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Dávid Csercsik - Balázs Sziklai 

 

 
 
Abstract 
 
The purpose of this paper is to introduce a novel family of games related to congested 

networks. Traffic routing has been extensively analyzed from the non-cooperative aspect.  

A common assumption is that each individual optimizes his route in the network selfishly. 

However looking at the same network from a different scope in some cases we can find 

some actors that are responsible for the majority part of the traffic. From the point of view 

of these actors cooperation is indeed an inherent possibility of the game. Sharing 

information and cooperation with other agents may result in cost savings, and more 

efficient utilization of network capacities. Depending on the goal and employed strategy of 

the agents many possible cooperative games can arise. Our aim is to introduce and analyze 

these wide variety of transferable utility (TU) games. Since the formation of a coalition may 

affect other players costs via the implied flow and the resulting edge load changes in the 

network, externalities may arise, thus the underlying games are given in partition function 

form. 
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Forgalomirányítási oligopóliumok 

 

Csercsik Dávid - Sziklai Balázs  
 
 

Összefoglaló 

 

Tanulmányunkban egy új játékosztályt vezetünk be a forgalomirányítási hálózatokon.  

A forgalomirányítási problémákat legtöbbször nem-kooperatív szemszögből vizsgálják. 

Általános feltevés, hogy minden részvevő önző módon optimalizálja az útvonalát a 

hálózaton. 

Ugyanakkor más szemléletet követve olyan szereplőket is azonosíthatunk, akik a forgalom 

jelentős hányadáért felelősek. Az ilyen szereplők számára a kooperáció valódi lehetőségként 

jelentkezik. Az információ megosztása és a forgalom összehangolása költségmegtakarítást és 

a hálózati kapacitások hatékonyabb kihasználását eredményezheti. A részvevők céljától és 

alkalmazott stratégiájától függően többféle kooperatív játékot is definiálhatunk ilyen 

módon. A célunk ezeknek az átruházható hasznosságú (TU) játékoknak az elemzése. Mivel 

egy koalíció megalakulása hatással van a többi játékos költségeire az útvonalak megváltozott 

terhelése miatt, externáliák léphetnek fel. A játékot így partíciós függvény formában írjuk 

fel. 

 

Tárgyszavak: kooperatív játékelmélet, partíciós függvény formájú játék, 

forgalomirányítás, externáliák 

 

JEL kódok: C71, L13, L91 
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ooperative aspe
t. A 
ommon assumptionis that ea
h individual optimizes his route in the network sel�shly.However looking at the same network from a di�erent s
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1 Introdu
tionProblems 
on
erning 
ongested networks originate traditionally from the�eld of engineering (Altman, Boulognea, El-Azouzi, Jimenez, and L.Wynter,2006). Probably this is the reason why non-
ooperative approa
h is morewide-spread among the resear
hers of the subje
t1. The �rst general model isdue to Wardrop (1952). In this model the network is represented by a graph,while routing tasks are assigned to a subset of nodes and laten
y fun
tionsare de�ned on the edges. Furthermore it is assumed that the tra�
 
an bedivided into in�nitesimally small parts whi
h therefore 
an be representedas �ows in the graph. The obje
tive of these in�nitesimally small pie
es orindividuals is to minimize the experien
ed laten
y.Many equilibrium notions were introdu
ed to analyze su
h 
ongested net-works (for a 
omprehensive study see Roughgarden (2005, 2006)). Most ofthe literature fo
uses on Nash-equilibria and a related 
on
ept the so-
alledPri
e of Anar
hy (Feldmann, Gairing, Lu
king, Monien, and Rode, 2003).In a 
ongested network Nash-equilibrium (NE) is rea
hed when no individ-ual 
an obtain a lower laten
y by unilaterally 
hanging his route. In general,su
h a NE need not be unique. The Pri
e of Anar
hy is the ratio of the so
ial
ost of the worst and best NE-point. The notion was introdu
ed by Koutsou-pias and Papadimitriou (2009) and qui
kly be
ame popular as it su

essfully
aptures the possible suboptimality of NE-points. To resolve su
h situationsSta
kelberg routing was introdu
ed (Korilis, Lazar, and Orda, 1997) in whi
hmodel a 
ertain ratio of all users are obeying to a 
entral authority whoseobje
tive is to drive the tra�
 toward an equilibrium point with lower so
ial
ost. In parti
ular there are two types of players a so-
alled leader and fol-lowers. The goal is to �nd a strategy for the leader that for
es the followersto rea
t in a way that minimizes the total laten
y in the system. For moreon this topi
 see (Karakostas and Kolliopoulos, 2009).A possible logi
al extension of the above model is to 
onsider more thanone leader. In other words there are a few distinguished players that al-together are responsible for the whole tra�
 in the network. The originalWardrop model is inherently non-
ooperative, while a setup where all theplayers are "leaders" is essentially 
ooperative. The obje
tive of ea
h playeris to route his tra�
 with minimal 
ost. Furthermore it 
an be assumed that
ooperating players determine their routes by joint design to minimize theiroverall 
ost. The values of the 
oalitions are de�ned as the improvement 
om-pared to the referen
e 
ase, when no 
ooperation appears. As some 
oalitions1Although the 
ooperative (non-TU) approa
h is also often used in the 
ase of wireless
ommuni
ation networks (Khandani, J.Abounadi, E.Modiano, and L.Zheng, 2007)2



form, routing paths may alter due to the joint optimization pro
ess, whi
hmay in turn a�e
t the 
osts of other players via the modi�ed edge laten
ies.Sin
e su
h externalities may happen the game is given in partition fun
tionform (Thrall and Lu
as, 1963).A s
enario where multiple navigation systems are routing their 
lients onthe same tra�
 network 
an be 
onsidered as a possible appli
ation of thede�ned game theoreti
 model framework. Novel tele
ommuni
ation systemsmay mean an other potential appli
ation �eld of the proposed approa
h (Alt-man, Boulognea, El-Azouzi, Jimenez, and L.Wynter, 2006; Khandani, Modi-ano, Abounadi, and Zheng, 2005; Khandani, J.Abounadi, E.Modiano, andL.Zheng, 2007; Devroye, Vu, and Tarokh, 2008)The stru
ture of the paper is as follows. In se
tion 2 we introdu
e thenotation used, de�ne the partition fun
tion form 
ooperative game on therouting network and summarize the 
onsidered routing strategies. The mainresults are dis
ussed in se
tion 3, where we show that the sequen
e of iterativepredi
tive strategies of in
reasing order may 
onverge to routing 
on�gura-tion, whi
h is a Nash equilibrium (NE), but this 
onvergen
e is not alwaysne
essary even if a unique NE exists. Furthermore, we and analyze thesuperadditivity and stability properties of the game, and via the re
ursive
ore 
on
ept we show total 
ooperation may not be always bene�
ial for theplayers.2 Materials and methods2.1 De�nition of the gameIn this se
tion we de�ne delivery games and introdu
e the tra�
 routing andgame theoreti
 framework that is needed to analyze su
h games. We madean e�ort to keep the notational traditions of both dis
iple. To make it morelegible we employ the standard that the upper index always refers to someplayer or a 
oalition and in 
ase of �ows the lower index is always some edgeor a path.First let us re
all some basi
 notions of 
ooperative games. A 
ooperativegame with transferable utility or simply a TU-game is an ordered pair (N, v)
onsisting of the player set N = {1, 2, . . . , n} and a 
hara
teristi
 fun
tion v :
2N → R with v(∅) = 0. The value v(S) is regarded as the worth of 
oalition
S. The members of S 
an a
hieve this value by 
ooperating regardless ofhow players outside the 
oalition rea
t. In a partition fun
tion form (PFF)game v(S) depends also on the partition to where S belongs (Thrall andLu
as, 1963). Formally a partition fun
tion form game is a pair (N, V ) where3



V : π → (2N → R) is the partition fun
tion whi
h assigns 
hara
teristi
fun
tions (v) to ea
h partition π ∈ Π(N) (where Π(N) denotes the set ofpartitions of N). For S ∈ π, the worth of V (S, π) denotes the amount thatthe players in S 
an guarantee themselves by 
ooperating, when the 
oalition
S is embedded in the partition π.Furthermore we 
all the pair ω = (x, π) an out
ome, where π ∈ Π(N) isa partition and x = (x1, . . . , xn) ∈ RN is a payo� ve
tor satisfying feasibility;∑

i∈(S∈π) x
i ≥ V (S, π) for all S ∈ π. Let us denote the the set of out
omesin (N, V ) by Ω(N, V ).Next we de�ne the delivery game, and show how the value of a 
ertain
oalition S embedded in a partition π 
an be 
al
ulated.De�nition 1 A delivery game D = (N,Γ,∆, σ) is a 4-tuple 
onsisting of aplayer set N , a network Γ, a set of delivery tasks ∆ and a routing strategy σ.A network Γ is a two-tuple (G, l), represented by a dire
ted graph G(V,E),and a set of edge laten
y fun
tions l = {le|e ∈ E}. A delivery task τ =

(r, s, t) ∈ R+ × V × V is des
ribed by a quantity and two nodes (a sour
eand sink respe
tively). To ea
h player j ∈ N kj delivery tasks are assigned
τ j = ∪kj

i=1{(r
j
i , s

j
i , t

j
i )}.A

ording to an a
tual strategy σ ∈ Σ (where Σ is the set of all thepossible pure routing strategies) all players determine the route for theirdelivery for ea
h of their tasks. Cooperating players determine their deliveryroutes by joint design in order to minimize their overall 
ost, taking intoa

ount the loads on the edges generated by the deliveries of all playersparti
ipating in the 
oalition. The set of all distin
t paths from sji to tjiis denoted by Pj

i . Then Pj def
= ∪kj

i=1P
j
i and P

def
= ∪j∈N

(
Pj

). Therefore P
ontains all the possible routes between sour
es and sinks. A tra�
 �ow is afun
tion f : P → R≥0. The �ow of player j on edge e is f j
e =

∑
P∈Pj :e∈P fP ,while the �ow of 
oalition S on edge e is fS

e =
∑

j∈S f
j
e (for 
onvenien
esake instead of fN

e we write shortly fe). We denote by fS the set of �owsof 
oalition S, formally fS = {fP : P ∈ Pj for some j ∈ S}. We say that
fS is a feasible solution for 
oalition S i� ∑

P∈P
j
i
fP = rji for all j ∈ S and

i ∈ {1, 2, . . . , kj}. The set of feasible solutions is denoted by F. The loadof edge e with respe
t to agent j is the tra�
 that goes through the edgenot 
ounting f j
e . We denote this by λj

e, formally λj
e =

∑
k 6=j f

k
e = fe − f j

e .Similarly λS
e =

∑
k/∈S f

k
e = fe− fS

e . The expe
ted load of edge e with respe
tto 
oalition S is the �ow that goes through e not 
ounting fS
e a

ording tothe 
urrent knowledge of S (whi
h depends on the 
oalition stru
ture and

σ). We denote this by λ̂S
e . 4



It is 
ommonly a

epted to make some 
onstrains on the laten
y fun
tion,su
h as non-negativity, di�erentiability and non-de
reasingness. We will onlyassume non-negativity thus le : R≥0 → R≥0.The di�eren
e between a delivery game and the analogue non-
ooperativerouting problem is that players are allowed to form 
oalitions. Te
hni
ally a
oalition is treated as a new player who inherits the delivery tasks from itsmembers. The expe
ted 
ost of a 
oalition S is
cexp(D,π)(S) =

∑

e∈E

le(λ̂
S
e + fS

e ) · f
S
e . (1)Note that the value of (1) depends on the routing strategy the playersuse and the partition π embedding S. The resulting 
ost of the 
oalition Srelated to D(N,Γ,∆, σ) is

c(D,π)(S) =
∑

e∈E

le(fe) · f
S
e (2)where fe is determined by 
omputing argminfS∈F c

exp
(D,π)(S) for every S ∈ π.In other words ea
h 
oalition in a given partition determines its routingby assessing how mu
h tra�
 will appear on 
ertain edges of the network.However the a
tual 
ost c(D,π)(S) indu
ed this way 
an be quite di�erentthan the expe
ted 
ost.The 
hara
teristi
 fun
tions, based on the 
ost of a 
oalition are de�nedthen as follows. The value of a 
oalition S in a partition π is

v(D,π)(S) =
∑

j∈S

c(D,π0)(j)− c(D,π)(S) (3)where π0 is the referen
e, all singleton partition. In other words, the value ofa 
oalition in a 
ertain partition is the di�eren
e between the total routing
ost of its parti
ipants and the overall 
ost of its members in the all singletonpartition. We will see that the players do not always bene�t by forming a
oalition, as a result v 
an be negative.Finally the partition fun
tion related to the delivery game D is the fun
-tion VD(π) that assigns to ea
h partition π ∈ Π(N) the 
hara
teristi
 fun
tion
v(D,π)(S). To simplify the notation, we omit the lower index (D,π) in the 
aseof the 
ost, expe
ted 
ost and 
hara
teristi
 fun
tions from now on.2.2 Routing strategiesPlayers and 
oalitions may route their delivery a

ording to di�erent possiblestrategies. These are shortly des
ribed below, and demonstrated in se
tion5



3. The expression 'routing strategy' is interpreted in a wide sense, in
ludinginformation and beliefs about other players. The zero order strategy assumesthat the players have no information about ea
h other while in other 
asesthe delivery tasks are 
ommon knowledge. The strategies presented here arepure in the sense that players may route their deliveries in several di�erentpaths in the same time but they do it with probability 1.2.2.1 Zero order strategyThis "dummy" strategy assumes that all 
oalitions negle
t the a
tivity ofothers, and route their deliveries in a way, whi
h is optimal when no othertra�
 appears on the network. This strategy assumes that non-
ooperatingplayers/
oalitions have no information of ea
h others routing tasks. In otherwords λ̂S
e = 0 for ea
h edge e ∈ E and for ea
h 
oalition S ∈ N .2.2.2 First order predi
tive (FOPS) and n-th order predi
tive(nOPS) strategyWe de�ne the �rst order predi
tive strategy as follows. Every 
oalition ex-pe
ts the remaining 
oalitions to route their deliveries a

ording to the zeroorder strategy, and minimizes his routing 
osts a

ording to this. This strat-egy assumes that the 
oalitions are aware of the other parti
ipants delivery
ontra
ts.Formally, let us denote the resulting �ow of edge e in the zero orderrouting by fe(σ0). In this 
ase λ̂S

e = fe(σ0) − fS
e (σ0). In the se
ond orderpredi
tive strategy all 
oalitions assume that the remaining ones will routetheir delivery a

ording to the FOPS et
.2.2.3 Routing under Nash-equilibriumLet A be an algorithm that 
omputes a NE for a given routing problem

(N,Γ,∆). Furthermore let σ(A) be the routing strategy that routes thedelivery tasks as in the NE 
omputed by A. Then D(N,Γ,∆, σ(A)) is adelivery game. The equilibrium strategy of 
oalition S is denoted by sSσ(A).Note that the strategy of S is naturally equivalent to the set of �ows of S,namely fS.3 ResultsIn this se
tion we demonstrate the various possibly arising properties of thede�ned game on various networks and examples.6



3.1 Basi
 properties of predi
tive strategiesThe predi
tive te
hnique is an elemental way to strategi
ally approa
h a gametheoreti
al problem. The most di�
ult part is to guess the depth of reasoningof the other players. A fair assumption is that the players think that theygo at least one step further than the others. Here we only analyzed the 
asewhen the depth of reasoning is the same for all players and 
oalitions, andevery a
tor thinks that the other players take one step less in the reasoningpro
ess. Now we state a straightforward but important result.Theorem 2 Let D be a delivery game, π = {S1, S2, . . . , Sk} a partition of Nand let sσn
= (fS1(σn), f

S2(σn) . . . , f
Sk(σn)) denote the n-th order predi
tivestrategy. If sσn+1

= sσn
then sσm

= sσn
for all m > n furthermore theresulting routing will be a Nash-equilibrium.Proof: A routing strategy s̃ = (f̃S1, f̃S2, . . . , f̃Sk) is a NE if for all S ∈ π

argmin
fS∈F

c(D,π)(S) = argmin
fS∈F

∑

e∈E

le(λ̃e + fS
e ) · f

S
e = f̃S.If the n-th and the n+1-th order predi
tive strategies 
oin
ide, it meansthat fS(σn) = fS(σn+1) for all S ∈ π, thus the expe
ted and a
tual load ofany edge e is the same. Formally

λ̂S
e (σn) =

∑

T∈π,T 6=S

fT
e (σn) =

∑

T∈π,T 6=S

fT
e (σn+1) = λ̂S

e (σn+1).It follows that sσm
= sσn

for all m > n. By the de�nition of the 
hara
-teristi
 fun
tion
argmin
fS∈F

cσn+1
(S) = argmin

fS∈F

∑

e∈E

le(λ̂
S
e (σn+1) + fS

e )f
S
e =

argmin
fS∈F

∑

e∈E

le(λ̂
S
e (σn) + fS

e )f
S
e = argmin

fS∈F

cexpσn+1
(S) = fS(σn+1).for all S ∈ π, hen
e it is indeed a NE.We 
an obtain a useful 
orollary of Theorem 2 by reinterpreting the play-ers strategy. We 
an think of fS as a |P| dimensional ve
tor. The 
oordinatesof fS 
orresponds to the �ows of the distin
t paths between the sour
es andsinks. In this way it is meaningful to speak about the pointwise 
onvergen
eof fS. 7



Corollary 3.1 Let D be a delivery game with 
ontinuous laten
y fun
tions.If limn→∞ sσn
= (f̃S1 , f̃S2, . . . , f̃Sk) = s̃ where f̃Si ∈ RP for i = 1, 2, . . . , kthen s̃ is a NE.In other words if the �ows of in
reasing order predi
tive strategies are
onvergent, they 
onverge to a NE point.3.2 Externalities and the 
onvergen
e of nOPS to NELet us 
onsider network 1 depi
ted in Fig. 1. We take into a

ount 3 playersin order to be able to demonstrate the appearing externalities in the game.In this simple example all players have one delivery task, and the nodes
orresponding to the sinks and sour
es are disjoint.
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3-x2-x3

6-x1

6

x1

Figure 1: The basi
 stru
ture of the network 1, and the possible routing alter-natives of the players. The numbers with and without parentheses quantifysinks and sour
es respe
tively. Player 2 
an route his delivery of 6 unitsvia two ways (the distribution among the two optional paths is des
ribedby x1), while player 3 
an route his delivery of 6 units via three ways (thedistribution among the three optional paths is des
ribed by x2 and x3)Let us suppose the following delivery tasks: τ 1 = (3, a, d), τ 2 = (6, b, f),
τ 3 = (3, c, e). Player one has no 
hoi
e (|P1| = 1), player 2 has two possibleoptions (|P1| = 2), and thus has one de
ision variable x1, whi
h des
ribes theproportion regarding the distribution of his delivery among the two availablepaths. Player 3 has 3 available paths (|P3| = 3), thus he has two de
isionvariables (x2 and x3). 8



The detailed 
al
ulations of this example 
an be found in Appendix A.The resulting partition fun
tion in the 
ase of zero order strategy is summa-rized in Table 1. partition (π) values of 
oalitions (v(S)){1},{2},{3} 0,0,0{1,2},{3} 2.625, -0.75{1,3},{2} 1.8437, 0.1875{1},{2,3} 0.75, 7.125{1,2,3} 12.375Table 1: The resulting partition fun
tion of network 1 in the 
ase zero orderstrategy.Table 1 
learly demonstrates the emergen
e of both positive and negativeexternalities in the 
ase of zero order strategy. As 
oalitions {1} and {2}merge, it implies a negative externality on player 3, while in 
ontrast themerging of 
oalitions {1} and {3} or {2} and {3} is bene�
ial for the playernot in
luded in the 
ooperation (player 2 and 1 respe
tively).3.2.1 The 
onvergen
e of nOPS to Nash EquilibriumAfter the 
al
ulation of the FOPS, we are able to analyze the higher orderstrategies in the 
ase of various 
oalition stru
tures. Tables 2 and 3 summa-rizes, how the resulting routing variables, and 
ost of the 
oalitions 
hange,while 
onse
utively applying higher order strategies.Partition {1}, {2}, {3} {1, 2},{3} {1, 3},{2}StrategyZero order1 (FOPS)2345
x1 x2 x33.5 1.5 1.254 2.5 0.54.13 2.63 0.384.16 2.66 0.344.16 2.66 0.344.17 2.67 0.33

x1 x2 x34.25 1.5 1.254.75 2.5 0.54.86 2.81 0.194.95 2.84 0.164.96 2.86 0.144.96 2.67 0.33
x1 x2 x34 1.63 1.384 2.5 0.54.13 2.63 0.384.16 2.66 0.344.16 2.66 0.344.17 2.67 0.33Table 2: The evolution of routing variables [x1, x2, x3] of network 1 towardsNEs as the order of strategies in
reased.Let us note that the resulting NE 
oin
ides in the 
ase of the all-singletonpartiton and {1, 3}{2}. 9



Partition {1}, {2}, {3} {1, 2},{3} {1, 3},{2}StrategyZero order1 (FOPS)2345
c1 c2 c317.25 42 12.6215 38 10.2514.63 37.45 10.2714.53 37.32 10.2714.51 37.29 10.2814.5 37.28 10.28

c{1,2} c356.63 13.3851.5 10.6349.93 10.4549.78 10.4649.68 10.4649.6 10.46
c{1,3} c228.03 41.8125.25 3824.9 37.4524.8 37.3224.79 37.2924.78 37.28Table 3: The evolution of resulting 
osts of the 
oalitions in network 1 towardsNEs as the order of strategies in
reased.The partition {1}, {2}, {3} pra
ti
ally rea
hes NE in the 5th iteration(ε < 10−4), while partitions {1, 2}, {3} and {1, 3}, {2} rea
h it around the7th. The partition {1}, {2, 3} is not of interest, be
ause player 1 has node
ision variables, in this 
ase all nOPS with n>1 will be the same as theFOPS. The routing in the 
ase of the grand 
oalition is the same in all 
ases(
onsider eg. π = {1, 2, 3}) assuming zero order strategy.As we sill see in the next se
tion 3.3, the FOPS, SOPS, nOPS sequen
eof strategies is not ne
essary 
onvergent. Furthermore, as we will show, aNE may exist in a game with divergent nOPS.3.3 Divergent nOPSIn this se
tion we demonstrate on the widely used Pigou network (Pigou,1920) that the sequen
e of the in
reasing order strategies is not ne
essary
onvergent even if a unique NE exists in the game.3.3.1 Routing under Nash-equilibrium on Pigou's graphLet ΓP be the well-known example of Pigou i.e. a graph with two paralleledges (u and w) 
onne
ting two nodes (s and t). On the so 
alled upperedge u the laten
y is 
onstant 1, on the lower edge w the laten
y is propor-tional to the tra�
 (see Fig. 2). Furthermore let N = {1, 2, . . . , n} be theset of players with delivery tasks τ j = (rj, s, t) i.e. player j has to route

rj amount of tra�
 from s to t. Let A be an algorithm that 
omputes aNash-equilibrium in ΓP and let σ(A) be the 
orresponding routing strategy.Therefore D(ΓP , N,∆, σ(A)) is a well de�ned delivery game.Note, that the laten
y 
ost of player j is
c(j) = rj − f j

w + f j
w · fw = rj + (λj

w − 1) · f j
w + (f j

w)
210



s t

1

xFigure 2: Network 2: Pigou's graph.As rj is 
onstant c(j) is uniquely determined by how mu
h the playersroute on the lower edge. Note that σ(A) = (f 1
w, f

2
w, . . . , f

n
w) is a NE point ifno player j ∈ N 
an obtain smaller laten
y 
ost by altering his strategy.Theorem 3 If rj ≥ 1

n+1
for any player j ∈ N , where n = |N | then there is aunique Nash-equilibrium point in D(ΓP , N,∆, σ(A)), namely where fw = k

k+1and fS
w = 1

k+1
for any S ∈ π, where k = |π|.Proof: It is enough to prove for the singleton partition. For other partitionsthe theorem follows from the fa
t that ea
h 
oalition 
an be 
onsidered as aseparate player and if rj ≥ 1

n+1
for all j ∈ N then rS =

∑
j∈S r

j ≥ 1
n+1

forall S ∈ π.Suppose players follow the same strategy. Then ea
h player j ∈ N routes
rj − x amount of tra�
 on the upper and x amount on the lower edge.This is a Nash-equilibrium point if for any real number δ ∈ R, su
h that
0 ≤ x + δ ≤ rj , if player j routes δ amount of tra�
 in a di�erent way, hisindividual 
ost is in
reasing. Formally

rj − (x+ δ) + (x+ δ)(n · x+ δ) ≥ rj − x+ (x)(n · x).We 
an rewrite the above 
ondition as follows.
δ2 + δ · x · (n+ 1)− δ ≥ 0Whi
h yields

1− |δ|

n+ 1
≤ x ≤

1 + |δ|

n+ 1for any real number δ. We 
an 
on
lude that x = 1
n+1

is a Nash-equlibriumstrategy for any number of player n.Now we prove that this is a unique NE point. First suppose that fw < n
n+1

.In parti
ular let fw = n
n+1

− ǫ1. Then there exists j su
h that f j
w = 1

n+1
− ǫ2where ǫ2 along with ǫ1 are some positive real numbers. Let m def

= min(ǫ1, ǫ2).Now in
reasing f j
w by m de
reases c(j).11



rj − (f j
w +m) + (f j

w +m) · (fw +m) ≤ rj − f j
w + f j

w · fw (4)Whi
h is equivalent to
(f j

w +m) · (fw +m− 1) ≤ f j
w · (fw − 1).For instan
e if m = ǫ2

( 1

n+ 1
− ǫ2 +m

)
·
( n

n+ 1
− ǫ1 +m− 1

)
≤

( 1

n + 1
− ǫ2

)
·
( n

n+ 1
− ǫ1 − 1

)

( 1

n + 1

)
·
( n

n + 1
− ǫ1 + ǫ2 − 1

)
≤

( 1

n + 1
− ǫ2

)
·
( n

n+ 1
− ǫ1 − 1

)

ǫ2
n+ 1

≤
−n · ǫ2
n + 1

+ ǫ1 · ǫ2 + ǫ2

0 ≤ ǫ1 · ǫ2Similar 
al
ulations shows that (4) also holds when m = ǫ1. We leave theproof of the 
ase fw > n
n+1

to the reader.3.3.2 Routing under nOPS strategies on Pigou's graphNow we show that for any partition π ∈ Π(N) that 
onsist of at least 3
oalition, we 
an set the delivery tasks in su
h way that the nOPS strategiesdo not 
onverge to the NE point in D(ΓP , N,∆, σ(A)). It is 
lear fromTheorem 3 that if π is �xed then for every S ∈ π, the zero order strategy is
sS0 =

{
fS
w =

∑
j∈S r

j if
∑

j∈S r
j < 1/2

fS
w = 1/2 otherwise.If the number of player and the delivery tasks are su
h that λS

w ≥ 1 forevery S ∈ π then FOPS of every 
oalition will be to route everything onthe upper edge. Then again the SOPS will be the same as the zero orderstrategy and so on. Therefore nOPS does not ne
essarily 
onverge as n goesto in�nity, even when there is a unique Nash-equilibrium point in a given D.
12



3.4 SubadditivityIntuitively one would expe
t that the delivery game is superadditive. Whena 
oalition is formed it gains extra information from the new members. Thesum λ̂S
e + fS

e that determines the laten
y of the edge e seems to be more
ontrollable as S gets larger. However this impression turns out to be wrong.We show two examples of the arising subadditive property for two di�erentstrategies.3.4.1 An example of subadditivity in the 
ase of zero order strat-egyIn this example we demonstrate the subadditivity property on a symmetri
three player example assuming zero order strategy. In this three player ex-ample the 
ooperation of any two players implies negative 
onsequen
es forthem and a positive externality for the third player. The explanation for thephenomena is that (assuming zero order strategy in this 
ase) the routing
orresponding to the expe
ted minimum 
ost result in a higher overall 
ost,implied by the other players' a
tivity.Let us 
onsider network 3 depi
ted in Fig. 3. τ 1 = (2, a, t), τ 2 = (2, b, t)and τ 3 = (2, c, t).
b

t

x2

x2

a

c

f

d

e x2

o

o

o

oo

o

Figure 3: The basi
 stru
ture of the network 3.Coalition stru
ture {i},{j},{k}Be
ause of the symmetry, ea
h player will route his delivery distributedequally between the two available paths. This will result in 2 units of tra�
on ea
h line, and a total 
ost of 8 of ea
h player.Coalition stru
ture {i,j},{k}It is easy to see that the 
ooperating players will route their total deliverydistributed equally among the 3 pathways available for them The resulting13



routing eg. in the 
ase of the 
oalition stru
ture {1, 2}, {3} will be as depi
tedin Fig. 4.
b

t
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d

e 4/3
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2/3

4/31

1 4/3

4/3

2/3

2/3

1

1Figure 4: Routing in the 
ase of 
oalition stru
ture {1,2},{3}The resulting 
ost of the 
oalition {1, 2} will be c({1, 2}) = 16.88 whi
h is0.88 units higher than their total 
ost in singleton 
on�guration (v({i, j}) =
−0.88). The resulting 
ost of the third player will be c(3) = 2(1 + 2/3)2 =
5.556 whi
h implies v({k}) = 2.444Grand 
oalition In the 
ase of the grand 
oalition, the resulting routingand routing 
osts will be as the same as in the 
ase of singleton 
oalitions,whi
h means that these two 
oalition 
on�gurations are the stable partitionsof the game.3.4.2 An Example of Subadditivity assuming Nash routing strat-egyLet us 
onsider three players with the same delivery task τ 1−3 = (1, s, t) onthe Pigou network. It follows from Theorem 3 that for 
oalition stru
ture
π0 = {1}{2}{3} at the NE-point every player routes 1

4
amount of tra�
 onthe lower edge. Therefore ea
h player has 3

4
· 1 + 1

4
· 3
4
= 0.9375 laten
y 
ost.For 
oalition stru
tures π = {i}{j, k} the Nash-equilibrium strategies are dif-ferent as 
oalition {j, k} a
ts as one player. Therefore at the NE-point there�ows 2

3
tra�
 on the lower edge. The 
ost of 
oalition {i} is 2

3
·1+ 1

3
· 2
3
= 0.88̇while {j, k} has 5

3
· 1+ 1

3
· 2
3
= 1.88̇ 
ost. Note that players j and k are worseo� together than if they would route their tra�
 individually, whi
h is anexample of subadditivity. If the grand 
oalition is formed then there goes 1

2tra�
 on the bottom road. The overall 
ost is 5
2
· 1 + 1

2
· 1
2
= 2.75. Table 4summarizes the above 
omputation. 14



partition (π) 
ost of players (c(j)) values of 
oalitions (v(S)){i},{j},{k} 0.9375, 0.9375, 0.9375 0,0,0{i,j},{k} 1.8888̇, 0.8888̇ -0.0138, 0.0487{i,j,k} 2.75 0.0625Table 4: Routing 
osts and 
oalitional values in the 
ase of the Pigou example(network 2) assuming Nash routing.3.5 StabilityTo analyze stability and determine a 
hara
teristi
 fun
tion for a 
ertainstrategy we use the 
on
ept of the re
ursive 
ore (Kó
zy, 2007, 2009), thatallows the remaining, residual players to freely rea
t and form a 
ore-stablepartition before the payo� of the deviating 
oalition is evaluated.First we de�ne the residual game over the set R ( N . Π(N) denotes theset of partitions of N . Assume R = N \ R have formed πR ∈ Π(R). Thenthe residual game (R, Vπ
R
) is the PFF game over the player set R with thepartition fun
tion given by Vπ

R
(S, πR) = V (S, πR ∪ πR).De�nition 4 (Re
ursive 
ore Kó
zy (2007)) For a single-player gamethe re
ursive 
ore is trivially de�ned. Now assume that the 
ore RC(N, V )has been de�ned for all games with |N | < k players. For an |N |-playergame an out
ome (x, π) is dominated if there exists a 
oalition Q formingpartition π′ and an out
ome (y, π′∪πQ) ∈ Ω(N, V ), su
h that yQ > xQ and if

RC(Q, Vπ′) 6= ∅ then (yQ, πQ) ∈ RC(Q, Vπ′). The (re
ursive) 
ore RC(N, V )of (N, V ) is the set of undominated out
omes.Based on the 
on
ept of the Re
ursive Core, a minimal 
laim fun
tion
an be de�ned, whi
h des
ribes the minimal 
laim of ea
h 
oalition in the
orresponding PFF game redu
ed to that 
oalition. This fun
tion, termed
vmc in the following, may be applied in the same spirit as a 
hara
teristi
fun
tion, sin
e it assigns a unique value to ea
h 
oalition, whi
h they 
anse
ure for themselves if they deviated. The formal de�nition of vmc is asfollows.De�nition 5 Let us 
onsider the residual game (S̄, VπS

) over the player set
S de�ned by the partition fun
tion VS(R, πS) = V (R, πS∪S) where R ∈ πS ∈
Π(S). Let us denote the Re
ursive Core of the residual game by RC(S̄, VS).15



The (pessimisti
) minimal 
laim fun
tion vmc 
an be de�ned as
vmc(S) =

{
min∑

i∈S xi{Ω(N, V )|(x, P S) ∈ RC(S̄, VS)} if RC(S̄, VS) 6= ∅
min∑

i∈S xi{Ω(N, V )} if RC(S̄, VS) = ∅where vmc(S) is the minimal 
laim of 
oalition S.With the help of the minimal 
laim fun
tion, a 
hara
terization of theRe
ursive Core 
an be given as follows.Lemma 3.2 The Re
ursive Core RC(N, V ) of the game (N, V ) is a 
olle
-tion of Pareto e�
ient out
omes (x, π) ∈ Ω(N, V ), su
h that there is no
oalition S with vmc(S) >
∑

i∈S x
i.3.5.1 The stability of example IA

ording to the 
on
ept of the re
ursive 
ore, the minimal 
laim fun
tionsregarding the strategies of various order 
an be determined. The minimal
laim fun
tions in the 
ase of zero order strategy and FOPS are summarizedin Table 5. Coalition Value{1} 0.75{2} 0.1875{3} -0.75{1,2} 2.625{1,3} 1.8437{2,3} 7.125{1,2,3} 12.375

Coalition Value{1} -0.25{2} 0{3} -0.375{1,2} 1.5{1,3} 0{2,3} 1.875{1,2,3} 4Table 5: Minimal 
laim fun
tions derived by the re
ursive 
ore method ofExample 1 in the 
ase of zero order strategy and FOPSWe 
an depi
t the evolution of the geometry of the re
ursive 
ore as theorder of the applied strategy in
reases (see Fig. 5). Although the singletonreferen
e 
ase and so the 
oalitional values and payo�s are di�erent in the
ase of ea
h strategy, it 
an be seen in Fig. 5, that as we in
rease the orderof the applied strategy, the geometry of the re
ursive 
ore 
onverges to its�nal shape.3.5.2 Emptiness of the re
ursive 
oreIn this subse
tion we show two examples, where the re
ursive 
ore turns outto be empty. 16



Figure 5: The proje
tion of the re
ursive 
ore in the 
ase of various strategiesto the plane x3=0. The equation x3 = v({1, 2, 3})−x1−x2 holds in every 
ase.Let us remember that the 
ost of the referen
e 
ase (all singleton 
oalitions)a

ording to whi
h the values of the 
oalitions in di�erent partitions aredetermined is di�erent in the 
ase of ea
h strategy - that is the reason whythe overall payo� tends to de
rease.Non-monotone edge laten
y fun
tions In this se
tion we demonstratethat the re
ursive 
ore may be empty if we assume a network with an edgewith non-monotone laten
y fun
tion (depi
ted in Fig.6), and routing tasks
δ1 = (1, a, t), δ2 = (1, b, t), δ3 = (1, c, t).
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0.2949Figure 6: Example network with non-monotone edge laten
y fun
tion andresulting routing in the 
ase of the grand 
oalition.Zero order strategy and the 
oalition stru
ture {i},{j},{k} will result in asymmetri
 
on�guration, in whi
h ea
h player will route his delivery on the0.5 laten
y edge. This results in a total 
ost of 0.5 of ea
h player.17



In 
ontrast, if we assume the 
oalition stru
ture {i,j},{k}, then {i,j} willroute his tra�
 on the (x − 2)2 edge at the 
ost of 0  v({i, j}) = 1, whilethe third player is not a�e
ted (v(k) = 0). In the 
ase of the grand 
oalition:
c({1, 2, 3}) = 0.4705  v({1, 2, 3}) = 1.0295. It is easy to see that thisresults in the emptiness of the re
ursive 
ore.Non-
ontinuous edge laten
y fun
tions Consider the following exam-ple (see Fig.7)2 where N = {1, 2, 3}, players follow zero-order strategy andthe delivery tasks are τ 1 = (1.4, a, t), τ 2 = (1.4, b, t) and τ 3 = (1.4, c, t).
Figure 7: Example network with non-
ontinuous edge laten
y fun
tion andresulting routing in the 
ase of the grand 
oalition.In the 
ase of singleton 
oalition ea
h player splits his tra�
 into twoequal parts and sends them on the two possible routes to t. In this way ea
hedge with non-zero laten
y fun
tion has a laten
y 
ost of 2 (as ⌈1.4⌉ = 2).For partitions π = {i, j}{k}, player i and j route on the jointly used edge1 amount of tra�
 and send the rest on the other routes. As a result onthe other two edge the tra�
 is in
reased to 1.6 however this 
hange doesnot a�e
t the laten
y 
ost of these two edge. Finally in the 
ase of grand
oalition it is not hard to see that the players 
an send only 1 amount oftra�
 with a laten
y 
ost of 1 the rest has to be sent for a laten
y 
ost of
2. Therefore the total 
ost is 7.4. Emptiness of the 
ore follows from thefa
t that the 
ost saving of any two person 
oalition is the same as the 
ostsaving of the grand 
oalition (see Table 6).4 Con
lusions and future workIn this arti
le a new family of PFF form delivery games on routing networkshas been introdu
ed. Various routing strategies have been analyzed, and it2⌈x⌉ denotes the upper integer part of x.18



partition (π) 
ost of players (c(j)) values of 
oalitions (v(S)){i},{j},{k} 2.8, 2.8, 2.8 0,0,0{i,j},{k} 4.6, 2.8 1, 0{i,j,k} 7.4 1Table 6: Emptiness of the 
ore in a network with non-
ontinuous edge laten
yfun
tion.has been shown that the sequen
e of predi
tive strategies of in
reasing ordermay 
onverge to a NE routing 
on�guration, but it 
an be also divergent.We have shown on the widely known Pigou network that NE routing mayexists in su
h games, where the nOPS is divergent. We provided examplesto subadditive s
enarios in various 
ases, and thus have proven that thede�ned game is not ne
essary superadditive. Furthermore we analyzed thestability of the game, and the evolution of the geometry of stable payo� setsvia the re
ursive 
ore 
on
ept. In addition we have shown that assumingnon monotone or non 
ontinuous laten
y fun
tions the re
ursive 
ore may beempty.One straightforward open question is whether the re
ursive 
ore may beempty if we suppose 
ontinuous (stri
tly) monotone in
reasing laten
y fun
-tions. An other open problem is how to provide ne
essary and su�
ient
onditions for the sequen
e of iterative strategies to 
onverge to a NE. Wehope that the approa
h of potential methods des
ribed in (Nisan, Roughgar-den, Tardos, and Vazirani, 2007) may o�er useful tools for the analysis ofthis problem.5 A
knowledgementThe authors a
knowledge the 
ontribution of the members of the Game The-ory Resear
h Group, László Á. Kó
zy, Helga Habis and Péter Biró. Thework has been supported by the Hungarian A
ademy of S
ien
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Appendix AIn this appendix the detailed 
al
ulations regarding network 1 depi
ted inFig. 1 assuming FOPS strategy 
an be found, to demonstrate the predi
tivestrategies.Determination of routing paths a

ording to the zero or-der strategyDo determine the routing under FOPS strategy, �rst we have to 
al
ulate theresulting routing in the 
ase of zero order strategy. In the 
ase of singleton
oalitions, all players negle
t the a
tivity of other players, and determinetheir routing variables (x) a

ording to minimize
cexp(∆,π)(S) =

∑

j∈S

(∑

e∈E

le(λ̂S
e + fS

e ) · f
j
e

)
.assuming λ̂S

e = 0 ∀ e ∀ S. In this 
ase resulting load and laten
ies of thenetwork will be as depi
ted in Fig. 8, and listed in Table 2. The routingvariables x uniquely determine the edge �ows fS
e .
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Figure 8: Resulting routing loads, and edge laten
ies assuming zero orderstrategy and singleton 
oalitions.The resulting total delivery 
osts of the 
oalitions (whi
h are equal toplayers in this 
ase) 
an be 
al
ulated as (in order to simplify the notations,
20



we omit the lower index (∆,π):
c(1) = (3 + (6− x1) + (3− x2 − x3))3

c(2) = (x1 + x3)x1 + 2(6 − x1) + (6− x1 + 3− x2 − x3 + 3)(6− x1) + 6

c(3) = (0.5 + x2)x2 + (3− x2) + 2(3− x2 − x3) + (x1 + x3)x3

+((3− x2 − x3) + (6− x1) + 3)(3 − x2 − x3) (5)In the above 
ase the delivery 
osts will be as follows. c(1) = 17.25,
c(2) = 42, c(3) = 12.625, as listed in Table 3. As it 
an be seen, the zeroorder planning strategy (not surprisingly) signi�
antly underestimates therouting 
osts.Other 
oalition stru
tures In the 
ase of other partitions, the 
al
ula-tions are similar. Ea
h 
oalition optimizes the routing variables 
orrespond-ing to the parti
ipating players, taking into a

ount the resulting load the
oalition puts on the network. The resulting routing variables and 
osts arelisted in tables 2 and 3.Determination of routing paths a

ording to the �rst or-der predi
tive strategy (FOPS)
π = {1}, {2}, {3}The route planning of player 1 is still trivial (his expe
ted 
ost is 8.25 in this
ase).Player 2 will assume that player 1 and player 3 will route their deliverya

ording to the zero order strategy. This will result in the minimization ofthe value of c(2) (see Eq. 5) assuming [x2 x3] = [1.5 1.25] (cexp({2}) =
c(2)|[x2 x3]=[1.5 1.25]) this implies x1 = 4.A

ording to the zero order routing of players 1 and 2, the expe
ted 
ost ofplayer 3 will be cexp(3) = c(3)|x1=3.5, whi
h is minimal at [x2 x3] = [2.5 0.5].In this 
ase the delivery 
osts will be as follows. c({1}) = 15, c({2}) = 38,and c({3}) = 10.25. As it 
an bee seen when 
ompared to the zero orderstrategy, in the 
ase of singleton 
oalitions the FOPS in this 
ase has redu
edthe total 
ost of all players.
π = {1, 2},{3}The expe
ted 
ost of the 
oalition {1, 2} is cexp({1, 2}) = c(1)+c(2)|[x2 x3]=[1.5 1.25]whi
h is minimal at x1 = 4.75. The routing of player 3 will be as before. Therouting 
osts will be c(1) = 12.75, c(2) = 38.75 and c(3) = 10.625. Thus the21



bene�t of the 
ooperation for 
oalition {1, 2} is 1.5, while the value of player
3 is -0.375 in this partition.
π = {1, 3},{2}In this 
ase, player 1 and player 3 
an not improve their routing, the resultingwill be the same as in the singleton 
ase. The expe
ted 
ost of the 
oalition
{1, 3} is cexp({1, 3}) = c(1) + c(3)|x1=3.5 whi
h is minimal at [x2 x3] =
[2.5 0.5]. c({1}) = 15, c({2}) = 38, and c({3}) = 10.25.
π = {1},{2, 3}The expe
ted 
ost of the 
oalition {2, 3} is cexp({2, 3}) = c(2)+ c(3) whi
h isminimal at [x1 x2 x3] = [4.25 3 0]. c({1}) = 14.25, c({2}) = 35.875, and
c({3}) = 10.5. This implies a bene�t of 1.875 to the 
oalition {2, 3}.
π = {1, 2, 3} The resulting routing in the 
ase of the grand 
oalition is thesame as under zero order strategy. This implies here the bene�t of 4 for thegrand 
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