Bol. Soc. Esp. Cerám. Vid

ere tilted at 36 angle. The electron beam parameters for the
DX were 8 and 16 keV beam energy. A Röntec Si(Li) detector
nd the Bruker Esprit 1.9 software had been used for the EDX
easurements.
with subsequent heat treatment at
150 ◦C for 2 h.

FT-IR  characterization

To record FT-IR absorption spectra of investigated samples,
specular reflection technique was employed. All infrared
spectra of the samples were recorded on a Bruker Ver-
tex 70 FT-IR spectrometer coupled with Hyperion 2000 IR
microscope with 15× (NA = 0.4) specular reflection objec-
tive. Spectra were recorded over the range of wave  number
4000–400 cm−1 at room temperature using 128 scans at 2 cm−1

resolution.

X-ray  diffraction  measurements

The crystal structures of the samples were investigated
using X-ray diffraction. XRD spectra were recorded at
room temperature by Rigaku MiniFlex II diffractometer
(Cu K� radiation source, 0.15418 nm)  equipped with a
BSECV 99 1–11
erization of multi-element doped hydroxyapatite bioceramic coatings
r. (2017), http://dx.doi.org/10.1016/j.bsecv.2017.09.003

high count DTEX II detector and operated at 40 kV and
40 mA.  The diffraction patterns were collected over a 2�

range from 10◦ to 60◦ with 1◦/min steps using flat plane
geometry.
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Figure 1 – SEM and SEM/FIB measurements on pure HAp layer (a, b) and on multi-ion modified HAp (c, d) as well as EDX

Table 3 – Composition of simulated body fluid [31].

Reagent Amount
(g/L)

Sodium chloride 7.996
Sodium bicarbonate 0.350
Potassium chloride 0.224
Potassium phosphate trihydrate 0.228
Magnesium chloride hexahydrate 0.305
1 M hydrochloric acid 40 mL
Calcium chloride 0.278
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spectra on HAp (e) and mHAp (f).

Electrochemical  corrosion  measurements

The potentiodynamic polarization studies were carried out
with Zahner IM6e electrochemical workstation (Zahner, Ger-
many). In the electrochemical measurements conventional
three-electrode cell was used. The working electrode was
a metallic implant disk (19 mm)  with and without coatings
and platinum net and Ag/AgCl/KClsat electrodes were used
as counter electrode and reference electrode, respectively.
The potentiodynamic polarization curves were recorded with
1 mV/s scanning rate. Simulated body fluid was used as an
electrolyte for all the electrochemical experiments, which has
ion concentrations nearly equal to those of human blood
plasma and is buffered at pH 7.40 with 50 mM trishydrox-
ymethylaminomethane and 45 mM hydrochloric acid. The
composition of simulated body fluid can be seen in Table 3. By
measuring the corrosion properties of samples it is possible to
trace their biodegradation properties. All the electrochemical
characterizations were carried out at temperature of 37 ◦C to
simulate body conditions.

Biocompatible  measurements  on  pure  and  modified
hydroxyapatite  layers

Cell  culture
Cells used for the experiments are represented by MG-63
cell line (Sigma–Aldrich, Germany), which is a line of human
osteoblast-like cells. Cells were grown on 75 ml  flasks and were
detached by tripsin. Medium was DMEM (Dulbecco’s Modified
Eagles Medium) with 10% of FBS (fetal bovine serum, contain-
ing growth factors and nutrients to support cell growth) and
100 U/ml penicillin and 100 �g/ml streptomycin to minimize

◦

Please cite this article in press as: M. Furko, et al., Development and charact
on metallic implants for orthopedic applications, Bol. Soc. Esp. Cerám. Vid

the risk of infections. The cultures were maintained at 37 C,
5% CO2 in a humidified atmosphere in incubator (New Bran-
swick Galaxy 170S). The culture media were changed in every
three days. The cells were counted in a Neubauer chamber.
Sodium sulfate 0.071
Tris (hydroxymethyl) aminomethane 6.057

Cell  viability  measurements  with  WST-8  reagent
For cell viability measurements the samples were put in a
24-well microtiter plate and 1 ml  of cell suspension at concen-
tration of 10,000 cells/mL was seeded onto the surface of each
samples. The same amount of culture medium with cells with-
out samples was used as control. After a cultivation period of
2, 7 and 14 days, the culture media was removed from the 24
well culture plate and the cells were washed with sterile PBS.
After washing, 1 mL  of DMEM medium containing 1% WST-8
reagent were added to the wells and it was incubated for 3.5 h.
The incubation period was followed by spectrophotometric
assay of colored product. During this incubation period viable
cells convert WST-8  to a water soluble formazan dye. The spe-
cific absorbance of formazan dye (at 450 nm)  in the MTP  can
be done with an ELISA plate reader (PHomo Autobio Anthos
Mykrosystem GMbh, Germany). The absorbance directly cor-
relates with the cell number.

ALP  activity  measurements
ALP enzyme activity was measured after 6 and 14 days of
BSECV 99 1–11
erization of multi-element doped hydroxyapatite bioceramic coatings
r. (2017), http://dx.doi.org/10.1016/j.bsecv.2017.09.003

incubation in order to characterize the osteoblastic activity
of the MG-63 cells. The cells were lysed with a cell lysis
buffer which contains 20 mM TRIS buffered solution (Merck)
with 0.1 wt% Triton X-100 (Sigma, Germany), 1 mM MgCl2 and
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Table 4 – Elemental analysis of HAp and mHAp coatings derived from EDX measurements.

Atomic percent (%)

Spectrum C O Al Ti V Ca P Ag Zn Mg Sr

HAp 11.68 56.18 8.74 9.38 0.47 

mHAp 12.43 56.38 9.77 13.88 0.17 
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Figure 2 – FT-IR spectra of HAp coating and modified HAp
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.1 mM ZnCl2. The cell lysate was incubated with a reac-
ing solution containing 0.1 M Tris solution, 2 mM MgCl2 and

 mM p-Nitrophenylphosphate for 120 min. After incubation
bsorption was measured at 405 nm using a spectrometer
Specord 40).

alcein  staining
or staining the live cells, acetoxymethyl (AM) ester (Calcein,
olecular Probes, Germany) was used which is a fluorescent

ndicator. The cell distribution growth on the sample surface
as analyzed using florescent microscope (FM, Scope. A1, Carl
eiss). After the cultivation period of 48 h, the adherent cells
ere fixed with 3.7 vol% paraformaldehyde for 10 min  and per-
eabilised with 0.1 vol% Triton X-100 (in PBS) for 10 min  at

oom temperature.

API  (4′,6-diamidino-2-phenylindol)  staining
he nuclei of fixed cells were stained with the fluorescence
ye 4′,6-diamidino-2-phenylindol (DAPI RotiVR-Mount Fluor-
are). For staining of the samples, the matrices were incubated
5 min  in the dark in DAPI-solution (2 mL  DAPI-stock solution
n 1 mL  DAPI buffer). After staining ward, the matrices were
ashed three times in PBS to eliminate the background. The
uclei were imaged by the fluorescence microscope with blue
lter.

orphological  characterization  of  MG-63  cells  by  SEM
maging
he samples, seeded and cultured with MG-63 cells for 2 days
ere washed with PBS, fixed with a solution containing 3 vol%
Please cite this article in press as: M. Furko, et al., Development and charact
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lutaraldehyde (Sigma, Germany) and 3 vol% paraformalde-
yde (Sigma, Germany) in 0.2 M sodium cacodylate buffer (pH
.4), and thoroughly rinsed with PBS for SEM analysis (Auriga
8.53 5.02 – – – –
4.08 2.62 0.34 0.06 0.19 0.08

CrossBeam, Carl Zeiss Microscopy GmbH, Germany). All sam-
ples were dehydrated in ethanol, stored in 99.8 vol% ethanol
and critical-point dried (EM CPD300, Leica, Germany).

Statistics

Results are presented using the mean value and standard devi-
ation of four replicates of each sample type. All results were
normalized to MG-63 cells growth on a well plate (REF = 100%).
The differences in analysis parameters between the differ-
ent samples investigated were evaluated by one-way analysis
of variance (ANOVA). The level of the statistical significance
was defined at p < 0.05 (Origin 8.6, Origin Lab Corporations,
USA). The significance level was set as *p < 0.05, **p < 0.01 and
***p < 0.001. For the comparison of the mean values the Tukey
test was used.

Results  and  discussion

Morphological  investigation

Fig. 1 shows the SEM and FIB measurements on HAp layer and
on modified HAp coating. It can be seen in Fig. 1(a) that the
pulse electrodeposited HAp coating after surface treatment in
1 M NaOH solution has mainly small needle-like and larger
rod-like particles with length of 100–200 nm and with diame-
ter of 20–50 nm.  The Ca/P elemental ratio in this case is 1.78
(Table 4) which can indicate mainly hydroxyapatite crystals in
the layer. The SEM-FIB cross sectional image  (Fig. 1b) revealed
that the layer has a very porous, sponge-like structure and
its thickness is not uniform. The thickness of layer varied
between 700 nm and 2 �m,  depending on the site of samples.

The metal ion-modified HAp layer (Fig. 1b) shows similar
morphology, however, in this case flake-like particle agglom-
erations can also be observed. The SEM-FIB cross sectional
image  shows similarly porous structure with layer thickness
of 1–2 �m.  On the corresponding EDX spectra, weak peaks of
Ag, Zn Sr and Mg element signals are also visible proving the
presence and incorporation of metallic ions and particles in
HAp layer. The elemental analysis reveals the Ca/P elemental
ratio to be 1.55 which can indicate the HAp crystal structure
disruption or the presence of other CaP phases as impurities.
However, this small amount of other calcium phosphate phase
could not be detected by XRD measurement due to the detec-
tion limit (Fig. 3). It is visible on EDX spectra that Ti and Al
and V peaks also appear because the applied electron beam
excited the substrate material also due to the very thin and
BSECV 99 1–11
erization of multi-element doped hydroxyapatite bioceramic coatings
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on the EDX spectra might indicate the presence of some car-
bonate impurities. This result is in good accordance with the
FT-IR measurements in Fig. 2.
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Figure 4 – Potentiodymanic polarization curves of uncoated
Ti6Al4V alloy (black line), of HAp coating (blue line) and of
mHAp (green line) recorded after two weeks immersion in
SBF solution at 37 ◦C. The potential scanning rate is 1 mV/s.

Table 5 – Electrochemical parameters: passive current
density (jp), corrosion potential (Ecorr) and corrosion
current (jcorr) values derived from the potentiodynamic
curves in Fig. 4.

Sample jp/A cm−2 jcorr/A cm−2 Ecorr vs
Ag/AgCl/mV

Ti6Al4V 0.91 0.26 −190
HAp coating 2.57 1.04 −295
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modified HAp coating.

FT-IR  analysis  of  pure  and  modified  calcium  phosphate
layers

As Fig. 2 shows, the FT-IR spectra are very identical for
both coatings. On the spectra of HAp and mHAp samples
peaks at 627, 960, 990 and 1130 cm−1 are related to PO4

3−

anionic group content, while the wide absorption peak in the
1400–1500 cm−1 region is connected to absorbed CO3

2− con-
tent of HAp phase [32]. Weaker overlapped peaks at 875 cm−1

can be related to HPO4
2− content, suggesting the presence of

a minor carbonated hydroxyapatite (cHAp) phase in coatings.
However, the slightly higher absorption of OH− groups (OH−

stretch vibration) at 3700 cm−1 in the case of mHAp coat-
ing might be explained by some elimination of cHAp phase
from HAp owing to the incorporation of doping elements. In
addition, slight signs of adsorbed water bands also appear on
spectra from 3600 cm−1 to around 2600 cm−1 and at 3570 cm−1.

X-ray  diffraction  analysis

The XRD patterns of pure and doped HAp samples are shown
in Fig. 3. Both spectra shows characteristic peaks of HAp at
2 = 31.7◦ (2 1 1), 32.9◦ (3 0 0), 25.88◦ (0 0 2) in accordance with the
JCPDS file 09-0432. The broad XRD peaks for HAp indicate its
nanocrystallinity. In the case of multi-ion modified HAp, very
similar peaks can be observed. No other CaP phases or phos-
phate impurities can be detected on the spectra owing to the
detection limit and the components’ very low concentrations.
In our case, there is no visible line shifting, peak broaden-
ing and changing in peak intensity when metallic ions are
added to the hydroxyapatite coating. However, several studies
reported line shifting to higher 2 values due to the replace-
ment of larger sized Ca2+ (0.099 Å) ions with smaller sized Mg2+

(0.69 Å) ions and Zn2+ (0.77 Å) ions [33–35]. In other research
work, Ziani et al. found broadening of the peaks due to the
reduction in the crystallite size and increase in the lattice dis-
order, which they attributed to the Mg2+ substitution in the
Please cite this article in press as: M. Furko, et al., Development and charact
on metallic implants for orthopedic applications, Bol. Soc. Esp. Cerám. Vid

HAp lattice [36]. On the other hand, the substitution of stron-
tium and silver can cause phase shifting to lower 2� indicating
an increase in the lattice parameters, which can be attributed

372
mHAp coating 3.30 1.51 −486

to the higher ionic radius of Sr (1.13 Å) and Ag (1.15 Å), as com-
pared to Ca2+ [37].

Corrosion  characterization  by  electrochemical
potentiodynamic  measurements

Fig. 4 demonstrates the potentiodynamic curves of implant
material (Ti6Al4V) and HAp coating and modified HAp coating.
The curves were recorded after two weeks immersion in SBF
solution.

As Fig. 4 reveals, large anodic passive regions can be
observed on the anodic branches of potentiodynamic curves
in all cases with small passive current densities (jp) and the
shapes of potentiodynamic curves of all samples is quite sim-
ilar. In the case of uncoated implant material the onset of
this passive region is around +100 mV vs Ag/AgCl and the
passive film breakdown potential is at +980 mV. The pas-
sive region on potentiodynamic curves of pure HAp coating
became slightly wider after two weeks of immersion than that
for uncoated sample, it starts at around −120 mV vs Ag/AgCl
and its breakdown potential is similarly at around +980 mV.
On the other hand, the widest passive region is observed in
the case of mHAp coating, spreading from −280 mV  to around
+1 V vs Ag/AgCl. The very large slopes of anodic and cathodic
BSECV 99 1–11
erization of multi-element doped hydroxyapatite bioceramic coatings
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branches of curves indicate mixed kinetic and diffusion con-
trolled electrode processes for all samples.
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The electrochemical parameters, such as passive current
ensities, corrosion current densities and corrosion potentials
f different samples are summarized in Table 5.

It is visible that the titanium alloy substrate possesses
he lowest passive current density (0.91 A cm−2), while the
ighest value belongs to multi-element doped HAp coating

3.30 A cm−2). On the other hand, it can also be observed
n the anodic branch of potentiodynamic curves that while
he passive currents of mHAp samples slightly decrease with
Please cite this article in press as: M. Furko, et al., Development and charact
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otential scan, the passive currents of substrate material and
Ap coating are stable and hardly change till the breakdown
otential.
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The corrosion current density (jcorr) values and corrosion
potentials (Ecorr) can be obtained by the intersection of lines
extrapolated to the cathodic and anodic branch of potentio-
dynamic curves in the Tafel region (±50 mV from corrosion
potential). The titanium alloy has the noblest corrosion poten-
tial and lowest corrosion current density which denotes its
highest corrosion stability. On the other hand, the most neg-
ative Ecorr and the highest jcorr values belong to the mHAp
samples. This result can prove that during immersion in phys-
iological solution, dissolution processes of different doping
elements as well as calcium phosphate components can occur.

There are several research works investigating the degra-
dation processes of hydroxyapatite coatings prepared by
different methods. It is reported that the porous character-
istic (size and number of pores present in the coating) of
calcium phosphate coatings significantly affects the corro-
sion/dissolution rate of hydroxyapatite. The coatings with
smaller and fewer pores proved to be more  corrosion resis-
tant than coatings with higher degree of porosity because the
former can provide better barrier property [38–40].

Zhang et al. [32] stated that the corrosion mechanism of
HAp coating with pores involves hydrogen ion (H+) generation
at the interface where corrosion occurs, thus decreasing the
local pH value, and then causes subsequent dissolution of HAp
in the high H+ concentration area. The dissolution rate of HAp
increases with decreasing pH.

Biocompatible  measurements  on  samples

Cell  viability  measurement  with  WST-8  assay
Fig. 5 shows that in all culture period the mHAp sample had
the highest cell viability values, after 2 days it was 85% while
after two weeks it increased to around 90% compared to pos-
itive control.

The cell viability percentages were 78% and 85% after
2 days, 81% and 90% after 2 weeks of culture on pure HAp and
multi-ion modified HAp coatings, respectively. For uncoated
titanium, the viability was 81% at 2nd day and it decreased
to 71% at 14th day. After 2 days of culture, the differences
between the cell viability values were not statistically signif-
icant for HAp compared to titanium substrate (p value was
0.94), while the difference between Ti alloy and mHAp was
statistically different (p < 0.01). It is visible that there is a slight
decrease in cell viability for each sample after one week of
incubation. This phenomenon can be explained by cell differ-
entiation. Several researchers proved that when cells are in
the state of differentiation, they show less metabolic activity
resulting in lower viability values [41,42].

After 2 weeks of culture in DMEM medium the difference
between the cell viability on HAp and on mHAp samples
become more  significantly higher than those for uncoated
substrate, indicating the good biocompatible/bioactive prop-
erties of both hydroxyapatite layers. It is also visible that the
multi-element modification advanced the biocompatibility of
sample. The differences between the cell viabilities of sam-
BSECV 99 1–11
erization of multi-element doped hydroxyapatite bioceramic coatings
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(p < 0.001). In addition, it is well known that hydroxyapatite
coating facilitate the attachment and growth of osteoblastic
cells owing to its high hydrophilic property [43,44].
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Alkaline  phosphatase  activity  measurements
ALP is one of the first osteoblastic markers. Since the
osteoblast-like human MG-63 cell line is capable to produce
some osteogenic markers such as alkaline phosphatase and
osteocalcin [45]. In our present study ALP expression of cells
seeded on the surface of different samples and on culture well
plate as reference was evaluated.

It is visible in Fig. 6 that the ALP expression is higher
by around 25% and 30% for pure HAp and multi-ion doped
HAp, respectively, after 6 and 14 days of culture than that for
uncoated substrate. The level of ALP activity increased with
culturing time. After 6 days of immersion, the ALP values
of both HAp and mHAp were statistically different (p < 0.05)
compared to uncoated substrate, while there was no statis-
tically difference between the calcium phosphate coatings
and the control group. At the 14th day of culture, only the
ALP values of mHAp compared to Ti alloy and ALP expres-
sion of control compared to Ti alloy were statistically different
(p < 0.05). It is visible that the highest ALP expression belongs
to mHAp sample. On the other hand, the differences between
HAp and mHAp as well as between titanium substrate and
HAp are not statistically different, in the latter case the
p value is 0.094. Our findings are in good agreement with
reports from literature where Zhao et al. [46] studied the effect
of magnesium-substituted nano-hydroxyapatite coating on
implant osseointegration. In their research they found that
the magnesium substituted HAp had higher ALP activity by
two times than that of without magnesium content after 7
days of culture. Yang et al. [47] investigated the biocompatibil-
Please cite this article in press as: M. Furko, et al., Development and charact
on metallic implants for orthopedic applications, Bol. Soc. Esp. Cerám. Vid

ity of Zn substituted hydroxyapatite on Murine preosteoblast
cell (MC3T3-E1) cell line. They reported significant increase in
cell proliferation and ALP activity on day 7, and osteocalcin

a

c

b

Figure 7 – Fluorescence microscopy images of calcein-AM (green
merged images of Mg-63 cells cultured for 2 days in DMEM medi
and mHAp (c) coatings.
e r á m i c a y v i d r i o x x x (2 0 1 7) xxx–xxx

production (p < 0.05) were also observed for Zn2+-containing
HAp-coated surfaces on day 14. The coatings were prepared
by electrochemical process and the Zn was present in the Zn-
HAp coatings at a Zn/(Ca-Zn) molar ratio of 1.04%. Bueno et al.
[48] studied the effect of Sr substitution in HAp nanocom-
posite on the differentiation of OFCOLL II osteoblasts. Other
literature report showed that the presence of strontium in the
HAp structure (SrHAp) seems to cause important effects in
osteoblast and osteoclast growth and also favors the increase
of osteoblast ALP activity [49]. Thian et al. [50] investigated
the effect of apatite nanocrystals on the osteoblast behavior
of human osteoblast (HOB) cells and they found that the ALP
activity of cells growing on phase-pure apatite nanocrystals
was detectable only after 5 days of culture.

Calcein/DAPI  staining
Direct fluorescence staining of calcein and nucleus (DAPI) of
MG-63 cells cultured for 2 days on titanium alloy, HAp and
mHAp coatings as well as on control group (well plates) are
shown in Fig. 7.

Calcein fluorescent staining is generally used to indicate
intracellular esterase activity present in viable cells. Dense
and evenly dispersed multi-layered cells with large nuclei
were observed for all samples, however, in the case of HAp
and mHAp coated samples there were larger number of living
cells. The shape of cells mainly elongated and polygonal which
indicates well adhered, spreading and proliferating cells.
BSECV 99 1–11
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MG-63  cell  morphology  study
The expression of the phenotype of osteoblast-like cells (MG-
63) was studied by SEM after incubation on uncoated titanium
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Figure 8 – SEM images on MG-63 cells grown on titanium
substrate (a) on HAp coating (b) and on mHAp coating after
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 days of culture in DMEM medium.

lloy, on pure HAp coating and on ion-modified HAp coatings
or 48 h. It is obvious that the phenotype of MG-63 osteoblast-
ike cells were well-expressed and cell were spreaded on the
urfaces of all samples and were in flattened form. The shape
f cells mainly polygonal with filopodia or very thin exten-
ions. The cells covered the coated samples’ surfaces in a thick
ontinuous monolayer and the MG-63 started to form also a
ultilayer in some areas of the sample. On the other hand, in

he case of uncoated substrate, the coverage was not perfect.
n some places the surface of substrate is also visible beside
Please cite this article in press as: M. Furko, et al., Development and charact
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he cells (see in Fig. 8a). The number and density of cells as well
s the extent of spreading seemed to be a little higher in the
ase of calcium phosphate coated samples than for uncoated
ubstrate. Nevertheless, there is not much visible difference
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in cell morphology in the case of both HAp and mHAp coated
samples. These results might confirm that the coating can
advance cell adherence thus promoting cell proliferation and
prove the results from Calcein/DAPI staining.

Conclusion

The SEM analysis revealed that the morphology of HAp and
mHAp coatings was mainly needle-like in nanometre size.
The cross section analysis (FIB) showed the coatings to be
in highly porous, sponge-like structure, which resembles the
structure of natural bone. The EDX elemental analysis con-
firmed that the ions doped HAp coating contained Ag, Zn, Sr
and Mg elements also in under 1 At% along with the calcium
and phosphorous elements. The FT-IR spectra showed simi-
lar characteristic peaks of PO4

3− and OH− anionic groups of
calcium phosphate phases and revealed carbonate impurities
in both samples. The XRD measurements also confirmed that
the coating consist of mainly nanocrystalline hydroxyapatite
phase and there was no visible line shifting, peak broaden-
ing and changing in peak intensity when metallic ions were
added to the hydroxyapatite coating. According to the corro-
sion measurements, the corrosion resistances of pure HAp
and multi-ion doped HAp were lower than that of uncoated
substrate due to the highly porous characteristic of layers.

The biocompatible tests showed that the cell viability val-
ues increased significantly in the cases of both HAp and mHAp
samples compared to bare implant materials and the high-
est values were measured in the case of mHAp. The Calcein
and DAPI staining of samples revealed dense, multi-layered,
well adhered living cells on all samples with normal morphol-
ogy. The in vitro results presented here support that HAp and
multi-ion doped HAp coatings advance the growth of MG-63
osteoblast-like cells.
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