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Traffic Routing Oligopoly

David Csercsik - Balazs Sziklai

Abstract

The purpose of this paper is to introduce a novel family of games related to congested
networks. Traffic routing has been extensively analyzed from the non-cooperative aspect.
A common assumption is that each individual optimizes his route in the network selfishly.
However looking at the same network from a different scope in some cases we can find
some actors that are responsible for the majority part of the traffic. From the point of view
of these actors cooperation is indeed an inherent possibility of the game. Sharing
information and cooperation with other agents may result in cost savings, and more
efficient utilization of network capacities. Depending on the goal and employed strategy of
the agents many possible cooperative games can arise. Our aim is to introduce and analyze
these wide variety of transferable utility (TU) games. Since the formation of a coalition may
affect other players costs via the implied flow and the resulting edge load changes in the
network, externalities may arise, thus the underlying games are given in partition function
form.

Keywords: Cooperative game theory, Partition function form games, Routing,

Externalities

JEL classification: C71, L13, L91



Forgalomiranyitasi oligopdliumok

Csercsik David - Sziklai Balazs

Osszefoglalo

Tanulmanyunkban egy Uj jatékosztalyt vezetink be a forgalomiranyitasi halézatokon.
A forgalomiranyitasi problémakat legtébbszor nem-kooperativ szemszogbdl vizsgaljak.
Altalanos feltevés, hogy minden részvevé 6nzé6 moédon optimalizilja az tdtvonalat a
halozaton.

Ugyanakkor mas szemléletet kovetve olyan szerepldket is azonosithatunk, akik a forgalom
jelentGs hanyadaért felelGsek. Az ilyen szerepl6k szamara a kooperaci6é valodi lehetGségként
jelentkezik. Az informacié megosztasa és a forgalom dsszehangolasa koltségmegtakaritast és
a halozati kapacitasok hatékonyabb kihasznalasat eredményezheti. A részveviok céljatol és
alkalmazott stratégiajatol fiiggéen tobbféle kooperativ jatékot is definidlhatunk ilyen
maodon. A célunk ezeknek az atruhazhat6 hasznossagu (TU) jatékoknak az elemzése. Mivel
egy koalicié megalakulasa hatassal van a tébbi jatékos kéltségeire az Gtvonalak megvaltozott
terhelése miatt, externalidk Iéphetnek fel. A jatékot igy particids fliggvény forméban irjuk
fel.

Targyszavak: kooperativ  jatékelmélet, particios fuggvény formaja  jaték,

forgalomiranyitas, externalidk

JEL kédok: C71, L13, L91
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1 Introduction

Problems concerning congested networks originate traditionally from the
field of engineering (Altman, Boulognea, El-Azouzi, Jimenez, and L.Wynter,
2006). Probably this is the reason why non-cooperative approach is more
wide-spread among the researchers of the subject!. The first general model is
due to Wardrop (1952). In this model the network is represented by a graph,
while routing tasks are assigned to a subset of nodes and latency functions
are defined on the edges. Furthermore it is assumed that the traffic can be
divided into infinitesimally small parts which therefore can be represented
as flows in the graph. The objective of these infinitesimally small pieces or
individuals is to minimize the experienced latency.

Many equilibrium notions were introduced to analyze such congested net-
works (for a comprehensive study see Roughgarden (2005, 2006)). Most of
the literature focuses on Nash-equilibria and a related concept the so-called
Price of Anarchy (Feldmann, Gairing, Lucking, Monien, and Rode, 2003).
In a congested network Nash-equilibrium (NE) is reached when no individ-
ual can obtain a lower latency by unilaterally changing his route. In general,
such a NE need not be unique. The Price of Anarchy is the ratio of the social
cost of the worst and best NE-point. The notion was introduced by Koutsou-
pias and Papadimitriou (2009) and quickly became popular as it successfully
captures the possible suboptimality of NE-points. To resolve such situations
Stackelberg routing was introduced (Korilis, Lazar, and Orda, 1997) in which
model a certain ratio of all users are obeying to a central authority whose
objective is to drive the traffic toward an equilibrium point with lower social
cost. In particular there are two types of players a so-called leader and fol-
lowers. The goal is to find a strategy for the leader that forces the followers
to react in a way that minimizes the total latency in the system. For more
on this topic see (Karakostas and Kolliopoulos, 2009).

A possible logical extension of the above model is to consider more than
one leader. In other words there are a few distinguished players that al-
together are responsible for the whole traffic in the network. The original
Wardrop model is inherently non-cooperative, while a setup where all the
players are "leaders" is essentially cooperative. The objective of each player
is to route his traffic with minimal cost. Furthermore it can be assumed that
cooperating players determine their routes by joint design to minimize their
overall cost. The values of the coalitions are defined as the improvement com-
pared to the reference case, when no cooperation appears. As some coalitions

! Although the cooperative (non-TU) approach is also often used in the case of wireless
communication networks (Khandani, J.Abounadi, E.Modiano, and L.Zheng, 2007)



form, routing paths may alter due to the joint optimization process, which
may in turn affect the costs of other players via the modified edge latencies.
Since such externalities may happen the game is given in partition function
form (Thrall and Lucas, 1963).

A scenario where multiple navigation systems are routing their clients on
the same traffic network can be considered as a possible application of the
defined game theoretic model framework. Novel telecommunication systems
may mean an other potential application field of the proposed approach (Alt-
man, Boulognea, El-Azouzi, Jimenez, and L. Wynter, 2006; Khandani, Modi-
ano, Abounadi, and Zheng, 2005; Khandani, J.Abounadi, E.Modiano, and
L.Zheng, 2007; Devroye, Vu, and Tarokh, 2008)

The structure of the paper is as follows. In section 2 we introduce the
notation used, define the partition function form cooperative game on the
routing network and summarize the considered routing strategies. The main
results are discussed in section 3, where we show that the sequence of iterative
predictive strategies of increasing order may converge to routing configura-
tion, which is a Nash equilibrium (NE), but this convergence is not always
necessary even if a unique NE exists. Furthermore, we and analyze the
superadditivity and stability properties of the game, and via the recursive
core concept we show total cooperation may not be always beneficial for the
players.

2 Materials and methods

2.1 Definition of the game

In this section we define delivery games and introduce the traffic routing and
game theoretic framework that is needed to analyze such games. We made
an effort to keep the notational traditions of both disciple. To make it more
legible we employ the standard that the upper index always refers to some
player or a coalition and in case of flows the lower index is always some edge
or a path.

First let us recall some basic notions of cooperative games. A cooperative
game with transferable utility or simply a TU-game is an ordered pair (N, v)
consisting of the player set N = {1,2,...,n} and a characteristic function v :
2N — R with v(@) = 0. The value v(S) is regarded as the worth of coalition
S. The members of S can achieve this value by cooperating regardless of
how players outside the coalition react. In a partition function form (PFF)
game v(S) depends also on the partition to where S belongs (Thrall and
Lucas, 1963). Formally a partition function form game is a pair (N, V') where



V :m — (2¥ — R) is the partition function which assigns characteristic
functions (v) to each partition 7 € II(NN) (where II(N) denotes the set of
partitions of N). For S € 7, the worth of V (S, ) denotes the amount that
the players in S can guarantee themselves by cooperating, when the coalition
S is embedded in the partition 7.

Furthermore we call the pair w = (x,7) an outcome, where m € II(N) is
a partition and z = (z!,...,2") € RY is a payoff vector satisfying feasibility;
> ic(sen) 2t > V(S,7) for all S € m. Let us denote the the set of outcomes
in (N, V) by Q(N,V).

Next we define the delivery game, and show how the value of a certain
coalition S embedded in a partition 7w can be calculated.

Definition 1 A delivery game D = (N,I', A, 0) is a 4-tuple consisting of a
player set N, a network I, a set of delivery tasks A and a routing strategy o.
A network T is a two-tuple (G,1), represented by a directed graph G(V, E),
and a set of edge latency functions | = {l.le € E}. A delivery task 7 =
(rys,t) € Ry x V xV is described by a quantity and two nodes (a source
and sink respectively). To each player j € N k7 delivery tasks are assigned
Tj = Ufil{(rzqv ngtb}'

According to an actual strategy o € X (where ¥ is the set of all the
possible pure routing strategies) all players determine the route for their
delivery for each of their tasks. Cooperating players determine their delivery
routes by joint design in order to minimize their overall cost, taking into
account the loads on the edges generated by the deliveries of all players

participating in the coalition. The set of all distinct paths from sg to t{

is denoted by P/. Then P’ wf UK P! and P wf Ujen (P7). Therefore P

contains all the possible routes between sources and sinks. A traffic flow is a
function f : P — Rsq. The flow of player j on edge e is f/ = Y pepieer 1P
while the flow of coalition S on edge e is f¥ = > jes f? (for convenience
sake instead of fV we write shortly f.). We denote by f° the set of flows
of coalition S, formally f° = {fp : P € P7 for some j € S}. We say that
f9 is a feasible solution for coalition S iff ZPGPZ; fp=r] forall j €S and
i € {1,2,...,k’}. The set of feasible solutions is denoted by F. The load
of edge e with respect to agent j is the traffic that goes through the edge
not counting f7. We denote this by A/, formally M = 37, .. ff = fo — fl.
Similarly A\ = Zkés fk = f.— f5. The expected load of edge e with respect
to coalition S is the flow that goes through e not counting f° according to
the current knowledge of S (which depends on the coalition structure and

o). We denote this by 2S5



It is commonly accepted to make some constrains on the latency function,
such as non-negativity, differentiability and non-decreasingness. We will only
assume non-negativity thus [, : R>o — Rxo.

The difference between a delivery game and the analogue non-cooperative
routing problem is that players are allowed to form coalitions. Technically a
coalition is treated as a new player who inherits the delivery tasks from its
members. The expected cost of a coalition S is

G (8) =D 1O+ £5) - £7. (1)
eckE
Note that the value of (1) depends on the routing strategy the players
use and the partition m embedding S. The resulting cost of the coalition S
related to D(N,T', A, 0) is

com(S) =Y l(fe)- f7 2)

where f, is determined by computing argmin ;s p cf%pﬂ)(S) for every S € .

In other words each coalition in a given partition determines its routing
by assessing how much traffic will appear on certain edges of the network.
However the actual cost c(p ) (S) induced this way can be quite different
than the expected cost.

The characteristic functions, based on the cost of a coalition are defined
then as follows. The value of a coalition S in a partition 7 is

Vo (S) =Y e (i) = co.m(S) (3)
jes
where 7¥ is the reference, all singleton partition. In other words, the value of
a coalition in a certain partition is the difference between the total routing
cost of its participants and the overall cost of its members in the all singleton
partition. We will see that the players do not always benefit by forming a
coalition, as a result v can be negative.

Finally the partition function related to the delivery game D is the func-
tion Vp () that assigns to each partition 7 € II(/V) the characteristic function
v(p,x)(5). To simplify the notation, we omit the lower index (p r) in the case
of the cost, expected cost and characteristic functions from now on.

2.2 Routing strategies

Players and coalitions may route their delivery according to different possible
strategies. These are shortly described below, and demonstrated in section



3. The expression 'routing strategy’ is interpreted in a wide sense, including
information and beliefs about other players. The zero order strategy assumes
that the players have no information about each other while in other cases
the delivery tasks are common knowledge. The strategies presented here are
pure in the sense that players may route their deliveries in several different
paths in the same time but they do it with probability 1.

2.2.1 Zero order strategy

This "dummy" strategy assumes that all coalitions neglect the activity of
others, and route their deliveries in a way, which is optimal when no other
traffic appears on the network. This strategy assumes that non-cooperating
players/coalitions have no information of each others routing tasks. In other

words Xf = 0 for each edge e € E and for each coalition S € N.

2.2.2 First order predictive (FOPS) and n-th order predictive
(nOPS) strategy

We define the first order predictive strategy as follows. Every coalition ex-
pects the remaining coalitions to route their deliveries according to the zero
order strategy, and minimizes his routing costs according to this. This strat-
egy assumes that the coalitions are aware of the other participants delivery
contracts.

Formally, let us denote the resulting flow of edge e in the zero order
routing by f.(0g). In this case A3 = f.(00) — f7(00). In the second order
predictive strategy all coalitions assume that the remaining ones will route
their delivery according to the FOPS etc.

2.2.3 Routing under Nash-equilibrium

Let A be an algorithm that computes a NE for a given routing problem
(N,T,A). Furthermore let o(A) be the routing strategy that routes the
delivery tasks as in the NE computed by A. Then D(N,I';A 0(A)) is a
delivery game. The equilibrium strategy of coalition S is denoted by sf( A)-
Note that the strategy of S is naturally equivalent to the set of flows of S,
namely f°.

3 Results

In this section we demonstrate the various possibly arising properties of the
defined game on various networks and examples.



3.1 Basic properties of predictive strategies

The predictive technique is an elemental way to strategically approach a game
theoretical problem. The most difficult part is to guess the depth of reasoning
of the other players. A fair assumption is that the players think that they
go at least one step further than the others. Here we only analyzed the case
when the depth of reasoning is the same for all players and coalitions, and
every actor thinks that the other players take one step less in the reasoning
process. Now we state a straightforward but important result.

Theorem 2 Let D be a delivery game, m1 = {S1,Ss, ..., Sk} a partition of N
and let s,, = (f51(0,), f°2(0n) ..., f*(0,)) denote the n-th order predictive
strategy. If s,, ., = S5, then s, = s,, for all m > n furthermore the
resulting routing will be a Nash-equilibrium.

Proof: A routing strategy § = (f5', f%2, ... fS)isa NEif forall S € «
: _ : 3 Sy. ¢S _ 7S
argmin c¢(p,x)(S) = argmlnz leMe+ f2)- f2 = f".
fSeF fSeF ccE

If the n-th and the n+1-th order predictive strategies coincide, it means
that f°(0,) = f%(0n41) for all S € m, thus the expected and actual load of
any edge e is the same. Formally

>\S Jn — Z fT an - Z f Un—l—l (an+1)

Ter T#S Tern,T#S

It follows that s,,, = s,, for all m > n. By the definition of the charac-
teristic function

argmin ¢,, ,(S) = argminz LS (00r) + f) 15 =

fSeF fSeF ocE
argminz L.(\S(0n) + f2)f5 = argmin ok (9) = 2 (ns).
5€F g [9€eF

for all S € 7, hence it is indeed a NE.

We can obtain a useful corollary of Theorem 2 by reinterpreting the play-
ers strategy. We can think of f° as a |P| dimensional vector. The coordinates
of £ corresponds to the flows of the distinct paths between the sources and

sinks. In this way it is meaningful to speak about the pointwise convergence
of f5.



Corollary 3.1 Let D be a delivery game with continuous latency functions.
If im, o0 85, = (f51, f%2,..., f%%) = 5 where f% € R? fori =1,2,...,k
then s is a NE.

In other words if the flows of increasing order predictive strategies are
convergent, they converge to a NE point.

3.2 Externalities and the convergence of nOPS to NE

Let us consider network 1 depicted in Fig. 1. We take into account 3 players
in order to be able to demonstrate the appearing externalities in the game.
In this simple example all players have one delivery task, and the nodes
corresponding to the sinks and sources are disjoint.

g@i;’@ @

L

0.5+x

& b

Figure 1: The basic structure of the network 1, and the possible routing alter-
natives of the players. The numbers with and without parentheses quantify
sinks and sources respectively. Player 2 can route his delivery of 6 units
via two ways (the distribution among the two optional paths is described
by z1), while player 3 can route his delivery of 6 units via three ways (the
distribution among the three optional paths is described by xo and x3)

3-X2-X3

Let us suppose the following delivery tasks: 7! = (3, a,d), 72 = (6,0, f),
7 = (3, ¢,e). Player one has no choice (|P!| = 1), player 2 has two possible
options (\771\ = 2), and thus has one decision variable x;, which describes the
proportion regarding the distribution of his delivery among the two available
paths. Player 3 has 3 available paths (|P3| = 3), thus he has two decision
variables (x5 and x3).



The detailed calculations of this example can be found in Appendix A.

The resulting partition function in the case of zero order strategy is summa-
rized in Table 1.

partition (7) | values of coalitions (v(.5))
{1}1,{2},{3} 0,0,0
{1,2},{3} 2.625, -0.75
{1,3),{2) 1.8437, 0.1875
{11,12,3} 0.75, 7.125
{1,2,3} 12.375

Table 1: The resulting partition function of network 1 in the case zero order
strategy.

Table 1 clearly demonstrates the emergence of both positive and negative
externalities in the case of zero order strategy. As coalitions {1} and {2}
merge, it implies a negative externality on player 3, while in contrast the
merging of coalitions {1} and {3} or {2} and {3} is beneficial for the player
not included in the cooperation (player 2 and 1 respectively).

3.2.1 The convergence of nOPS to Nash Equilibrium

After the calculation of the FOPS, we are able to analyze the higher order
strategies in the case of various coalition structures. Tables 2 and 3 summa-
rizes, how the resulting routing variables, and cost of the coalitions change,
while consecutively applying higher order strategies.

Partition a5, 25 37 {1,2}.{3} {1,35.02}
Strategy €1 X9 xs €1 X9 T3 T To T3
Zero order 3.5 1.5 | 1.25 425 | 1.5 | 1.25 4 1.63 | 1.38
1 (FOPS) 4 2.5 0.5 4.75 | 2.5 0.5 4 2.5 0.5
2 4.13 | 2.63 | 0.38 4.86 | 2.81 | 0.19 4.13 | 2.63 | 0.38
3 4.16 | 2.66 | 0.34 4.95 | 2.84 | 0.16 4.16 | 2.66 | 0.34
4 4.16 | 2.66 | 0.34 4.96 | 2.86 | 0.14 4.16 | 2.66 | 0.34
5 4.17 | 2.67 | 0.33 4.96 | 2.67 | 0.33 4.17 | 2.67 | 0.33

Table 2: The evolution of routing variables [x1, z9, z3] of network 1 towards
NEs as the order of strategies increased.

Let us note that the resulting NE coincides in the case of the all-singleton
partiton and {1,3}{2}.



Partition {1},{2}, {3} {1,2},{3} {1,3},{2}
Strategy 1 Co c3 c{1,2} c3 c{1,3} Co
Zero order 17.25 42 12.62 56.63 | 13.38 28.03 | 41.81
1 (FOPS) 15 38 10.25 51.5 | 10.63 25.25 38
2 14.63 | 37.45 | 10.27 49.93 | 10.45 249 | 37.45
3 14.53 | 37.32 | 10.27 49.78 | 10.46 24.8 | 37.32
4 14.51 | 37.29 | 10.28 49.68 | 10.46 24.79 | 37.29
5 14.5 | 37.28 | 10.28 49.6 10.46 24.78 | 37.28

Table 3: The evolution of resulting costs of the coalitions in network 1 towards
NEs as the order of strategies increased.

The partition {1}, {2}, {3} practically reaches NE in the 5th iteration
(e < 107%), while partitions {1,2},{3} and {1, 3}, {2} reach it around the
7th. The partition {1},{2,3} is not of interest, because player 1 has no
decision variables, in this case all nOPS with n>1 will be the same as the
FOPS. The routing in the case of the grand coalition is the same in all cases
(consider eg. m = {1,2,3}) assuming zero order strategy.

As we sill see in the next section 3.3, the FOPS, SOPS, nOPS sequence
of strategies is not necessary convergent. Furthermore, as we will show, a
NE may exist in a game with divergent nOPS.

3.3 Divergent nOPS

In this section we demonstrate on the widely used Pigou network (Pigou,
1920) that the sequence of the increasing order strategies is not necessary
convergent even if a unique NE exists in the game.

3.3.1 Routing under Nash-equilibrium on Pigou’s graph

Let I'p be the well-known example of Pigou i.e. a graph with two parallel
edges (v and w) connecting two nodes (s and t). On the so called upper
edge u the latency is constant 1, on the lower edge w the latency is propor-
tional to the traffic (see Fig. 2). Furthermore let N = {1,2,...,n} be the
set of players with delivery tasks 7/ = (r7,s,t) i.e. player j has to route
77 amount of traffic from s to t. Let A be an algorithm that computes a
Nash-equilibrium in I'p and let o(A) be the corresponding routing strategy.
Therefore D(I'p, N, A,0(A)) is a well defined delivery game.
Note, that the latency cost of player 7 is

c(g)=1r" = fi+ fi fo=r"+ N, = 1) - fl + (fL)?

10



X

Figure 2: Network 2: Pigou’s graph.

As 77 is constant ¢(j) is uniquely determined by how much the players
route on the lower edge. Note that o(A) = (f), f2,..., f") is a NE point if

) w?

no player j € N can obtain smaller latency cost by altering his strategy.

Theorem 3 Ifr’ > n%rl for any player j € N, where n = |N| then there is a

k

unique Nash-equilibrium point in D(I'p, N, A, 0(A)), namely where f, = 35

and f3 = 5 for any S € m, where k = ||,

Proof: It is enough to prove for the singleton partition. For other partitions
the theorem follows from the fact that each coalition can be considered as a
separate player and if r/ > n%rl for all j € N then r* =Y. o1/ > n%rl for
all S € 7.

Suppose players follow the same strategy. Then each player ;7 € N routes
17 — o amount of traffic on the upper and x amount on the lower edge.
This is a Nash-equilibrium point if for any real number § € R, such that
0 <a+6 <7/, if player j routes § amount of traffic in a different way, his
individual cost is increasing. Formally

1 — (x4 08)+ (x+08)(n-z+03) > —x+ (x)(n- ).

We can rewrite the above condition as follows.

F+5x-(n+1)—=86>0
Which yields

1—19 1+ 4]
n—+1 n+1
for any real number §. We can conclude that x = n%rl is a Nash-equlibrium
strategy for any number of player n.
Now we prove that this is a unique NE point. First suppose that f,, < T

In particular let f,, = — €1. Then there exists j such that fJ = n%rl — €

<<

n_

n+1
. o, def .

where €5 along with €; are some positive real numbers. Let m = min(ey, €2).

Now increasing f? by m decreases c(j).

11



= (fh+m)+ (f+m)- (fotm) <! = fl+ fl fu (4)

Which is equivalent to

(fg;"i_m)'(fw"i‘m_l)ng;'(fw_l)'

For instance if m = ¢

(ri-etm) (g-atm-1)< (7o) (5 !
—€ m| - —€ m — — €9 ) - — € —
n-+1 2 n-+1 ! “\n+1 2 n-+1 !

(57 g-are-1)< (572 (= 1)
. —€ €9 — — € - — € —
n+1 n+1 ! 2 “\n+1 2 n+1 !

€o <—n'€2+ 4
€1 - € + €
n+l- n+1 1 2T

O§€1'€2

Similar calculations shows that (4) also holds when m = ¢;. We leave the
proof of the case f,, > ;25 to the reader.

3.3.2 Routing under nOPS strategies on Pigou’s graph

Now we show that for any partition 7 € II(N) that consist of at least 3
coalition, we can set the delivery tasks in such way that the nOPS strategies
do not converge to the NE point in D(I'p, N,A,0(A)). It is clear from
Theorem 3 that if 7 is fixed then for every S € 7, the zero order strategy is

. {fgzzjesrj if Yo <1/2

S =
0 f3=1/2 otherwise.

If the number of player and the delivery tasks are such that A% > 1 for
every S € m then FOPS of every coalition will be to route everything on
the upper edge. Then again the SOPS will be the same as the zero order
strategy and so on. Therefore nOPS does not necessarily converge as n goes
to infinity, even when there is a unique Nash-equilibrium point in a given D.

12



3.4 Subadditivity

Intuitively one would expect that the delivery game is superadditive. When
a coalition is formed it gains extra information from the new members. The
sum A + f2 that determines the latency of the edge e seems to be more
controllable as S gets larger. However this impression turns out to be wrong.
We show two examples of the arising subadditive property for two different
strategies.

3.4.1 An example of subadditivity in the case of zero order strat-
egy

In this example we demonstrate the subadditivity property on a symmetric
three player example assuming zero order strategy. In this three player ex-
ample the cooperation of any two players implies negative consequences for
them and a positive externality for the third player. The explanation for the
phenomena is that (assuming zero order strategy in this case) the routing
corresponding to the expected minimum cost result in a higher overall cost,
implied by the other players’ activity.

Let us consider network 3 depicted in Fig. 3. 78 = (2,a,t), 72 = (2,0, 1)
and 72 = (2,¢,1).

A

of

o X
0@O X
\@_/

Figure 3: The basic structure of the network 3.

Coalition structure {i},{j},{k}

Because of the symmetry, each player will route his delivery distributed
equally between the two available paths. This will result in 2 units of traffic
on each line, and a total cost of 8 of each player.

Coalition structure {i,j},{k}
It is easy to see that the cooperating players will route their total delivery
distributed equally among the 3 pathways available for them The resulting

13



routing eg. in the case of the coalition structure {1, 2}, {3} will be as depicted
in Fig. 4.

1
l/'@\zu7/3

I 1\
2/3\2/3\>
o2 p———
4&4

Z

37713

1

Figure 4: Routing in the case of coalition structure {1,2},{3}

The resulting cost of the coalition {1,2} will be ¢({1,2}) = 16.88 which is
0.88 units higher than their total cost in singleton configuration (v({i,j}) =
—0.88). The resulting cost of the third player will be ¢(3) = 2(1 +2/3)? =
5.556 which implies v({k}) = 2.444

Grand coalition In the case of the grand coalition, the resulting routing
and routing costs will be as the same as in the case of singleton coalitions,
which means that these two coalition configurations are the stable partitions
of the game.

3.4.2 An Example of Subadditivity assuming Nash routing strat-
egy

Let us consider three players with the same delivery task 7172 = (1,s,t) on
the Pigou network. It follows from Theorem 3 that for coalition structure
70 = {1}{2}{3} at the NE-point every player routes 1 amount of traffic on
the lower edge. Therefore each player has % -1+ i . % = 0.9375 latency cost.
For coalition structures m = {i}{j, k} the Nash-equilibrium strategies are dif-
ferent as coalition {7, k} acts as one player. Therefore at the NE-point there
flows 2 traffic on the lower edge. The cost of coalition {i}is 2-1+%-2 = 0.88
while {7, k} has % 1+ % . % = 1.88 cost. Note that players j and k are worse
off together than if they would route their traffic individually, which is an
example of subadditivity. If the grand coalition is formed then there goes %
traffic on the bottom road. The overall cost is 2 - 1 + % . % = 2.75. Table 4

2
summarizes the above computation.
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partition (m) | cost of players (c¢(j)) | values of coalitions (v(.5))
G5LGL{kY [ 0.9375, 0.9375, 0.9375 0,0,0
{ij} k) 1.8888, 0.8888 -0.0138, 0.0487
{ijk} 2.75 0.0625

Table 4: Routing costs and coalitional values in the case of the Pigou example
(network 2) assuming Nash routing.

3.5 Stability

To analyze stability and determine a characteristic function for a certain
strategy we use the concept of the recursive core (Koczy, 2007, 2009), that
allows the remaining, residual players to freely react and form a core-stable
partition before the payoff of the deviating coalition is evaluated.

First we define the residual game over the set R C N. II(IV) denotes the
set of partitions of N. Assume R = N \ R have formed 7z € II(R). Then
the residual game (R, Vﬂﬁ) is the PFF game over the player set R with the
partition function given by Vi_(S,7r) = V (S5, 7r Umg).

Definition 4 (Recursive core Koczy (2007)) For a single-player game
the recursive core is trivially defined. Now assume that the core RC(N,V)
has been defined for all games with |N| < k players. For an |N|-player
game an outcome (x,7) is dominated if there exists a coalition Q) forming
partition ™ and an outcome (y, 7' Ung) € Q(N, V), such that yq > xq and if
RC(Q, V) # @ then (yg,mg) € RC(Q, V). The (recursive) core RC(N, V)
of (N, V) is the set of undominated outcomes.

Based on the concept of the Recursive Core, a minimal claim function
can be defined, which describes the minimal claim of each coalition in the
corresponding PFF game reduced to that coalition. This function, termed
v™¢ in the following, may be applied in the same spirit as a characteristic
function, since it assigns a unique value to each coalition, which they can
secure for themselves if they deviated. The formal definition of v™¢ is as
follows.

Definition 5 Let us consider the residual game (S, Vis) over the player set
S defined by the partition function Vs(R, m5) = V(R, m5US) where R € 75 €
I1(S). Let us denote the Recursive Core of the residual game by RC(S, Vs).
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The (pessimistic) minimal claim function v can be defined as

v™e(S) = { m%nziesxi{Q(N, V)|(£E,P§) € RO(S,Vs)} Zf RC’(S, V) # 0
miny i {QN,V)} if RC(S,Vs)=10

where v™°(.S) is the minimal claim of coalition S.

With the help of the minimal claim function, a characterization of the
Recursive Core can be given as follows.

Lemma 3.2 The Recursive Core RC(N,V') of the game (N,V) is a collec-
tion of Pareto efficient outcomes (x,m) € Q(N,V), such that there is no
coalition S with v™(S) > Y, s x".

3.5.1 The stability of example 1

According to the concept of the recursive core, the minimal claim functions
regarding the strategies of various order can be determined. The minimal
claim functions in the case of zero order strategy and FOPS are summarized
in Table 5.

Coalition | Value Coalition | Value
{1} 0.75 {1} -0.25
{2} 0.1875 {2} 0
{3} -0.75 {3} -0.375

{1,2} 2.625 {1,2} 1.5
{1,3} 1.8437 {1,3} 0
{2,3} 7.125 {2,3} 1.875
{1,2,3} | 12.375 {1,2,3} 4

Table 5: Minimal claim functions derived by the recursive core method of
Example 1 in the case of zero order strategy and FOPS

We can depict the evolution of the geometry of the recursive core as the
order of the applied strategy increases (see Fig. 5). Although the singleton
reference case and so the coalitional values and payoffs are different in the
case of each strategy, it can be seen in Fig. 5, that as we increase the order
of the applied strategy, the geometry of the recursive core converges to its
final shape.

3.5.2 Emptiness of the recursive core

In this subsection we show two examples, where the recursive core turns out
to be empty.
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Figure 5: The projection of the recursive core in the case of various strategies
to the plane z3=0. The equation z3 = v({1, 2,3})—x;—z5 holds in every case.
Let us remember that the cost of the reference case (all singleton coalitions)
according to which the values of the coalitions in different partitions are
determined is different in the case of each strategy - that is the reason why
the overall payoff tends to decrease.

Non-monotone edge latency functions In this section we demonstrate
that the recursive core may be empty if we assume a network with an edge
with non-monotone latency function (depicted in Fig.6), and routing tasks
ot = (1,a,t), 6 = (1,b,1), 0 = (1,¢,t).

1
05
0
o (0)
(X-2)> 3)
G__.

1

Figure 6: Example network with non-monotone edge latency function and
resulting routing in the case of the grand coalition.

Zero order strategy and the coalition structure {i},{j},{k} will result in a
symmetric configuration, in which each player will route his delivery on the
0.5 latency edge. This results in a total cost of 0.5 of each player.
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In contrast, if we assume the coalition structure {i,j},{k}, then {i,j} will
route his traffic on the (x — 2)? edge at the cost of 0 ~ v({i,5}) = 1, while
the third player is not affected (v(k) = 0). In the case of the grand coalition:
c({1,2,3}) = 0.4705 ~ v({1,2,3}) = 1.0295. It is easy to see that this
results in the emptiness of the recursive core.

Non-continuous edge latency functions Consider the following exam-
ple (see Fig.7)? where N = {1,2,3}, players follow zero-order strategy and
the delivery tasks are 7' = (1.4,a,t), 7% = (1.4,b,t) and 73 = (1.4, ¢, ).

0]

m

0. 05

O,
B
(o] /
0.7 ONO 16
0_ O il \:®~_/
\@_/

Figure 7: Example network with non-continuous edge latency function and
resulting routing in the case of the grand coalition.

In the case of singleton coalition each player splits his traffic into two
equal parts and sends them on the two possible routes to ¢. In this way each
edge with non-zero latency function has a latency cost of 2 (as [1.4] = 2).
For partitions m = {4, j7}{k}, player ¢ and j route on the jointly used edge
1 amount of traffic and send the rest on the other routes. As a result on
the other two edge the traffic is increased to 1.6 however this change does
not affect the latency cost of these two edge. Finally in the case of grand
coalition it is not hard to see that the players can send only 1 amount of
traffic with a latency cost of 1 the rest has to be sent for a latency cost of
2. Therefore the total cost is 7.4. Emptiness of the core follows from the
fact that the cost saving of any two person coalition is the same as the cost
saving of the grand coalition (see Table 6).

4 Conclusions and future work

In this article a new family of PFF form delivery games on routing networks
has been introduced. Various routing strategies have been analyzed, and it

2[z] denotes the upper integer part of x.
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partition (m) | cost of players (¢(j)) | values of coalitions (v(S5))
{i}.{i}.{k} 2.8,28,2.8 0,0,0
{1k} 74 1

Table 6: Emptiness of the core in a network with non-continuous edge latency
function.

has been shown that the sequence of predictive strategies of increasing order
may converge to a NE routing configuration, but it can be also divergent.
We have shown on the widely known Pigou network that NE routing may
exists in such games, where the nOPS is divergent. We provided examples
to subadditive scenarios in various cases, and thus have proven that the
defined game is not necessary superadditive. Furthermore we analyzed the
stability of the game, and the evolution of the geometry of stable payoff sets
via the recursive core concept. In addition we have shown that assuming
non monotone or non continuous latency functions the recursive core may be
empty.

One straightforward open question is whether the recursive core may be
empty if we suppose continuous (strictly) monotone increasing latency func-
tions. An other open problem is how to provide necessary and sufficient
conditions for the sequence of iterative strategies to converge to a NE. We
hope that the approach of potential methods described in (Nisan, Roughgar-
den, Tardos, and Vazirani, 2007) may offer useful tools for the analysis of
this problem.
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Appendix A

In this appendix the detailed calculations regarding network 1 depicted in
Fig. 1 assuming FOPS strategy can be found, to demonstrate the predictive
strategies.

Determination of routing paths according to the zero or-
der strategy

Do determine the routing under FOPS strategy, first we have to calculate the
resulting routing in the case of zero order strategy. In the case of singleton

coalitions, all players neglect the activity of other players, and determine
their routing variables (x) according to minimize

GRS = (SLOF+ 55 £).
JjES ecE

assuming 5\5 =0 Ve V.S. In this case resulting load and latencies of the
network will be as depicted in Fig. 8, and listed in Table 2. The routing
variables x uniquely determine the edge flows f2.

N
?7?
v

Figure 8: Resulting routing loads, and edge latencies assuming zero order
strategy and singleton coalitions.

0.25

The resulting total delivery costs of the coalitions (which are equal to
players in this case) can be calculated as (in order to simplify the notations,

20



we omit the lower index (a r):

c(l) = B+ (6—21)+(3—22—13))3
c(2) = (r1+x3)r1+2(6—21)+(6—21+3—20—23+3)(6—21)+6
c¢(3) = (054 z9)x2+ (3—x2) +2(3 — 29 — x3) + (21 + x3) 73

+((B =22 —x3) + (6 —21) + 3)(3 — 22 — x3) (5)

In the above case the delivery costs will be as follows. ¢(1) = 17.25,
c(2) = 42, ¢(3) = 12.625, as listed in Table 3. As it can be seen, the zero
order planning strategy (not surprisingly) significantly underestimates the
routing costs.

Other coalition structures In the case of other partitions, the calcula-
tions are similar. Each coalition optimizes the routing variables correspond-
ing to the participating players, taking into account the resulting load the
coalition puts on the network. The resulting routing variables and costs are
listed in tables 2 and 3.

Determination of routing paths according to the first or-
der predictive strategy (FOPS)

= {1},{2}, {3}
The route planning of player 1 is still trivial (his expected cost is 8.25 in this
case).

Player 2 will assume that player 1 and player 3 will route their delivery
according to the zero order strategy. This will result in the minimization of
the value of ¢(2) (see Eq. 5) assuming [zo 3] = [1.5 1.25] (¢*"P({2}) =
c(2)|iws z4]=[.5 1.25) this implies z; = 4.

According to the zero order routing of players 1 and 2, the expected cost of
player 3 will be ¢**?(3) = ¢(3)|z,=3.5, which is minimal at [z2 x3] = [2.5 0.5].

In this case the delivery costs will be as follows. ¢({1}) = 15, ¢({2}) = 38,
and c({3}) = 10.25. As it can bee seen when compared to the zero order
strategy, in the case of singleton coalitions the FOPS in this case has reduced
the total cost of all players.

m = {1,2},{3}

The expected cost of the coalition {1,2} is ¢ ({1, 2}) = ¢(1)4+¢(2)| 2 25]=[1.5
which is minimal at 1 = 4.75. The routing of player 3 will be as before. The
routing costs will be ¢(1) = 12.75, ¢(2) = 38.75 and ¢(3) = 10.625. Thus the
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benefit of the cooperation for coalition {1,2} is 1.5, while the value of player
3 is -0.375 in this partition.

m={1,3},{2}

In this case, player 1 and player 3 can not improve their routing, the resulting
will be the same as in the singleton case. The expected cost of the coalition
{1,3} is ¢**P({1,3}) = ¢(1) + ¢(3)|z,=35 which is minimal at [zo z3] =
(2.5 0.5]. c({1}) = 15, ¢({2}) = 38, and ¢({3}) = 10.25.

™= {1},{2,3}

The expected cost of the coalition {2,3} is ¢*?({2,3}) = ¢(2) 4+ ¢(3) which is
minimal at [z7 xo x3] = [4.25 3 0]. ¢({1}) = 14.25, ¢({2}) = 35.875, and
c({3}) = 10.5. This implies a benefit of 1.875 to the coalition {2, 3}.

m = {1,2,3} The resulting routing in the case of the grand coalition is the
same as under zero order strategy. This implies here the benefit of 4 for the
grand coalition.
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