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Intersecting P-free families
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Abstract

We study the problem of determining the size of the largest intersecting P -free family for
a given partially ordered set (poset) P . In particular, we find the exact size of the largest
intersecting B-free family where B is the butterfly poset and classify the cases of equality. The
proof uses a new generalization of the partition method of Griggs, Li and Lu. We also prove
generalizations of two well-known inequalities of Bollobás and Greene, Katona and Kleitman in
this case. Furthermore, we obtain a general bound on the size of the largest intersecting P -free
family, which is sharp for an infinite class of posets originally considered by Burcsi and Nagy,
when n is odd. Finally, we give a new proof of the bound on the maximum size of an intersecting
k-Sperner family and determine the cases of equality.

1 Introduction

We denote the set {1, 2, . . . , n} by [n] and the power set of [n] by 2[n]. The family of all k-element

subsets of [n] is denoted by
([n]
k

)

. We refer to
([n]
k

)

as the kth level in 2[n]. A collection F ⊆ 2[n] is
called an antichain if there do not exist F,G ∈ F with F ⊂ G. Let P and Q be partially ordered
sets (posets). Then, P is said to be a subposet of Q if there exists an injection φ from P to Q such
that x ≤ y in P implies φ(x) ≤ φ(y) in Q. Note, importantly, that the implication is only required
in one direction.

The starting point for all forbidden poset problems is the well-known theorem of Sperner [17]:

Theorem 1 (Sperner [17]). Let F ⊆ 2[n] be an antichain, then

|F| ≤

(

n
⌊

n
2

⌋

)

.

Moreover, equality occurs if and only if F is a level of maximum size in 2[n].

Observe that every collection F ⊆ 2[n] may itself be viewed as a poset under the containment
relation. A k-chain, denoted by Pk, is defined to be the poset on the set {x1, x2, . . . , xk} with the
relations x1 ≤ x2 ≤ . . . ≤ xk. Sperner’s theorem is equivalent to the statement that the size of a
collection F ⊆ 2[n] containing no 2-chain as a subposet is at most

(

n

⌊n

2 ⌋
)

.
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An important generalization of Sperner’s theorem, due to Erdős [4], determines the size of the
largest family containing no (k + 1)-chain. Such a family is called k-Sperner. We use the notation
Σ(n, k) to denote the sum of the k largest binomial coefficients of the form

(

n
i

)

, 0 ≤ i ≤ n.

Theorem 2 (Erdős [4]). Let F ⊆ 2[n] be k-Sperner, then

|F| ≤ Σ(n, k).

Moreover, equality occurs if and only if F is the union of k of the largest levels in 2[n].

The general study of forbidden poset problems was initiated in the paper of Katona and
Tarján [13]. They determined the size of the largest family of sets containing neither a V (the
poset on {x, y, z} with relations x ≤ y, z) nor a Λ (the poset on {x, y, z} with relations x, y ≤ z).
They also gave an estimate on the maximum size of V -free families which we will make use of.

Theorem 3 (Katona, Tarján [13]). Assume that F ⊆ 2[n] contains no V as a subposet, then

|F| ≤

(

1 +
2

n

)(

n
⌊

n
2

⌋

)

.

The following function is the main object of study in forbidden poset problems:

La(n, P ) = max
F⊆2[n]

{|F| : F does not contain P as a subposet}.

The value of La(n, P ) has been determined or estimated for a variety of posets P . The butterfly
poset, B, is defined on four elements w, x, y, z with relations w, x ≤ y, z. Of central importance to
the present paper is a result of De Bonis, Katona and Swanepoel [3] which gave the exact result
for La(n,B).

Theorem 4 (De Bonis, Katona, Swanepoel [3]).

La(n,B) = Σ(n, 2).

Moreover, equality holds if and only if the family is the union of two of the largest levels in 2[n].

Now we will mention some theorems where the family is also required to be intersecting. Mil-
ner [14] determined the size of the largest t-intersecting antichain. In the case t = 1, Milner’s result
yields

Theorem 5 (Milner [14]). Let F ⊆ 2[n] be an intersecting antichain, then

|F| ≤

(

n
⌊

n
2

⌋

+ 1

)

.

This result follows from a more general inequality of Greene, Katona and Kleitman [8] (See also
[12] and [16] for other simple proofs).

Theorem 6 (Greene, Katona, Kleitman [8]). Let F ⊆ 2[n] be an intersecting antichain, then

∑

F∈F
|F |≤n

2

1
(

n
|F |−1

) +
∑

F∈F
|F |>n

2

1
(

n
|F |

) ≤ 1.
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In the case when F consists of only sets of size at most n
2 , Bollobás [1] proved a stronger

inequality generalizing the Erdős-Ko-Rado theorem [5].

Theorem 7 (Bollobás [1]). Let F ⊆ 2[n] be an intersecting antichain and assume that for all F ∈ F
we have |F | ≤ n

2 , then
∑

F∈F

1
(

n−1
|F |−1

) ≤ 1.

Note that Theorems 6 and 7 are implied by a more general result of Péter Erdős, Frankl and
Katona [6] which determined the profile polytope for intersecting antichains.

In the course of determining the profile polytope for complement-free k-Sperner families, Gerb-
ner [7] proved a generalization of Milner’s theorem (the 1-intersecting case) to the k-Sperner setting.

Theorem 8 (Gerbner [7]). Let F ⊆ 2[n] be an intersecting k-Sperner family, then

|F| ≤



























n+1
2

+k−1
∑

i=n+1
2

(

n
i

)

, if n is odd

(

n−1
n

2
−1

)

+

n

2
+k−1
∑

i=n

2
+1

(

n
i

)

+
(

n−1
n

2
+k

)

, if n is even.

(1)

For simplicity we denote the right-hand side of (1) by
∑

I(n, k). For any given P , we define

LaI(n, P ) = max
F⊆2[n]

{|F| : F does not contain P as a subposet and F is intersecting}.

In this language, Theorem 8 states that LaI(n, Pk+1) =
∑

I(n, k), where Pk+1 is the path poset
of length k + 1. Before we state our main results we need to introduce some notation. For all n
and k ≤ n

2 , define

H0,n,k =

(

[n]
⌊

n
2

⌋

+ 1

)

∪

(

[n]
⌊

n
2

⌋

+ 2

)

∪ . . . ∪

(

[n]
⌊

n
2

⌋

+ k

)

,

and in the case when n is even, for any x ∈ [n], define

Hx,n,k = {F : F ∈

(

[n]
n
2

)

: x ∈ F} ∪

(

[n]
n
2 + 1

)

∪ . . . ∪

(

[n]
n
2 + k − 1

)

∪ {F : F ∈

(

[n]
n
2 + k

)

: x 6∈ F}.

We determine the exact value of LaI(n,B), the maximum size of an intersecting butterfly-free
family, for n ≥ 18. In particular, we show that LaI(n,B) = ΣI(n, 2). The cases of equality are also
obtained.

Theorem 9. Let F ⊆ 2[n] be an intersecting B-free family of subsets of [n] where n ≥ 18. Then,

|F| ≤ ΣI(n, 2).

Equality holds if and only if:

• For n odd, F = H0,n,2;

• For n even, F = Hx,n,2 for some x ∈ [n].

3



The proof of this theorem can be seen as a generalization of the partition method of Griggs, Li
and Lu [10, 9] to a weighted setting involving cyclic permutations. We also show that a variant of
the LYM-type inequalities, Theorems 6 and 7, hold in this case.

Theorem 10. Let F ⊆ 2[n] be an intersecting B-free family with 2 ≤ |F | ≤ n − 2 for all F ∈ F ,
then

∑

F∈F
|F |≤n

2

1
(

n
|F |−1

) +
∑

F∈F
|F |>n

2

1
(

n
|F |

) ≤ 2.

Theorem 11. Let F ⊆ 2[n] be an intersecting B-free family with 2 ≤ |F | ≤ n/2 for F ∈ F , then

∑

F∈F

1
(

n−1
|F |−1

) ≤ 2.

Next we obtain an upper bound on LaI(n, P ) for an arbitrary poset P in the case when n is
odd. Let h(P ) be the height of the poset P , that is, the size of the longest chain in P .

Theorem 12. Assume n is odd and |P |+h(P )
2 is an integer. Let F be an intersecting P -free family

of subsets of [n], n ≥ 4. Then,

|F| ≤

|P |+h(P )
2

−1
∑

i=1

(

n
⌊

n
2

⌋

+ i

)

.

Note 1. Let e(P ) denote the maximum number of consecutive levels in 2[n] which do not contain
a copy of P as a subposet for any n. Burcsi and Nagy determined the exact value of La(n, P ) for

infinitely many posets P for which e(P ) = |P |+h(P )
2 − 1. For all these posets we have equality in

Theorem 12. In the cases where n is even or |P |+h(P )
2 is not an integer, a similar bound can be

obtained, but it is not sharp in general.

Finally, we give a new proof of Theorem 8 which avoids the usage of profile polytopes. We also
classify the cases of equality.

Theorem 13. Let F be an intersecting k-Sperner family of subsets of [n]. Then,

|F| ≤ ΣI(n, k).

If k ≤ n
2 , then equality holds in the following cases:

• For n odd, F = H0,n,k;

• For n even and k = 1, F = H0,n,k or Hx,n,k for some x ∈ [n];

• For n even and k > 1, F = Hx,n,k for some x ∈ [n].

Note 2. If k > n
2 there can be many extremal families. For example, if n is even and k = n

2 + 1,
we may take any maximal intersecting family on level n

2 (of which there are many) in addition to
all complete levels from n

2 + 1 to n.

The paper is organized as follows. In Section 2 we introduce Katona’s cycle method [11] and
prove some simple lemmas. In Section 3 we prove Theorem 9 determining the exact value of
LaI(n,B). In Section 4 we prove Theorem 10 and Theorem 11. In Section 5 we prove Theorem 12
about general posets P . Finally, in Section 6 we prove Theorem 13 about intersecting k-Sperner
families.

4



2 Cycle method

A cyclic permutation of [n] (in the sense of Katona [11]) is an arrangement of the numbers 1
through n along a circle. Sets of consecutive elements along the circle are called intervals. The
collection of all intervals along σ of size r is denoted Lσ

r . Most of our proofs will proceed by
double counting pairs (F, σ) where F ∈ F and σ is a cyclic permutation. Moreover, we will always
assume ∅, [n] 6∈ F (we handle the remaining cases separately). For any collection H of sets, let
Hσ = {F : F ∈ H and F is an interval along σ}. In the double counting we will use the following
weight function:

w(F, σ) =

{

(

n
|F |

)

, if F ∈ F and F is an interval along σ

0, otherwise.

Observe that, on the one hand, we have

∑

F∈F

∑

σ

w(F, σ) =
∑

F∈F

|F | ! (n − |F |)!

(

n

|F |

)

= n! |F| .

On the other hand,
∑

σ

∑

F∈F

w(F, σ) =
∑

σ

∑

F∈Fσ

(

n

|F |

)

.

For notational simplicity we will often work with the simplest case of a cyclic permutation
where the numbers 1, 2, . . . , n occur in that order. We call this cyclic permutation the canonical
cyclic permutation. It is clear that when we are working with one fixed cyclic permutation we
may assume it is canonical because renaming the elements will not change the intersection or
containment structure of its intervals. Let Aj

i denote the interval {i, i + 1, . . . , i+ j − 1} (addition

involving the base set is always taken modulo n) where i is called the first element of Aj
i and

i+j−1 is called the last element of Aj
i . We can partition all intervals along σ into chains C1, . . . , Cn

where Ci = {{i}, {i, i + 1}, . . . , {i, i + 1, . . . , i + n− 1}}. We call this partition the canonical chain
decomposition. It will be helpful in proving the following well-known result.

Lemma 1. Let G be an antichain of intervals along a cyclic permutation σ, then |G| ≤ n, and
equality holds if and only if G = Lσ

r for some r.

Proof. We may assume that σ is canonical. Let us consider the canonical chain decomposition.
Since at most one interval from each chain may be in our collection, we have that either we take
fewer than n intervals or every chain contains exactly one interval from G. Suppose we are in the
latter case and that some two intervals in G had different sizes. Then, there must exist chains Ci
and Ci+1 where the interval we take in Ci is larger than the one we take in Ci+1. That is, we have
Aj1

i , Aj2
i+1 ∈ G with j1 > j2. However, this implies that we have Aj2

i+1 ⊆ Aj1
i , a contradiction.

If we add the additional constraint that the intervals are intersecting and assume that they are
of size at most n

2 , then we have the following better bound (following Katona [11]).

Lemma 2. Let G be an intersecting antichain of intervals along a cyclic permutation σ where all
the intervals are of size at most n

2 , then |G| ≤ n
2 .

5



Proof. Suppose without loss of generality that the interval Ak
1 = {1, 2, . . . , k} is in G. Since G is

intersecting, every interval of G has either its first element or its last element in Ak
1 . Also notice

that if i ∈ {1, 2, . . . , k} is the last element of an interval of G, i + 1 cannot be the first element of
another interval of G since all the intervals are of size at most n

2 . Therefore, the total number of
intervals in G is at most 1 + (k − 1) = k ≤ n

2 , as desired.

Let σ be canonical, and G be a collection of intervals along σ. If G contains only intervals of size
j of the form Aj

i , A
j
i+1, . . . , A

j
i+s, then we say that G is contiguous. If G is a collection consisting

of intervals Aj
i , A

j
i+1, . . . , A

j
i+s, A

j+1
i+s+1, A

j+1
i+s+2, . . . , A

j+1
i−2 , then we say G is pair-contiguous. Equiv-

alently, G is pair-contiguous if it is an antichain, has size n− 1, and is the union of two contiguous
collections of intervals spanning two consecutive levels. We extend these definitions to arbitrary
cyclic permutations in the obvious way.

Lemma 3. If G is an antichain of intervals along a cyclic permutation σ such that |G| = n−1 and
G contains intervals of at least two sizes, then G is pair-contiguous.

Proof. Assume that σ is canonical. Let us consider the canonical chain decomposition. Let Gmin

be the collection of those intervals in G of minimum size, say j∗. Since Gmin is not a full level there
must be an i such that Aj∗

i ∈ Gmin but Aj∗

i−1 6∈ Gmin. Then, we know that Ci−1 has no interval
from G, and if |G| = n − 1 it must be that each chain Ci, Ci+1, . . . , Ci−2 contains an interval from
G. Observe that if G contains an interval of size j1 in Ci1 and an interval of size j2 in Ci1+1, then
j1 ≤ j2 for otherwise we would not have an antichain. Finally, the interval from G in Ci−2 must
have size j∗ +1 for if it were any larger it would contain Aj∗

i . It follows that G is a pair-contiguous
family contained in levels j∗ and j∗ + 1.

We call a member of G isolated, if it is comparable with no other member of G.

Lemma 4. Let G be a 2-Sperner family of intervals on a cyclic permutation with I isolated intervals,
then there are at most 2n− I intervals in G.

Proof. Consider the canonical chain decomposition. Each isolated interval is found on a different
one of the chains. The remaining chains can have at most 2 intervals each. It follows that the total
number of intervals is at most I + 2(n − I) = 2n− I.

Lemma 5. Let G be a 2-Sperner family of intervals on a cyclic permutation with I isolated intervals,
where 1 ≤ I ≤ n− 1. Then, there are at most 2n− I − 1 intervals in total.

Proof. Consider the canonical chain decomposition. If we do not have either an isolated interval
or two intervals on each chain we are done because then the total number of intervals is at most
I + 1 + 2(n − I − 1), as desired. So suppose by contradiction we do. Let A be the set of inclusion
minimal intervals. A is an antichain and so if it contains intervals of more than one size, then
|A| ≤ n − 1 and we are done again. Thus, we may assume that A is uniform. But then we have
a contradiction because we cannot have a chain with two intervals followed by a chain with an
isolated interval of the same size as the smaller of the two intervals in the first chain.

6



3 Intersecting B-free families

In this section we prove Theorem 9 by determining the exact value of LaI(n,B) and classifying the
extremal families. We may assume that [n] 6∈ F . Indeed, if [n] ∈ F , then F \ {[n]} contains no
three sets A,B,C with A,B ⊂ C. In this case, Theorem 3 shows that such a family may have size
at most (1 + 2/n)

(

n

⌊n

2 ⌋
)

. Thus, for n ≥ 7 the family will be too small.

Let Fm = {F ∈ F | ∃A,B ∈ F such that A ⊂ F ⊂ B} (notice that A and B are unique since F
is butterfly-free). We refer to Fm as the collection of middle sets in F . Fix a cyclic permutation σ.
We will distinguish four kinds of intervals in Fσ which we refer to as the middle, isolated, top and
bottom intervals along σ.

Mσ = {F : F ∈ Fσ and there exists A,B ∈ Fσ such that A ⊂ F ⊂ B};

Iσ = {F : F ∈ Fσ and F is comparable with no other interval in Fσ };

Tσ = {F : F ∈ Fσ \ Iσ is inclusion maximal in Fσ};

Bσ = {F : F ∈ Fσ \ Iσ is inclusion minimal in Fσ}.

It is easy to see that these four sets of intervals form a partition of Fσ. Importantly, note that
the four collections are defined by their properties as intervals along σ, not in F itself. So we may
have, for example, a set F ∈ Fm which is an interval along σ, but does not belong to Mσ.

For any F ∈ F , let αF be the number of cyclic permutations containing F as a middle interval
and βF be the number of cyclic permutations containing F as an isolated interval. Our proof
considers the tradeoffs associated with these two possibilities. We will need to know the relative
frequency with which they occur. To this end, define

c = max
F∈Fm

αF

βF
.

For a fixed cyclic permutation σ, let mσ, iσ , tσ and bσ denote the weight of the collections
Mσ,Iσ,Tσ and Bσ respectively. Define

R = nΣI(n, 2) =







n
(

n

⌊n

2 ⌋+1

)

+ n
(

n

⌊n

2 ⌋+2

)

, if n is odd

n
2

(

n
2

)

+ n
(

n
n

2
+1

)

+
(

n
2 − 2

) (

n
n

2
+2

)

, if n is even.

Thus, our aim is to show |F| ≤ R/n.

Lemma 6. If for each cyclic permutation σ we have tσ + bσ + (1 + c)iσ ≤ R, then |F| ≤ R/n.

Proof. It suffices to show that

n! |F| =
∑

σ

∑

F∈Fσ

(

n

|F |

)

≤ (n− 1)!R.

For a given σ we have

∑

F∈Fσ

(

n

|F |

)

= tσ + bσ + iσ +mσ ≤ R+mσ − ciσ. (2)

7



Summing both sides of (2) over all cyclic permutations, we get

∑

σ

∑

F∈Fσ

(

n

|F |

)

≤
∑

σ

(R+mσ − ciσ) = (n− 1)!R +
∑

F∈Fm

(αF − cβF )

(

n

|F |

)

−
∑

F 6∈Fm

cβF

(

n

|F |

)

.

Now, since for every F ∈ F we have αF − cβF ≤ 0 (by the definition of c), our lemma follows.

Lemma 7. If F is B-free and contains only sets of size at least 2 and at most n− 2, then for each
F ∈ Fm we have

βF
αF

≥
|F | (n− |F |)

4
−

n

2
+ 1.

Proof. Assume that A ⊂ F ⊂ B. The number of cyclic permutations containing A,F and B is

αF = |A| ! (|F | − |A|+ 1)! (|B| − |F |+ 1)! (n − |B|)! .

The number of cyclic permutations containing only F is (by inclusion/exclusion)

βF = |F | ! (n − |F |)!− |A| ! (|F | − |A|+ 1)! (n − |F |)!− |F | ! (|B| − |F |+ 1)! (n − |B|)!+αF .

So we have

βF
αF

= 1 +
|F | ! (n− |F |)!

|A| ! (|F | − |A|+ 1)! (|B| − |F |+ 1)! (n − |B|)!

−
(n− |F |)!

(|B| − |F |+ 1)! (n − |B|)!
−

|F | !

|A| ! (|F | − |A|+ 1)!

=

(

(n− |F |)!

(|B| − |F |+ 1)! (n − |B|)!
− 1

)(

|F | !

|A| ! (|F | − |A|+ 1)!
− 1

)

≥ min
B

(

(n− |F |)!

(|B| − |F |+ 1)! (n − |B|)!
− 1

)

·min
A

(

|F | !

|A| ! (|F | − |A|+ 1)!
− 1

)

.

The first term is minimized by taking |B| = |F | + 1, and the second term is minimized by taking
|A| = |F | − 1. By substituting these values in the inequality above, we get

βF
αF

≥

(

n− |F |

2
− 1

)(

|F |

2
− 1

)

=
|F | (n− |F |)

4
−

n

2
+ 1.

Note 3. If the middle sets in F all have size at least 3 and at most n− 3, then for each F ∈ Fm,

βF
αF

≥
|F | (n − |F |)

4
−

n

2
+ 1 ≥

n− 5

4
.

Therefore,

c = max
F∈Fm

αF

βF
≤

4

n− 5
.

Lemma 8. If F is B-free and contains a set of size 1 or n− 1, then |F| < ΣI(n, 2) for n ≥ 18.

8



Proof. Assume that F contains a set of size n− 1, say S. We define two subfamilies of F . Denote
by F1 the family of those sets in F which are properly contained in S and set F2 = F \ F1. Since
F is B-free, it follows that F1 has no three sets A,B,C with A,B ⊂ C. Thus, using Theorem 3
applied to an n− 1 element ground set we have

|F1| ≤

(

1 +
2

n− 1

)(

n− 1
⌊

n−1
2

⌋

)

.

Since every set in F2 contains a fixed element, we can use Theorem 4 applied to an n− 1 element
ground set to show

|F2| ≤

(

n− 1
⌊

n−1
2

⌋

)

+

(

n− 1
⌊

n−1
2

⌋

+ 1

)

.

One can easily verify this implies |F| = |F1|+ |F2| < ΣI(n, 2) for n ≥ 18.
If F contains a set of size 1, a similar proof works by symmetry (note that we do not use the

intersecting property here).

We will use the following special case of Lemma 11 which will be proved in Section 6:

Lemma 9. Let G be an intersecting 2-Sperner collection of intervals along a cyclic permutation σ,
then

∑

G∈G

(

n

|G|

)

≤ nΣI(n, 2). (3)

Equality holds in (3) if and only if:

• n is odd and G = Hσ
0,n,2;

• n is even and G = Hσ
x,n,2 for some x ∈ [n].

Now we are ready to prove our main theorem.

Proof of Theorem 9. Let σ be a cyclic permutation. By Lemma 6, it is enough to prove

tσ + bσ + (1 + c)iσ ≤ R. (4)

If iσ = 0, then our family of intervals is 2-Sperner and we are done by Lemma 9. Assume that
n is even and Fσ has I > 0 isolated intervals. If I > n

2 , then by Lemma 5, the total number of
intervals along σ is less than 3n

2 − 1. Since isolated sets form an antichain, I ≤ n by Lemma 1. So

the maximum weight of these intervals is at most
(

n
2

(

n
n

2

)

+ n
2

(

n
n

2
+1

)

)

(1 + c) +
(

n
2 − 2

) (

n
n

2
+1

)

< R,

when n ≥ 18 as desired.
Now, consider the case when there are 2 ≤ I ≤ n

2 isolated intervals along σ. By Lemma 5 it
follows that the total number of intervals along σ is at most 2n− I − 1. Pairing off intervals with
their complements and considering the maximum weight we can obtain with 2n − I − 1 intervals,
it is enough to show

(1 + c)I

(

n
n
2

)

+
(n

2
− I
)

(

n
n
2

)

+ n

(

n
n
2 + 1

)

+
(n

2
− I − 1

)

(

n
n
2 + 2

)

≤ R.
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Simplifying,

cI

(

n
n
2

)

≤ (I − 1)

(

n
n
2 + 2

)

.

Dividing through by
(

n
n

2

)

, we get

I ≥

n(n−2)
(n+2)(n+4)

n(n−2)
(n+2)(n+4) − c

.

By Note 3, we have c ≤ 4
n−5 . Substituting this value of c in the above inequality, we get that

the right-hand side is strictly less than 2 when n ≥ 18, as desired. If n is odd, a similar calculation
implies that I > 0 which settles the odd case completely.

So we may assume that I = 1 (n is even) and that the total number of intervals along σ is
exactly 2n − 2 (If we have less than 2n − 2 intervals and I = 1, it can be checked easily that
tσ + bσ + (1 + c)iσ < R for n ≥ 18). Now, the intervals in Tσ ∪ Bσ ∪ Iσ form a 2-Sperner family of
intervals along σ. Let us call the subfamily of maximal intervals (i.e., those intervals that are not
contained in any other interval) U and the subfamily of minimal intervals (i.e., those intervals that
do not contain any other interval) D. Now, if either U or D contains n intervals, then, since it is
an antichain, by Lemma 1 it has to be a complete level Lσ

r . As the family is intersecting, we have
r > n

2 .
If D = Lσ

r , then U consists of n−2 intervals of size at least n
2 +2, and a simple calculation shows

tσ + bσ +(1+ c)iσ < R for n ≥ 18. If U = Lσ
r and r ≥ n

2 +2, a similar calculation shows again that
tσ + bσ + (1+ c)iσ < R for n ≥ 18. If U = Lσ

r and r = n
2 +1, then D is an intersecting antichain of

intervals of size at most n
2 . Now by Lemma 2, we have |D|≤ n

2 in this case, contradicting the fact
that the total number of intervals is 2n− 2.

So we can assume that both U and D contain at most n− 1 intervals. Since the interval in Iσ
is both maximal and minimal we have |U ∩ D| ≥ 1. But then, the total number of intervals in our
2-Sperner family is |U ∪ D| = |U|+ |D| − |U ∩ D| ≤ 2n− 3, a contradiction.

We now establish the cases of equality. First let us notice that by Lemma 6, we have |F| = R
n
if

and only if we have equality in (4) for each σ. However, we just saw that if I > 0, the inequality (4)
is never sharp when n is large enough (for both the n is even case and n is odd case). Thus, we
have I = 0 for every σ. However, since any middle set of F appears as an isolated interval on some
σ, we may conclude that F has no middle sets (i.e., |Fm| = 0). Therefore, F is 2-Sperner and so
the equality cases follow from Theorem 13.

4 Bollobás and Greene-Katona-Kleitman-type inequalities

In this section we will prove Theorem 11.

Proof. Following [1] we will use the weight function

w(F, σ) =

{

1
|F | , if F ∈ F and F is an interval in σ

0, otherwise.

On the one hand, we have
∑

F∈F

∑

σ

w(F, σ) =
∑

F∈F

(|F | − 1)! (n − |F |)! .
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We will show
∑

σ

∑

F∈F

w(F, σ) ≤ 2(n− 1)! .

Fix a cyclic permutation σ. As before, let Iσ be the collection of isolated intervals along σ. Similarly,
let Mσ be the collection of middle intervals along σ. Then, we claim that the following inequality
holds:

w(Fσ) ≤ 2 + w(Mσ)− w(Iσ). (5)

Indeed, initially leave out all intervals in Mσ and Iσ. The remaining intervals may be partitioned
into two antichains along σ, say A1 and A2. Clearly A1 ∪ Iσ is an antichain, as is A2 ∪ Iσ. By the
argument from [1] we have w(A1 ∪ Iσ) ≤ 1 and w(A2 ∪ Iσ) ≤ 1. Thus, summing we have

w(A1) + w(A2) + 2w(Iσ) ≤ 2. (6)

Rearranging and adding w(Mσ) to both sides yields (5).
Since the only possible middle intervals along a cyclic permutation are middle sets in F (that

is, Mσ ⊆ Fσ
m), summing up (5) over all cyclic permutations σ, we get

∑

σ

∑

F∈F

w(F, σ) ≤ 2(n − 1)!+
∑

F∈Fm

(

αF

|F |
−

βF
|F |

)

−
∑

F 6∈Fm

βF
|F |

. (7)

We have seen already by Lemma 7 that βF ≥ αF for F ∈ Fm, and the proof is complete.

The proof of Theorem 10 uses the exact same idea but with the weight function defined in [8],
namely

w(F, σ) =











n−|F |−1
|F | , if F ∈ F , |F | ≤ n

2 and F is an interval in σ

1, if F ∈ F , |F | > n
2 and F is an interval in σ

0, otherwise.

5 Results for general posets P

In this section we prove Theorem 12. Before we start the proof we define the notion of a double chain
introduced in [2].

Definition 1 (Double chain). Let ∅ = A0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ An = [n] be a maximal chain (so
|Ai| = i). The double chain associated to this chain is given by

D = {A0, A1, . . . , An,M1,M2, . . . ,Mn−1},

where Mi = Ai−1 ∪ {Ai+1 \ Ai}.

We will now introduce the notion of a double chain-complement pair which is the key ingredient
of the proof.

Definition 2 (Double chain-complement pair). Let D be a double chain. By taking the complement
of all the sets in D we get another double chain D′. We refer to H = D ∪ D′ as a double chain-
complement pair.

11



In the rest of this section we shall work with the double chain-complement pair H0 = D0 ∪ D′
0

where D0 is defined by taking Ai = [i]; other double chain-complement pairs are related to it
by permutation. Let π ∈ Sn be a permutation and F ⊆ [n] be a set, then F π denotes the set
{π(a) : a ∈ F}. We define the double chain-complement pairHπ

0 to be the collection {F π : F ∈ H0}.
Notice that this gives us n! double chain-complement pairs in total.

Now we are ready to prove our theorem. Let F be an intersecting P -free family. We will use
the collections Hπ

0 = D ∪ D′ for a weighted double counting argument described below.
Define a weight function w(F,Hπ

0 ) by

w(F,Hπ
0 ) =











(

n
|F |

)

, if F ∈ F , F 6= [n] and F ∈ Hπ
0

4, if F ∈ F , F = [n] and F ∈ Hπ
0

0, otherwise.

We want to compute
∑

F

∑

Hπ

0
w(F,Hπ

0 ) in two different ways. First let us fix a F ∈ F and

determine how many collections Hπ
0 contain F . If F = [n] we know that all n! collections Hπ

0

contain it. So let us assume F 6= [n]. Let H1,H2,H3,H4 be the four sets in H0 of size |F | (our
assumption n ≥ 4 ensures there are four distinct sets of this size). The number of permutations π
such that a given Hi (where 1 ≤ i ≤ 4) is mapped to F is |F | ! (n − |F |)!, since we can map the
elements of Hi to F arbitrarily and the elements of [n] \Hi to [n] \F arbitrarily. So it follows that
the number of permutations π such that F ∈ Hπ

0 is 4 |F | ! (n− |F |)!. Thus, we have

∑

F

∑

Hπ

0

w(F,Hπ
0 ) = 4 |F|n! . (8)

Now let us fix an Hπ
0 . Since n is odd, there are 8 sets in Hπ

0 of maximal weight
(

n

⌊n

2 ⌋
)

and 8 sets

of second largest weight
(

n

⌊n

2 ⌋+1

)

and so on. The 8 sets of Hπ
0 of the same weight

(

n

⌊n

2 ⌋+i

)

(where

i ≥ 1) consist of 4 sets and their respective complements. Thus, at most 4 of them can belong to
our family F (since F is intersecting). Now let us recall a lemma due to Burcsi and Nagy [2].

Lemma 10 (Burcsi-Nagy [2]). Let P be a poset. Any subset of size |P | + h(P ) − 1 of a double
chain contains P as a subposet.

Since a P -free family has at most |P |+ h(P )− 2 sets on a double chain, it follows that we can
have at most 2(|P |+h(P )−2) sets in F ∩Hπ

0 for any π. Since we can have at most 4 sets of weight
(

n

⌊n

2 ⌋+i

)

in F ∩ Hπ
0 , the total weight of sets in F ∩ Hπ

0 is at most
∑

2(|P |+h(P )−2)
4

i=1 4
(

n

⌊n

2 ⌋+i

)

. So we

have

∑

Hπ

0

∑

F

w(F,Hπ
0 ) ≤ n!







|P |+h(P )
2

−1
∑

i=1

4

(

n
⌊

n
2

⌋

+ i

)






. (9)

Combining (8) and (9), we have the desired bound.

6 Intersecting k-Sperner families

The aim of this section is to prove Theorem 13.
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Lemma 11. Let G be an intersecting k-Sperner collection of intervals along a cyclic permutation
σ, then

∑

G∈G

(

n

|G|

)

≤ nΣI(n, k). (10)

Assume k ≤ n
2 , then equality holds in (10) if and only if:

• n is odd and G = Hσ
0,n,k;

• n is even, k = 1 and G = Hσ
0,n,1 or G = Hσ

x,n,1 for some x ∈ [n];

• n is even, k > 1 and G = Hσ
x,n,k for some x ∈ [n].

Proof. First, fix k and suppose that n is odd. Following an argument of Mirsky [15], G can be
decomposed into k antichains in the following way. For 1 ≤ i ≤ k set

Gi = {G : G ∈ G and the longest chain in G with maximal element G has length i}.

By Lemma 1 each Gi can have size at most n and so we have |G| ≤ kn. For any interval G along
σ, it is easy to see that [n] \G is also an interval along σ and has size n− |G|. Since our family is
intersecting, by pairing off each G with [n] \ G, we see that G contains at most n intervals of size
⌊

n
2

⌋

or
⌊

n
2

⌋

+ 1 and at most n intervals of size
⌊

n
2

⌋

− 1 or
⌊

n
2

⌋

+ 2 and so on. Thus, the bound

∑

G∈G

(

n

|G|

)

≤ n

(

(

n
⌊

n
2

⌋

+ 1

)

+

(

n
⌊

n
2

⌋

+ 2

)

+ · · · +

(

n
⌊

n
2

⌋

+ k

)

)

= nΣI(n, k)

is immediate. Assume now that G attains this weight and k ≤ n
2 , then G must contain n sets from

each of Lσ

⌊n

2 ⌋
∪ Lσ

⌊n

2 ⌋+1
, Lσ

⌊n

2 ⌋−1
∪ Lσ

⌊n

2 ⌋+2
, . . . , Lσ

⌊n

2 ⌋−k+1
∪ Lσ

⌊n

2 ⌋+k
. In particular, we must have

|G| = kn.
Observe that each Gi is an antichain and, since |G| = kn, we have |Gi| = n for all i. Then,

Lemma 1 implies that each Gi is equal to a level of intervals along σ. If Gi is a level, it must consist
of intervals of size at least

⌊

n
2

⌋

+ 1. Thus, assuming G is of maximal weight, we have

Gi = Lσ

⌊n

2 ⌋+i

for each i and so
G = Lσ

⌊n

2 ⌋+1
∪ Lσ

⌊n

2 ⌋+2
∪ . . . ∪ Lσ

⌊n

2 ⌋+k
= Hσ

0,n,k.

Next, we consider the case when n is even and k = 1. By Lemma 1, if |G| = n, then G is
a level Lσ

i for some i. By the intersection property we have i ≥ n
2 + 1 and so the weight of the

family is bounded by n
(

n
n

2
+1

)

with equality only if G = Lσ
n

2
+1. If |G| ≤ n − 1 then, since we can

take at most n
2 intervals of size n

2 , the weight is bounded by n
2

(

n
n

2

)

+ (n2 − 1)
(

n
n

2
+1

)

. This bound can

only be attained if |G| = n− 1, and it follows by Lemma 3 that G is pair-contiguous which, in the
case k = 1, implies G = Hσ

x,n,1 for some x ∈ [n]. Since n
2

(

n
n

2

)

+ (n2 − 1)
(

n
n

2
+1

)

= n
(

n
n

2
+1

)

, both the

|G| = n− 1 case and the |G| = n case yield optimal configurations.
Finally, we consider the case when n is even and k > 1. Suppose first that none of G1, . . . ,Gk

are levels. Then, by Lemma 1 we have |Gi| ≤ n− 1 for all i. We have |G| ≤ kn− k, and we will see
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that if G has maximal weight, then in fact |G| ≥ kn− k. Indeed, by pairing off intervals with their
complements, we can have at most n

2 intervals of size n
2 , n intervals of size n

2 − 1 or n
2 + 1 and so

on. Thus, the total weight we can achieve with kn− k intervals is bounded by

n

2

(

n
n
2

)

+ n

(

n
n
2 + 1

)

+ · · ·+ n

(

n
n
2 + k − 1

)

+
(n

2
− k
)

(

n
n
2 + k

)

= nΣI(n, k),

and if we have fewer than kn−k intervals the weight will be strictly less than this. It follows that we
may assume |G| = kn−k and |Gi| = n−1 for all 1 ≤ i ≤ k. By Lemma 3 each Gi is pair-contiguous
on two levels j and j+1. If j < n

2 , then the corresponding Gi would have size at most n
2 by Lemma

2. Thus, we may assume that j ≥ n
2 . However, this combined with the fact that G has maximal

weight already determines the structure of G. Namely, G1 is pair-contiguous spanning levels n
2 and

n
2 + 1 with n

2 sets of size n
2 forming a star about some element x, G2 is pair-contiguous spanning

levels n
2 + 1 and n

2 + 2 containing all remaining n
2 + 1 elements of Lσ

n

2
+1 and a contiguous part of

Lσ
n

2
+2 and so on. It follows that G = Hσ

x,n,k for some x ∈ [n].

Now, we will show that if G has maximal weight, then it cannot be that any of the Gi are levels.
This will complete the proof since we have already classified the extremal families in the case that
there are no levels. Suppose, by way of contradiction, that s is the smallest number such that Gs

is a level, say Lσ
t (t > n

2 ). The weight of Gs ∪ Gs+1 ∪ . . . ∪ Gk is clearly bounded by

n

(

n

t

)

+ n

(

n

t+ 1

)

+ · · ·+ n

(

n

t+ k − s

)

.

If t > n
2 + s− 1, then, by the previous case (no full levels), the weight of G1 ∪ . . .Gs−1 is maximized

by taking
G1 ∪ . . . ∪ Gs−1 = Hσ

x,n,s−1,

for some x ∈ [n]. The weight of G1 ∪ . . . ∪ Gs−1 is

w(G1 ∪ . . . ∪ Gs−1) =
n

2

(

n
n
2

)

+ n

(

n
n
2 + 1

)

+ · · ·+ n

(

n
n
2 + s− 2

)

+
(n

2
− (s− 1)

)

(

n
n
2 + s− 1

)

,

and it follows that the total weight of G is at most

n

2

(

n
n
2

)

+ n

(

n
n
2 + 1

)

+ · · ·+ n

(

n
n
2 + s− 2

)

+
(n

2
− (s− 1)

)

(

n
n
2 + s− 1

)

+ n

(

n
n
2 + s

)

+ n

(

n
n
2 + s+ 1

)

+ · · · + n

(

n
n
2 + k

)

. (11)

Subtracting w(Hσ
x,n,k)− w(G) we obtain

w(Hσ
x,n,k)− w(G) ≥

(n

2
+ s− 1

)

(

n
n
2 + s− 1

)

−
(n

2
+ k
)

(

n
n
2 + k

)

= n

(

(

n− 1
n
2 + s− 1

)

−

(

n− 1
n
2 + k − 1

)

)

> 0, (12)

which implies G is not of maximum weight.
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Next, consider the case when t ≤ n
2 + s − 1. By pairing off intervals with their complement

along σ, it follows that

w(G1 ∪ . . . ∪ Gs−1) ≤
n

2

(

n
n
2

)

+ n

(

n
n
2 + 1

)

+ · · · + n

(

n

t− 1

)

.

Thus, the whole weight is

w(G) ≤
n

2

(

n
n
2

)

+ n

(

n
n
2 + 1

)

+ · · ·+ n

(

n

t− 1

)

+ n

(

n

t

)

+ · · ·+ n

(

n

t+ k − s

)

,

but t− s ≤ n
2 − 1 so

w(G) ≤
n

2

(

n
n
2

)

+ n

(

n
n
2 + 1

)

+ · · ·+ n

(

n
n
2 − 1 + k

)

< w(Hσ
x,k,n).

Thus, we may conclude that there is no full level. It follows that the only possible equality case is
G = Hσ

x,k,n for some x ∈ [n].

Proof of Theorem 13. By Lemma 11 we have that for every σ,

∑

F∈Fσ

w(F, σ) ≤ nΣI(n, k). (13)

By the double counting outlined in Section 2 it is immediate that |F| ≤ ΣI(n, k). Thus, it remains
to determine the possible extremal families. If F is extremal, then for every σ we have equality in
(13) and so we are in an equality case given by Lemma 11.

Assume first that n is odd, then for every σ we have that Fσ is equal to Hσ
0,n,k. In this case, it

is immediate that F = H0,n,k.
Suppose now that n is even and k = 1. There are two cases: either there exists a σ for

which Fσ = Hσ
0,n,1 or there does not. Assume that we have Fσ = Hσ

0,n,1, and form a new cyclic

permutation σ′ by transposing two adjacent elements of σ. Observe that Fσ′
still contains n− 2 of

the same intervals on level n
2 + 1 (namely, those without exactly one of the transposed elements).

Now, configurations of the form Hσ
x,n,1, x ∈ [n], have n

2 − 1 intervals of size n
2 + 1. Thus, we have

that Fσ′
must have the form Hσ′

0,n,1. Since every permutation can be generated by transpositions
of consecutive elements it follows that for all σ, Fσ = Hσ

0,n,1 and so F = H0,n,1. Thus, we will
assume that for all σ we have Fσ = Hσ

x,n,1, x ∈ [n].
If n is even and k > 1 and Fσ = Hσ

0,n,k for some σ, then in a completely analogous way to the
above k = 1 case we can deduce that F = H0,n,k. However, for k > 1 we have |H0,n,k| < |Hx,n,k|.
Indeed, simply observe

|Hx,n,k| − |H0,n,k| =

(

n− 1
n
2 − 1

)

+

(

n− 1
n
2 + k

)

−

(

n
n
2 + k

)

=

(

n− 1
n
2 − 1

)

−

(

n− 1
n
2 + k − 1

)

> 0.
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Thus, we may rule out the H0,n,k case for k > 1 and conclude that Fσ 6= Hσ
0,n,k for any σ.

So, finally, we may suppose that n is even and k ≥ 1 and that for every σ, we have Fσ = Hσ
x,n,k

for some x ∈ [n]. We want to show that F = Hx,n,k for some x. Each cyclic permutation contains
n
2 intervals of size n

2 and n intervals of size n
2 + i for 1 ≤ i ≤ k− 1 and n

2 − k intervals of size n
2 + k.

By the transposition argument that we used above, we can easily show that all the sets of
( [n]

n

2
+i

)

for

1 ≤ i ≤ k − 1 are in F . It only remains to show that F contains all the sets of size n
2 that contain

a fixed element and all the sets of size n
2 + k that don’t contain that fixed element.

We supposed that for each σ, Fσ contains all of the n
2 -element intervals containing some x and

all the n
2 +k-element intervals not containing that x. However, the x’s corresponding to different σ’s

may be different. Our aim is to show that this is impossible. First, let us fix a cyclic permutation
σ and notice that we have two sets A and B that are intervals along this σ such that A∩B = {x}.
Suppose by contradiction that there exists an n

2 -element set C (in F) not containing x. Observe
that |[n] \ (A ∪B)| = 1, and let us define [n] \ (A ∪ B) = {y}. If C contains y, then we can find
a cyclic permutation σ where A, B and C are intervals, a contradiction. However, if C does not
contain y, we can find a cyclic permutation where A, B and C ∪ {y} are intervals. Along this σ,
since we have two intervals (namely, A and B) that intersect just in x, all the n

2 -element intervals
must also contain x and all the n

2 + k-element intervals do not contain x. In particular, there is an
n
2 + k-element interval, say K which contains C ∪ {y} (this is because the interval C ∪ {y} doesn’t
contain x). Now, since all the intervals along σ of sizes n

2 + i, 2 ≤ i ≤ k − 1 are in F , it is easy to
find a (k + 1)-chain in F consisting of C, C ∪ {y} and K, a contradiction. Thus, we can conclude
that every n

2 -element set C in F must contain x.
By a standard double counting of pairs (F, σ) where F ∈ F and F is an interval along σ, we

can see that F contains exactly
(

n−1
n

2
−1

)

sets of size n
2 , and by the previous paragraph all the n

2 -sets

in F must contain a fixed element. Therefore, F contains every n
2 -element set containing a fixed

element and nothing else. But this means F cannot contain any set of size n
2 + k containing x

because otherwise we will have a (k + 1)-chain in F , a contradiction. But by the same double
counting argument we can see that F contains

(

n−1
n

2
+k

)

sets of size n
2 + k, and all these sets must not

contain x. This shows that F = Hx,n,k, as desired and we have established all the cases of equality
for intersecting k-Sperner families.
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