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GAPS BETWEEN FRACTIONAL PARTS,

AND ADDITIVE COMBINATORICS

Antal Balog, Andrew Granville and Jozsef Solymosi

Abstract. We give bounds on the number of distinct differences Na − a as a varies over all

elements of a given finite set A, and Na is a nearest neighbour to a.

1. Introduction

Let α be a real, irrational number and consider the set of points

Sα(N) = {αn : 1 ≤ n ≤ N} ⊆ R/Z,

which is isomorphic to the set of points {e2iπαn : 1 ≤ n ≤ N} on the unit circle S1.
Moreover, one can view Sα(N) as the set of points {{αn} : n ≤ N} ⊆ [0, 1), where {t}
denotes the fractional part of real number t (that is, {t} = t − [t] where [t] is the largest
integer ≤ t), and then order them as

Sα(N) = {0 ≤ b1 < b2 < . . . < bN < 1}.

In 1957 Steinhaus observed, and in 1958 Vera Sós proved, [7,8]1, that there are, at most,
three distinct consecutive differences in Sα(N), that is

|{bi+1 − bi : 1 ≤ i ≤ N}| ≤ 3

where we take bN+1 = 1 + b1. This is arguably surprising since it is well known that
Sα(N) becomes increasingly uniformly distributed mod 1 as N gets larger, that is Sα(N)
looks random globally for large N , whereas Sós’s result tells us that Sα(N) looks highly
structured locally. In 2002, Vâjâitu and Zaharescu [10] considered a question in-between
these two extremes: Take the set of bi’s above and erase as many elements of the set as one
likes – how large can one make the resulting set of differences? They proved the following
result (though with the constant 2 + 2

√
2 in place of our 2

√
2):
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Corollary 2. For any subset A of Sα(N) there are no more than 2
√
2N + 1 distinct

consecutive differences in A; that is, if A = {0 ≤ a1 < a2 < ... < am < 1 ≤ am+1 :=
1 + a1} ⊂ Sα(N) then

(1) |{aj+1 − aj : 1 ≤ j ≤ m}| ≤ 2
√
2N + 1.

Moreover there exists A ⊆ Sα(N) with at least
√
2N − 1 distinct consecutive differences,

so the result here is “best possible” up to the value of the constant in front of the “
√
N”.

The proof in [10] comes from careful number theoretic considerations, whereas our
proof stems from more general additive combinatorics ideas, emerging from the fact that
Sα(N) + Sα(N) is not much larger than Sα(N). Here and throughout we define

A+B := {n : n = a+ b for some a ∈ A, b ∈ B}.
A set of points in R/Z has a natural “circular” ordering by starting at any given point

and then proceeding anticlockwise. Evidently there is no generic place to start the ordering
but this will not effect on our results. Each of the points will have a smaller and a larger

neighbour, the two points that appear before and after our given point in the ordering,
respectively (where, for the purposes of this definition, the first point in our ordering
appears after the last).

We need a notion of length in R/Z: Any t ∈ R/Z represents the coset t + Z, and we
define ‖t‖ to be the minimal size of any element of t+ Z, that is

‖t‖ := min
n∈Z

|t− n|.

Hence the distance between two points in x, y ∈ R/Z is given by ‖x− y‖.
Theorem 1. If B is a finite subset of R/Z then any subset A of B has at most

√

2|B| |A+B|
|B| + 1

distinct, consecutive differences. Moreover there are subsets A of B with at least
√

2|B|−1
distinct consecutive differences.

The bound in Theorem 1 is better than the trivial bound, ≤ |A|, if |A+B| ≪ |A|
√

|B|.
A map φ : A → B is called a 2-isomorphism if a1 − a2 = a3 − a4 if and only if

φ(a1) − φ(a2) = φ(a3) − φ(a4) for all a1, a2, a3, a4. Note that this does not effect
coincidences amongst the set of differences of elements of A. Any non-degenerate affine
transformation is a 2-isomorphism on the reals, so that any given set of reals is 2-isomorphic
to a subset of [0, 12 ). The natural embedding [0, 12) → R/Z given by sending t to t+Z is a
2-isomorphism, and the composition of these two 2-isomorphisms is also a 2-isomorphism.
Hence we can apply Theorem 1 to any finite set of reals.

For any ordered set b1 < b2 < . . . < bm define

D(B) := {bi+1 − bi : 1 ≤ i ≤ m− 1}
to be the set of distinct consecutive differences between elements of B. Since A+B ⊆ B+B,
we immediately deduce the following result from Theorem 1:
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Corollary 1. If B is a finite set of real numbers then

√

2|B| − 1 ≤ max
A⊆B

|D(A)| ≤
√

2|B| · |B +B|
|B| + 1.

A nice example is given by the projection of the lattice points of a compact subset of
a k-dimensional lattice onto R/Z. That is for given real numbers α1, ..., αn and integers
N1, ..., Nk ≥ 1, the set

(2) B = {n1α1 + n2α2 + ...+ nkαk : 0 ≤ nj < Nj for 1 ≤ j ≤ k} ⊂ R/Z

typically satisfies |B + B| ≤ 2k|B|, so the upper and lower bounds in Corollary 1 are
equal up to a factor . 2k. Cobeli et al [3], discovered and proved the following, wonderful
generalization of Steinhaus’s problem: If the elements of B are 0 ≤ b1 < b2 < ... < bN < 1
then there exists a set {r1, ..., rl} of positive real numbers with l ≤ 2k, such that every
difference bj − bi with 1 ≤ i < j ≤ N can be written as a sum of the ri’s. Rather more
generally:

Theorem 2. Let B be a finite subset of R/Z, and C be any subset of B for which C −
B = B − B. Let b−c and b+c be the smaller and larger neighbours of c in B, and let
R− := {c− b−c : c ∈ C}, R+ := {c− b+c : c ∈ C}. Then every element of B −B is a sum
of elements of R−, as well as a sum of elements of R+, that is B−B ⊂ 〈R−〉N0

= 〈R+〉N0
.

(Here N0 = N ∪ {0}.)
For B as in (2) we can take

C = {δ1N1α1 + δ2N2α2 + ...+ δkNkαk : each δi = 0 or 1}

so that |R−|, |R+| ≤ |C| ≤ 2k, which is comparable to |B +B|/|B|.
However, we have been unable, in general, to estimate the size of C in terms of quantities

associated with B, and there does not seem to be a close link between |C| and |B+B|/|B|
in general. Let r3(N) denote the size of the largest set S ⊂ {1, . . . , N} containing no

non–trivial 3–term arithmetic progressions. As is well-known, r3(N) ≫ Ne−δ
√
logN for

some constant δ > 0, thanks to a clever construction of Behrend [1].

Proposition 1. For any given integer N there exists a finite set of N integers B for which
|B +B| ≤ 10N and if C ⊂ B, C −B = B −B then |C| ≥ r3(N).

The length of t ∈ (R/Z)d is defined to be the minimal length of any element of t+ Zd;
that is

‖t‖ := min
n∈Zd

|t− n| =
(

d
∑

i=1

min
n∈Z

|ti − ni|2
)1/2

where t = (t1, . . . , td). The distance between x, y ∈ (R/Z)d is then given by ‖x− y‖.
For a given finite subset A of (R/Z)d and a ∈ A, let Na be one of the elements of A

that is nearest to a in the ‖.‖-norm.. We now investigate the number of possible vectors
Na − a as we vary over a ∈ A.
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Theorem 3. Let wn = (α1n, α2n, . . . , αdn) ∈ (R/Z)d. For each i ∈ [1, N ] select j =
j(i) ∈ [1, N ] with j 6= i so that ‖wi − wj‖ is minimized. There are ≪ (4/3)d distinct
elements of the set D = {±(wi − wj(i)) : i = 1, 2 . . . , N}.

Unfortunately for a general set A ∈ (R/Z)d we can say somewhat less, namely we can
prove a similar bound only for a larger subset of A.

Theorem 4. Let A be a finite subset of (R/Z)d, and ǫ > 0 be a small real number. There
exists A′ ⊂ A, with ≥ (1− ǫ)|A| elements, such that

|{Na − a : a ∈ A′}| ≪ (4/3)d ·min
B

|A+B|2
|A||B| · 1

ǫ
log

1

ǫ
.

We give an example in section 5 to show that this cannot be much improved.

It would be interesting to determine minB
|A+B|2
|A||B| for an arbitrary set A of real numbers.

Taking B = {b}, any one element set, or taking B = A, evidently shows

min
B

|A+B|2
|A||B| ≤ min{|A|, (|A+A|/|A|)2}.

2. The Three Gaps theorem and beyond

We begin with recalling Liang’s elegant solution [6] to Steinhaus’s problem. We do so not
only because it inspires some of our arguments, but also because we want to demonstrate
how simple and short it is.

The Three Gaps theorem. Reorder Sα(N) as 0 ≤ {a1α} < {a2α} < ... < {aNα} < 1.
Then the consecutive differences {ai+1α} − {aiα}, 1 ≤ i ≤ N − 1 each equal one of three
numbers, namely the distances between each pair of points amongst {aNα}−1, 0 and {a1α}.
Proof sketch. D(A) is contained in the set G of gaps {ai+1α}−{aiα} for which {(ai−1)α}
and {(ai+1 − 1)α} are not consecutive elements of the re-organized sequence (that is, we
select one representative from each set of gaps that are obviously the same length.) Note
that if {(ai − 1)α} and {(ai+1 − 1)α} are not consecutive elements of the re-organized
sequence then either ai = 1 or ai+1 = 1, or there is some {ajα} ∈ ({(ai − 1)α}, {(ai+1 −
1)α}). This last possibility implies that {(aj + 1)α} ∈ ({aiα}, {ai+1α}), and so aj = N .
Hence |G| ≤ 3 and so there are at most three distinct gaps. When ai = 1 the gap is the
distance between 0 and {(ai+1 − 1)α}); when ai+1 = 1 the gap is the distance between
{(ai − 1)α} and 0; and when {aiα} < {(N + 1)α} < {ai+1α}) the gap is the sum of the
two previous distances.

Example. The Weierstrass parametrization C/Λ → E of an elliptic curve E, is an isomor-
phism sending z ∈ C to Pz := (℘(z), ℘′(z)), for a certain function ℘ and 2-dimensional
lattice Λ. Hence Pmz = mPz . The multiples P, 2P, . . . , NP of a given point P on the
real locus of E (for example, the point P = (1, 3) on E : y2 = x3 + 8x) all lie on the real
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locus of E, which is one continuous curve. Moving along this curve from −∞ to +∞, we
encounter these points in some order a1P, a2P, ..., aNP . As noted in [5], the Three Gaps
theorem implies that there are, at most, three distinct differences (ai+1 − ai)P .

Chung and Graham [2] came up with a beautiful generalization of the Three Gaps
theorem, and Liang’s proof works here too.

The 3k-Gaps theorem. Let A be the set of elements βi + niα ∈ R/Z for 1 ≤ ni ≤ Ni

and i = 1, 2, . . . , k. Then the sizes of consecutive differences of A have ≤ 3k different
values.

Proof. List the elements of A in an anticlockwise “circular order”, a1, a2, . . . , aN , where
each aj is in the form β+nα with some β = βi and n = ni. Note that N = N1+ · · ·+Nk,
and D(A), the set of consecutive differences is {a2 − a1, a3 − a2, . . . , aN − aN−1, a1 − aN}.
We show that |D(A)| ≤ 3k. D(A) is contained in the set of gaps (better to call them arcs)
ai+1 − ai for which ai + α and ai+1 + α are not consecutive elements of A. This can only
happen if either one of these two points (or both) is not an element of A, or there is an
element a ∈ A between them, but a− α is not an element of A. That is either one of the
endpoints of the A–free arc (ai, ai+1) is of the form βj + Njα or there is a point of the
form βj on the A–free arc (ai, ai+1). That is no more then 3 options for each j.

3. Bounding the number of differences in A

Proof of the first part of Theorem 1. Order the elements of A as a1, a2, . . . , am, going anti-
clockwise around the circle. For each d ∈ D(A) select i(d) for which ai(d)+1 − ai(d) = d
and let

JA := {i(d) : d ∈ D(A)}
For a k chosen optimally later, we partition the set A + B into k arcs I1, I2, ..., Ik each
containing roughly the same number of elements of A + B. We count the number, P , of
pairs (i, b) with i ∈ JA and b ∈ B for which ai + b and ai+1 + b both lie in the same arc
Ij . For each fixed b, the points of A+ b follow each other in the order

a1 + b, a2 + b, . . . , am + b

and so consecutive numbers here lie in the same arc unless they straddle the boundary
between consecutive arcs, which can happen for at most k pairs. Therefore

(3) P ≥ |B|(|D(A)| − k)

On the other hand, if we are given a pair of integers u and v which must equal to ai + b
and ai+1 + b with some i ∈ JA and b ∈ B, then their difference is v − u = d ∈ D(A),
so i = i(d) where d = ai+1 − ai which are thus uniquely determined and hence so is
b = u − ai (= v − ai+1), therefore there is, at most, one such pair (i, b). We therefore
deduce that

P ≤
k
∑

j=1

(|Ij|
2

)
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where |Ij| denotes the number of elements of A+B in Ij . If |A+B| = kL+ r, 0 ≤ r < k,
then one can certainly arrange the end points of the arcs Ij so that r of the |Ij| are = L+1,
the other k − r of the |Ij| are = L, in which case

P ≤ r

(

L+ 1

2

)

+ (k − r)

(

L

2

)

=
(kL+ r)2

2k
− r2

2k
− kL

2
≤ |A+B|2

2k
.

Comparing this with (3) gives the upper bound

|D(A)| ≤ k +
|A+B|2
2k|B| ,

which we minimize by selecting k to be the integer satisfying |A+B|√
2|B|

+1 > k ≥ |A+B|√
2|B|

. This

implies the result.

Deduction of Corollary 2. Sα(N) = {αn : 1 ≤ n ≤ N} is an arithmetic progression, and
Sα(N)+Sα(N) = Sα(2N)\{α}, so we have |Sα(N)+Sα(N)| = 2N−1. The result readily
follows from Corollary 1 (or taking A = B = Sα(N) in Theorem 1).

Proof of the second part of Theorem 1. (Construction of A with a lot of differences by
the greedy algorithm.) Let a1 = b1, a2 = b2. We select each aj = bkj

, j ≥ 3 to be
the minimum k > kj−1 such that bk − aj−1 is different from the previous consecutive
differences, a2 − a1, a3 − a2, ..., aj−1 − aj−2. Evidently we need to avoid j − 2 values so
kj ≤ kj−1 + j − 1. Hence

kj ≤ (j − 1) + (j − 2) + ...+ 1 + 1 =

(

j

2

)

+ 1

and there is room for choosing kj while this is ≤ |B|. Hence we can take
√

2|B| > j ≥
√

2|B| − 1. This gives the second part of Theorem 1.

Another proof, though with a weaker constant, follows from recalling that every set B
contains a Sidon set A of size ≫

√

|B|; and that there are |A| − 1 distinct differences
between consecutive elements of a Sidon set A.

4. The number of differences in the original set

Proof of Theorem 2. Think about our sets in the anticlockwise “circular order”. For any
b′, b′′ ∈ B there exists c ∈ C, b ∈ B such that c− b = b′ − b′′. Consider the anti-clockwise
oriented arc from b to c, this has the same arc length as the anti-clockwise oriented arc
from b′′ to b′. Locate the points b = b0, . . . , br = c of B sitting on this arc and ordered in
anti-clockwise direction. Each bi+1 − bi is of the form c∗ − b∗, and we can keep dividing
those arcs into smaller and smaller parts until they can get no smaller. But then the parts
must be of the form c − b−c where there are no elements in–between c and b−c . Hence,
b−c must be the smaller neighbour of c. This proves the first half of the theorem. The
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other half comes from the exact same analysis with choosing clockwise oriented arcs at
the very beginning and always after. Finally, to see that 〈R−〉N0

= 〈R+〉N0
note that both

R− ⊂ B −B ⊂ 〈R+〉N0
and R+ ⊂ B −B ⊂ 〈R−〉N0

.

Proof of Proposition 1. Let S be a set of positive integers ≤ N , which contains no non–
trivial 3–term arithmetic progressions. That is, if 2s = s1 + s2 in S, then s1 = s2 = s.
There is such a set of r3(N) elements. Select x = 5N − 2|S|. Let

B = S ∪ {2N < n ≤ x− 2N} ∪ (x− S),

so that |B| = x− 4N +2|S| = N and B +B ⊆ {1, 2, ..., 2x}, so that |B +B| ≤ 2x < 10N .
Now for each s ∈ S consider m = x− 2s = (x− s)− s ∈ B −B. Note that m ≥ x− 2N .
If for some b1, b2 ∈ B we have m = b1 − b2 then b1 > x − 2N , else b2 = b1 − m ≤
x − 2N − (x − 2N) which is impossible, so b1 = x − s1, s1 ∈ S. Similarly b2 ≤ 2N else
b1 = b2 + m > 2N + (x − 2N) which is impossible, and so b2 = s2, s2 ∈ S. Therefore
2s = x−m = x− b1 + b2 = s1 + s2, which is only possible in S when s1 = s2 = s. Hence
if C −B = B −B then x− S ⊂ C, and so |C| ≥ |S| = r3(N).

5. Nearest neighbours

In this section we investigate the set {Na − a : a ∈ A} of vectors from points of A to
their nearest neighbours Na in A.

We begin with an important lemma from the theory of sphere packing:

Lemma 1. There exists an absolute constant κ > 0 such that if z1, z2, . . . , zk ∈ R
d with

|zi| = 1 and |zi − zj | ≥ 1 for all i 6= j then k ≤ κ(4/3)d.

This is the celebrated “kissing problem”: how many points can one place on the surface
of a unit sphere such that they are all separated by Euclidean distance at least 1? The
exact answer is known only for d = 1, 2, 3, 4, 8, and 24. According to [4, pages 23-24], the
best bounds known in general are 1.15d ≪ k ≤ κ · 1.33d.
Lemma 2. There exists an absolute constant κ > 0 such that if z1, z2, . . . , zk ∈ (R/Z)d

with ‖zi − zj‖ ≥ max{‖zi‖, ‖zj‖} for all i 6= j then k ≤ κ(4/3)d.

Proof. For each zi ∈ (R/Z)d we choose that representative, z̃i ∈ Rd which is closest to the
origin. Draw a “radial half line” from the origin across each z̃i. Note that ‖zi‖ is precisely
the Euclidean length of z̃i. Moreover, |z̃i − z̃j | ≥ ‖zi − zj‖, because this latter one is the
minimal distance between any representatives of the two points. Thus we have

(4) |z̃i − z̃j | ≥ max{|z̃i|, |z̃j|} for all i 6= j.

Now we have k half lines, starting from the origin and each supporting exactly one point
z̃i. Two points on one half line violates (4). Even more, any two such radial lines must
be at an angle of at least π/3, a smaller angle also violates (4). If r = maxj |z̃j | then we
can move each point out to the circumference of the sphere of radius r along its “radial
half line”. This spreads the points out as far as possible since the angle between any two
radial lines is at least π/3. A renormalized Lemma 2 proves the statement.
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Corollary 3. There exists an absolute constant κ > 0 such that any z ∈ (R/Z)d belongs
to ≤ κ(4/3)d balls of the form Ba(‖Na−a‖) (where Bx(r) denotes the closed ball of radius
r centered at x.)

Proof. Suppose that z ∈ Baj
(‖Naj

−aj‖) for j = 1, 2, . . . , k. Then ‖ai−aj‖ ≥ ‖Naj
−aj‖ ≥

‖z−aj‖ whenever i 6= j. Writing a′j = z−aj for all j we find that ‖a′i−a′j‖ = ‖ai−aj‖ ≥
‖a′j‖ for all i 6= j, and so k < κ(4/3)d by Lemma 2.

Proof of Theorem 3. Note that wi − wj = wi−j ∈ (R/Z)d, and w−i = −wi, hence D is
a subset of {±w1,±w2, . . . ,±wN−1}, which we re-order so that ‖wk1

‖ ≤ ‖wk2
‖ ≤ . . . .

Recall that j(i) minimizes ‖wi−wj(i)‖. If j = i+k or j = i−k then ‖wi−wj‖ = ‖wk‖, so
to find j(i) we have to find the smallest integer ℓ such that either i+ kℓ or i− kℓ falls into
the interval [1, N ]. Observe that if k ≤ N

2
then i + k is a legal choice for all i ≤ N

2
, and

i− k is for all i > N
2
. Let ℓ be the smallest positive integer such that kℓ ≤ N

2
. That means

k1, . . . , kℓ−1 > N
2 , and as kℓ is a legal choice for every i, we have restricted the choices to

D ⊂ {±wk1
,±wk2

, . . . ,±wkℓ
}.

Now if 1 ≤ u < v < ℓ then N
2
< ku, kv ≤ N so that j = |ku − kv| < N

2
but kℓ is the first

element of the reordered sequence which is ≤ N
2 , so j ≥ ℓ. Hence ‖wku

− wkv
‖ = ‖wj‖ ≥

‖wkℓ
‖ > max{‖wku

‖, ‖wkv
‖}, and the result follows from Lemma 2.

Proof of Theorem 4. Let B 6= ∅ be any fixed finite subset of (R/Z)d. For any a ∈ A the
ball Ba(‖Na − a‖) contains no elements of A other than a itself at the center, Na and
possibly some others on the boundary. If we translate this ball by an element b ∈ B then
Ba+b(‖Na − a‖) may contain many elements of A + B, but usually it is not the case. To
see this, fix an element b ∈ B, and consider

∑

a∈A

|(A+B) ∩Ba+b(‖Na − a‖)| =
∑

c∈A+B

#{a ∈ A : c ∈ Ba+b(‖Na − a‖)}

=
∑

c∈A+B

#{a ∈ A : c− b ∈ Ba(‖Na − a‖)} ≤ |A+B|κ(4/3)d,(5)

because Corollary 3 says that c− b cannot be in too many balls of the form Ba(‖Na−a‖).
On the other hand, let Υb be the set of a ∈ A for which

|(A+B) ∩Ba+b(‖Na − a‖)| > 2κ

ǫ
(4/3)d

|A+B|
|A| .

Comparing with (5) we have

|Υb|
2κ

ǫ
(4/3)d

|A+B|
|A| <

∑

a∈Υb

|(A+B) ∩Ba+b(‖Na − a‖)| ≤ |A+B|κ(4/3)d,

and hence |Υb| < ǫ
2 |A|.

Define
Ac := {a ∈ A : c− a = b for some b ∈ B, and a 6∈ Υb},
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andN
(l)
c be the set of l nearest neighbours to c in A+B, where l = 1+[ 2κ

ǫ
(4/3)d|A+B|/|A|].

If a ∈ Ac and c = a + b then a 6∈ Υb so, Bc(‖Na − a‖) contains < l elements of A + B,

though it does contain Na + b, and therefore Na + b ∈ N
(l)
c . Hence

Na − a = (Na + b)− c ∈ N (l)
c − c.

This means that there are ≤ l choices for Na − a, as a runs over all of the elements of Ac.
Let R1 = ∅. Select c1 ∈ A + B so that Ac1 \ R1 is of maximal size, and then let

R2 = Ac1 ∪ R1. More generally, given Rk we select ck ∈ A + B so that Ack \ Rk is of

maximal size, and then let Rk+1 = Ack ∪Rk =
⋃k

j=1 Acj , for each k ≥ 1. Therefore

∑

c∈A+B

|Ac \Rk| =
∑

b∈B

#{a ∈ A \Rk : a 6∈ Υb}

≥
∑

b∈B

(|A| − |Rk| − |Υb|)

≥ |B|((1− ǫ

2
)|A| − |Rk|).

Hence, by definition, Ack satisfies

(4) |Ack \Rk| ≥
1

|A+B|
∑

c∈A+B

|Ac \Rk| ≥
|A||B|
|A+B|

(

1− ǫ

2
− |Rk|

|A|

)

.

We define θj ∈ [0, 1] by |Rj| = (1 − θj)|A|, so that (θj)j≥1 is a decreasing sequence. By
(4) we have

(θk − θk+1)|A| = |Rk+1| − |Rk| = |Ack \Rk| ≥
|A||B|
|A+B|

(

θk − ǫ

2

)

,

Therefore if θk ≥ ǫ then

θk+1 ≤
(

1− |B|
2|A+B|

)

θk.

We deduce that θn < ǫ for some n ≪ |A+B|
|B| log(1/ǫ), else θk ≥ ǫ for all k ≤ n and so

θn ≤
(

1− |B|
2|A+B|

)n−1

< ǫ.

as θ1 = 1.
Finally we let A′ = Rn so that A′ ⊂ A with |A′| > (1 − ǫ)|A|. Now A′ is the union

of n − 1 sets of the form Acj ; for each j we select aj ∈ Acj which maximizes |(A + B) ∩
Bcj (‖Naj

− aj‖)|. Therefore

|{Na − a : a ∈ A′}| ≤
n−1
∑

j=1

|(A+B) ∩Bcj (‖Naj
− aj‖)| < nl ≪ (4/3)d · |A+B|2

|A||B| · 1
ǫ
log

1

ǫ
,

and hence the result.
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Example. We construct an example

A = {1, 4, 9, 16, . . . , m2, m2 + 1, m2 + 2, . . . , 2m2 −m} ⊂ R

and convert the example to R/Z, by considering {a/4m2 : a ∈ A} ⊂ R/Z. Now |A| =
m2, |A+ A| < 4m2 and |{Na − a : a ∈ A}| ≥ m. So if we take ǫ = 1/(2m) then, for any
subset A′ ⊂ A with |A′| > (1− ǫ)|A|. we have

|{Na − a : a ∈ A′}| ≥ |{Na − a : a ∈ A}| − |A \A′| ≥ m− ǫm2 ≥ m/2

whereas

(4/3)d ·min
B

|A+B|2
|A||B| · 1

ǫ
log

1

ǫ
≤ (4/3)

|A+ A|2
|A|2 · 2m log 2m ≪ m log 2m.

This exhibits that the upper bound in Theorem 4 cannot be much improved.

Acknowledgements: Thanks to Henry Cohn for some help with sphere packing, and Boris
Bukh and Seva Lev for their remarks.
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