
Tail probabilities of St. Petersburg sums, trimmed sums, and their

limit

István Berkes ∗ László Györfi † Péter Kevei ‡
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Abstract

We provide exact asymptotics for the tail probabilities P{Sn,r > x} as x → ∞, for fix n,
where Sn,r is the r-trimmed partial sum of i.i.d. St. Petersburg random variables. In particular,
we prove that although the St. Petersburg distribution is only O-subexponential, the subex-
ponential property almost holds. We also determine the exact tail behavior of the r-trimmed
limits.
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1 Introduction

Peter offers to let Paul toss a fair coin repeatedly until it lands heads and pays him 2k ducats if this
happens on the kth toss, where k ∈ N = {1, 2, . . .}. This is the so-called classical St. Petersburg
game. If X denotes Paul’s winning, then P

{
X = 2k

}
= 2−k, k ∈ N. Put bxc for the lower integer

part, dxe for the upper integer part, and {x} for the fractional part of x. Then the distribution
function of the gain is

F (x) = P {X ≤ x} =

{
0, x < 2 ,

1− 1
2blog2 xc

= 1− 2{log2 x}

x , x ≥ 2 ,
(1)

and its quantile function F−1(s) = Q(s) = inf{x : s ≤ F (x)} is

Q(s) =

{
2, s = 0,

2d− log2(1−s)e = 2{log2(1−s)}

1−s , s ∈ (0, 1).
(2)
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Let X1, X2, . . . be i.i.d. St. Petersburg random variables, and let

Sn = X1 + . . .+Xn and X∗n = max
1≤i≤n

Xi

denote their partial sum and their maximum, respectively. To define the r-trimmed sum, let
X1n ≥ X2n ≥ . . . ≥ Xnn be the ordered sample of the variables X1, X2, . . . , Xn. For r ≥ 0 put

Sn,r =

n∑
k=r+1

Xkn,

that is, from the partial sum we subtract the r largest observations. Note that Sn,0 = Sn is the
St. Petersburg sum, while Sn,1 = Sn −X∗n is the 1-trimmed sum.

In order to state the necessary and sufficient condition for the existence of the limit, we intro-
duce the positional parameter

γn =
n

2dlog2 ne
∈ (1/2, 1],

which shows the position of n between two consecutive powers of 2. Since the function 2{log2 x}

in the numerator in (1) is not slowly varying at infinity, the St. Petersburg distribution is not in
the domain of attraction of any stable law or max-stable law, so limit distribution neither for the
centered and normed sum, nor for the centered and normed maximum, holds true. What holds
instead for the sum is the merging theorem

sup
x∈R

∣∣∣∣P{Snn − log2 n ≤ x
}
−Gγn(x)

∣∣∣∣→ 0, as n→∞, (3)

shown by Csörgő [6], where Gγ is the distribution function of the infinitely divisible random variable
Wγ , γ ∈ (1/2, 1], with characteristic function

E
(
eıtWγ

)
= exp

(
ıt [sγ + uγ ] +

∫ ∞
0

(
eıtx − 1− ıtx

1 + x2

)
R. γ(x)

)
with sγ = − log2 γ, uγ =

∑∞
k=1

γ2

γ2+4k
−
∑∞

k=0
1

1+γ24k
, and right-hand-side Lévy function

Rγ(x) = − γ

2blog2(γx)c = −2{log2(γx)}

x
, x > 0. (4)

Convergence of Sn/n − log2 n along subsequences {nk = bγ2kc}, γ ∈ (1/2, 1], was first shown by
Martin-Löf in 1985 [17].

For the maximum we have

sup
j∈Z

∣∣∣P{X∗n = 2dlog2 ne+j
}
− pj,γn

∣∣∣ = O(n−1), (5)

in particular P
{
X∗n = 2dlog2 ne+j

}
∼ pj,γn , for any j ∈ Z, as n→∞, where

pj,γ = e−γ2−j
(

1− e−γ2−j
)
, j ∈ Z, γ ∈ [1/2, 1].
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Figure 1: The histograms of log2 Sn and of log2(Sn −X∗n) for n = 27.

See formula (4) by Berkes et al. in [2], or Lemma 1 by Fukker et al. in [10] in the general case.
The limit theorems (3) and (5) suggest that the irregular oscillating behavior is due to the

maximum, which is also indicated by the following fact. It is well-known (see Chow and Robbins
[5] and Adler [1]) that

1 = lim inf
n→∞

Sn
n log2 n

< lim sup
n→∞

Sn
n log2 n

=∞ a.s.,

while the trimmed sum has nicer behavior, concerning at least the almost sure limits, since

lim
n→∞

Sn −X∗n
n log2 n

= 1 a.s.

(cf. Csörgő and Simons [8]). For further results and history of St. Petersburg games see Csörgő
[6] and the references therein.

As a continuation of our studies of the joint behavior of Sn and X∗n in [10], we investigate the
properties of the trimmed sum Sn,r both for fix n and for n→∞. Figure 1 shows the histograms of
the St. Petersburg sum and of the 1-trimmed St. Petersburg sum. One can see that the histogram
of log2 Sn is mixtures of unimodal densities such that the first lobe is a mixture of overlapping
densities, while the side-lobes have disjoint support. For the histogram of log2(Sn −X∗n) the side-
lobes almost disappear, so the trimmed version has smaller tail. According to Proposition 7 in
[9], for large X∗n one gets Sn/X

∗
n ≈ 1, or equivalently (Sn − X∗n)/X∗n ≈ 0, which explains the

disappearance of side-lobes.
In Section 2 we investigate asymptotic behavior of the tail of the distribution function of the

sum Sn,r for fix n. In Theorem 1 we determine the exact tail behavior of P{Sn,r > x}. In particular,
we show that the St. Petersburg distribution is almost subexponential in a well-defined sense.

In Section 3 we let n → ∞. In Theorem 2 we determine {W ∗γ : γ ∈ (1/2, 1]}, the set of the
possible subsequential limit distributions of (Sn −X∗n)/n− log2 n, and we obtain an infinite series

3



representation for the distribution function. This result was first obtained by Gut and Martin-Löf
in their Theorem 6.1 in [13]. They investigate the so-called max-trimmed St. Petersburg game,
where from the sum Sn all the maximum values are subtracted. Theorem 3 states the limit theorem
for the trimmed sums under arbitrary trimming, while in Theorem 4 we determine the tail behavior
of the limit. In particular, we obtain exact tail asymptotics for a semistable law. Finally, in Section
4 we mention some of these results without proof in case of generalized St. Petersburg games.

2 Tail behavior of the sum and the trimmed sum

In this section the number of summands n is fix, and we are interested in the tail behavior of Sn,r.

2.1 The O-subexponentiality of the St. Petersburg distribution

First we summarize some basic facts on subexponential distributions. Let G be a distribution
function of a non-negative random variable Y . Put G(x) = 1 − G(x). The distribution G is
subexponential, G ∈ S, if

lim
x→∞

G ∗G(x)

G(x)
= 2, (6)

where ∗ stands for the usual convolution, and Gn∗ is the nth convolution power, for n ≥ 2.
The characterizing property of the subexponential distributions is that the sum of i.i.d. random
variables behaves like the maximum of these variables, that is for any n ≥ 1

lim
x→∞

P{Y1 + . . .+ Yn > x}
P{max{Yi : i = 1, 2, . . . , n} > x}

= 1,

or equivalently

lim
x→∞

P{Y1 + . . .+ Yn > x}
P{Y1 > x}

= n. (7)

For properties of subexponential distributions and their use in practice we refer to the survey paper
by Goldie and Klüppelberg [12].

It is well-known that distributions with regularly varying tails are subexponential. What makes
the St. Petersburg game so interesting is that its tail is not regularly varying. In fact it was already
noted by Goldie [11] that the St. Petersburg distribution F is not subexponential. What we have
instead is that

2 = lim inf
x→∞

F ∗ F (x)

F (x)
< lim sup

x→∞

F ∗ F (x)

F (x)
= 4. (8)

This can be proved by showing that for 1 ≤ k ≤ `

P{X1 +X2 > 2k + 2`} =

{
2 · 2−` + 2 · 2−(`+k) − 4 · 2−2`, for ` > k,

2 · 2−` − 2−2`, for ` = k,

from which

lim
`→∞

P{X1 +X2 > 2`}
P{X1 > 2`}

= 4, and lim
`→∞

P{X1 +X2 > 2` − 1}
P{X1 > 2` − 1}

= 2.
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Moreover, it is simple to see that 4 is in fact the limsup.
This naturally leads to the extension of subexponentiality. A distributionG is O-subexponential,

G ∈ OS, if

l∗(G) := lim sup
x→∞

G ∗G(x)

G(x)
<∞.

It is known that the corresponding lim inf is always greater than, or equal to 2, and it was shown
recently by Foss and Korshunov [9] that it is exactly 2 for any heavy-tailed distribution. The
notion of O-subexponentiality was introduced by Klüppelberg [14]. The properties of the OS
class, in particular when the distribution is also infinitely divisible, were investigated by Shimura
and Watanabe [21]. In their Proposition 2.4 they prove that if G ∈ OS then for every ε > 0 there
is a c > 0 such that for all n and x ≥ 0

Gn∗(x)

G(x)
≤ c(l∗(G)− 1 + ε)n.

In the St. Petersburg case l∗(F ) = 4. In Theorem 1 we determine the exact asymptotic behavior
of Fn∗(x), which, in particular, implies a linear bound in n instead of the exponential.

Let us examine the case n = 2 in detail. Note that P{X1 > 2`} = P{X1 > 2` + 2k} for k < `,
therefore from (8)

P{X1 +X2 > 2` + 2k}
P{X1 > 2` + 2k}

= 2 + 2 · 2−k − 4 · 2−`.

From this it is clear that when both ` and k tends to infinity, then the limit exists and equal to 2;
in particular for any δ > 0

lim
x→∞,{log2 x}≥δ

P{X1 +X2 > x}
P{X1 > x}

= 2,

where {x} stands for the fractional part of x. That is, the St. Petersburg distribution is ‘almost
subexponential’. We prove the corresponding result for general n, i.e. for any δ > 0

lim
x→∞,{log2 x}≥δ

P{Sn > x}
P{X1 > x}

= n.

Theorem 1. For any 0 ≤ r < n we have as x→∞

P{Sn,r > x} ∼ 2(r+1){log2 x}

xr+1

(
n

r + 1

)
×
(

1 + P
{
Sn−r−1 > x(1− 2−{log2 x})

}
(2r+1 − 1)

)
.

(9)

In particular, for any 0 < δ < 1,

lim
x→∞,{log2 x}>δ

P{Sn,r > x} xr+1

2(r+1){log2 x}
=

(
n

r + 1

)
. (10)
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Proof. Let X1n ≥ X2n ≥ . . . ≥ Xnn be the ordered sample of the variables X1, X2, . . . , Xn. Using

the well-known quantile representation, the form of the quantile function (2), and that U
D
= 1−U ,

for U ∼ Uniform(0, 1), we obtain

(X1n, . . . , Xnn)
D
=
(

2dlog2 U
−1
1n e, . . . , 2dlog2 U

−1
nn e
)
, (11)

where U1n ≤ U2n ≤ . . . ≤ Unn is the ordered sample of n independent Uniform(0, 1) random
variables. Introducing the function Ψ(x) = 2{log2 x}, i.e. it grows linearly from 1 to 2 on each
interval [2j , 2j+1), j = 1, 2, . . ., we have

(X1n, . . . , Xnn)
D
=

(
Ψ(U1n)

U1n
, . . . ,

Ψ(Unn)

Unn

)
.

In the following we frequently use the simple facts Ψ(u)/u = 2−blog2 uc and 2−blog2 uc > x if and
only if u < 2−blog2 xc. The density function of Ur+1,n is

(
n
r+1

)
(r + 1)ur(1− u)n−r−1, therefore

P
{

Ψ(Ur+1,n)

Ur+1,n
> x

}
= P{Ur+1,n < 2−blog2 xc} ∼

(
n

r + 1

)
2{log2 x}(r+1)

xr+1
. (12)

Considering the asymptotics, write

P{Sn,r > x} =
∞∑
m=1

P
{
Sn,r+1 > x− 2m,

Ψ(Ur+1,n)

Ur+1,n
= 2m

}

=

blog2 xc−1∑
m=1

P
{
Sn,r+1 > x− 2m,

Ψ(Ur+1,n)

Ur+1,n
= 2m

}
+ P

{
Sn,r+1 > x− 2blog2 xc,

Ψ(Ur+1,n)

Ur+1,n
= 2blog2 xc

}
+ P

{
Ψ(Ur+1,n)

Ur+1,n
> x

}
=: I1 + I2 + I3.

For m ≤ blog2 xc − 1 we have x− 2m ≥ x/2, thus, by (12) the first sum

I1 ≤ blog2 xcP{Sn,r+1 > x/2} = O(x−(r+2) lnx).

For I2 we have

I2 = P

{
n∑

i=r+2

Ψ(Uin)

Uin
> x(1− 2−{log2 x})

∣∣∣Ψ(Ur+1,n)

Ur+1,n
= 2blog2 xc

}

× P
{

Ψ(Ur+1,n)

Ur+1,n
= 2blog2 xc

}
∼ P

{
Sn−r−1 > x(1− 2−{log2 x})

}( n

r + 1

)
(2r+1 − 1)

2(r+1){log2 x}

xr+1
.

(13)
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Here we used the simple fact that conditioning on Un,r+1 → 0

(Un,r+2, . . . , Unn)
D−→ (U1,n−r−1, . . . , Un−r−1,n−r−1).

Combining (13) and (12) formula (9) follows. To show (10) notice that if {log2 x} > δ and x→∞,
then x(1−2−{log2 x})→∞, which implies the convergence P

{
Sn−r−1 > x(1− 2−{log2 x})

}
→ 0.

When r = 0 the result describes the tail behavior of the untrimmed sum Sn. In Figure 2 the
oscillatory behavior of P{Sn > x} is clearly visible. We also see that at each power of 2 there is a
large jump, that is where the asymptotic (10) fails.

Figure 2: The function x · P{S16 > x} in a logarithmic scale.

We mention some important consequences.
In the untrimmed case Theorem 1 gives

P{Sn > x} ∼ 2{log2 x}

x
n
(

1 + P
{
Sn−1 > x(1− 2−{log2 x})

})
,

which readily implies that for any n ≥ 1 we have

n = lim inf
x→∞

xP {Sn > x} < lim sup
x→∞

xP {Sn > x} = 2n.

Since xP{X > x} = 2{log2 x}, x ≥ 2, we have

lim
x→∞,{log2 x}≥δ

P{Sn > x}
P{X > x}

= n.

This convergence also shows that (10) does not hold without the restriction, since by (7) that
would imply the subexponentiality of F .

For c > 1 fixed as m→∞

1− 2−{log2(2m+c)} ∼ 1− e−c2−m ∼ c2−m.
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Therefore from (9) we obtain that for any c > 1

P{Sn,r > 2m + c} ∼ 2−m(r+1)

(
n

r + 1

)(
1 +

(
2r+1 − 1

)
P{Sn−r−1 > c}

)
, (14)

as m → ∞. For the maximum term we have P{X∗n > x} ∼ nP{X > x}, and so (14) with r = 0
gives

lim
m→∞

P {Sn > 2m + c}
P{X∗n > 2m + c}

= 1 + P {Sn−1 > c} .

If c = c(m) tends to infinity arbitrarily slowly, then the limit above is 1, that is the St. Petersburg
distribution is very close to having the subexponential property.

3 Properties of the limit

3.1 Properties of the 1-trimmed limit

In the following we determine the possible limit distributions of the 1-trimmed sum, and we
investigate the limit.

First we introduce some notation. Given that X ≤ 2k for i ≤ k we have P
{
X = 2i|X ≤ 2k

}
=

2−i/(1− 2−k). Introduce the corresponding distribution function

Fk(x) = P
{
X ≤ x|X ≤ 2k

}
=

{
1

1−2−k

[
1− 2{log2 x}

x

]
, for x ∈ [2, 2k],

1, for x ≥ 2k.

In the following X(k), X
(k)
1 , X

(k)
2 , . . . , are i.i.d. random variables with distribution function Fk, and

S
(k)
n stands for their partial sums. For the moments we have (see (29) in [10])

E(X(k))` =
1

1− 2−k

k∑
i=1

2i`2−i =

{
2`−1

1−2−k
2(`−1)k−1

2`−1−1
, for ` ≥ 2,

k
1−2−k

, for ` = 1.
(15)

Introduce the infinitely divisible random variables Wj,γ , j ∈ Z, γ ∈ [1/2, 1], with characteristic
function

ϕj,γ(t) = EeıtWj,γ = exp

[
ıtuj,γ +

∫ ∞
0

(
eıtx − 1− ıtx

)
L. j,γ(x)

]
, (16)

with

Lj,γ(x) =

{
γ2−j − 2{log2(γx)}

x , for x < 2jγ−1,

0, for x ≥ 2jγ−1,

and uj,γ = j − log2 γ. According to Corollary 2 in [10] Wj,γ ’s are the possible subsequential limits

of S
(dlog2 ne+j)
n , more precisely

sup
x∈R

∣∣∣∣∣P
{
S

(dlog2 ne+j)
n

n
− log2 n ≤ x

}
−Gj,γn(x)

∣∣∣∣∣→ 0.

We show an exponential tail bound for the sums conditioned on the maxima.
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Lemma 1. For x ≥ 0, put

h(x) = (2 + x) ln
(

1 +
x

2

)
− x.

For any n ≥ 1, j ≥ 1− dlog2 ne and x ≥ 0, we have that

P
{
S

(dlog2 ne+j)
n − ES(dlog2 ne+j)

n > nx
}
≤ e−

h(x)
ηj,γn ,

where
ηj,γ = 2jγ−1. (17)

Proof. For any λ > 0, we apply the Chernoff bounding technique:

P
{
n−1

(
S

(dlog2 ne+j)
n − ES(dlog2 ne+j)

n

)
> x

}
= P

{
n−1S

(dlog2 ne+j)
n > x+ EX(dlog2 ne+j)

}
≤ e−λ(x+EX(dlog2 ne+j))E exp

[
λn−1S

(dlog2 ne+j)
n

]
= e−λ(x+EX(dlog2 ne+j))

(
E exp

[
λ

n
X(dlog2 ne+j)

])n
.

One has that

E exp

[
λ

n
X(dlog2 ne+j)

]
= 1 +

λ

n
EX(dlog2 ne+j) +

∞∑
`=2

λ`E
{

(X(dlog2 ne+j))`
}

n` `!

≤ 1 +
λ

n
EX(dlog2 ne+j) + 2

∞∑
`=2

λ`
(

2j

γn

)`−1

n`!

= 1 +
λ

n
EX(dlog2 ne+j) +

2

n

eληj,γn − 1− ληj,γn
ηj,γn

≤ exp

[
λ

n
EX(dlog2 ne+j) +

2

n

eληj,γn − 1− ληj,γn
ηj,γn

]
,

where we used that by (15)

E
(
X(dlog2 ne+j)

)`
=

1

1− 2−(dlog2 ne+j)
2`−1

2`−1 − 1

[(
n2j

γn

)̀−1

− 1

]
≤ 2

(
n2j

γn

)̀−1

,

` ≥ 2. Therefore

P

{
S

(dlog2 ne+j)
n − ES(dlog2 ne+j)

n

n
> x

}
≤ exp

[
2
eληj,γn − 1− ληj,γn

ηj,γn
− λx

]
.

With the choice λ =
[
ln
(
1 + x

2

)]
/ηj,γn the lemma is proved.
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Remark 1. Note that h(x) ∼ x lnx, as x → ∞, therefore the upper bound for large x is approxi-
mately exp

[
−γ2−jx lnx

]
.

Applying the elementary inequalities

u

1 + u/2
≤ ln(1 + u) ≤ u, u ≥ 0,

one has that
x2

4 + x
≤ h(x) ≤ x2

2
,

and so for any x ≥ 0

e
− x2

2ηj,γn ≤ e−
h(x)
ηj,γn ≤ e−

x2

(4+x)ηj,γn .

Since h(x) = x2/4 + o(x2) as x→ 0, for small x ≥ 0, we have e
− h(x)
ηj,γn ≈ e−

x2

4ηj,γn .

Remark 2. We note that this exponential inequality (and its straightforward extension to gen-
eralized St. Petersburg games) allows us to show that arbitrary powers of the random variables

(S
(kn)
n − ES(kn)

n )/VarS
(kn)
n are uniformly integrable, whenever log2 n − kn → ∞. The latter im-

plies that in Propositions 2 and 3 in [10] not only distributional convergence, but also moment
convergence holds.

Going back to (16) note that each Wj,γ has finite exponential moment of any order. We
pointed out in [10] that the distribution function Gj,γ(x) = P{Wj,γ ≤ x} is infinitely many times
differentiable. Since the support of the Lévy measure is bounded, according to Theorem 26.1 in
[20] for the tail behavior of Wj,γ we have the following. For any 0 < c < γ/2j

E exp {cWj,γ | lnWj,γ |} <∞,

and so
P {|Wj,γ | > x} = o(exp{−cx lnx}), as x→∞,

while for c > γ/2j

E exp {cWj,γ | lnWj,γ |} =∞,

and
P {|Wj,γ | > x} exp{cx lnx} → ∞, as x→∞.

This result combining with Proposition 5 in [10] implies that the tail bound in Lemma 1 is optimal.
Expanding the exponential in Taylor-series and changing the order of the summation we obtain

logϕj,γ(t) = ıt log2 ηj,γ +
∞∑
k=2

(ıt)k

k!
ηk−1
j,γ

2k−1

2k−1 − 1
=: ıt log2 ηj,γ + fηj,γ (t), (18)

with ηj,γ = 2j/γ as in (17). The distribution of Wj,γ depends only on the single parameter
ηj,γ = 2j/γ. Denote Zη a random variable with the characteristic function efη(t). Then, by the
definition of fη

Eeıt
Zη
η = efη(t/η) = ef1(t)/η,

10



thus from the properties of Z1 we can derive the properties of Zη, for any η. For example, for the
density function gη of Zη we have

gη(x) =
1

2π

∫ ∞
−∞

efη(t)e−ıtxt. =
1

2π

∫ ∞
−∞

ef1(tη)/ηe−ıtxt.

=
1

2π

1

η

∫ ∞
−∞

e(f1(t)−ıtx)/ηt..

Thus, gη can be derived from the characteristic function ef1 of Z1 by a simple transformation. It
also shows, that the proper scaling is the variance instead of the standard deviation.

From (18) it is apparent that

Wj,γ − log2 ηj,γ√
2ηj,γ

D−→ N(0, 1), as ηj,γ → 0,

while
Wj,γ

ηj,γ

P−→ 0, as ηj,γ →∞.

These limit theorems are in complete accordance with Proposition 3 in [10], which states that
conditioning on small maximum the limit is normal, and with Proposition 7 [10], which states that
conditioning on large maximum the limit is deterministic.

By Proposition 6 in [10] for each j ∈ Z

sup
x∈R

∣∣∣∣P{Snn − log2 n ≤ x
∣∣∣X∗n = 2dlog2 ne+j

}
− G̃j,γn(x)

∣∣∣∣→ 0, (19)

where

G̃j,γ(x) =
∞∑
m=1

Gj−1,γ

(
x−m2j/γ

)
rj,γ(m),

with

rj,γ(m) =
(2−jγ)m

m!

(
e2−jγ − 1

)−1
, m ≥ 1.

The distribution (rj,γ(m))m≥1 is Poisson-distribution conditioned on being nonzero. From Propo-
sition II.2.7 in [22] it follows that this distribution is not infinitely divisible. In Theorem 1 in [10]
we showed that for any γ ∈ [1/2, 1]

Gγ(x) =

∞∑
j=−∞

G̃j,γ(x)pj,γ .

For the trimmed sum we have the following the merging theorem, together with the infinite series
representation of the limiting distribution function.

Theorem 2. We have

sup
x∈R

∣∣∣∣P{Sn −X∗nn
− log2 n ≤ x

}
−G∗γn(x)

∣∣∣∣→ 0, as n→∞,

11



where

G∗γ(x) =

∞∑
j=−∞

∞∑
m=1

Gj−1,γ(x− (m− 1)2j/γ) rj,γ(m) pj,γ , γ ∈ (1/2, 1]. (20)

Proof. Since (19) holds uniformly in x, we obtain

sup
x∈R

∣∣∣∣P{Sn −X∗nn
− log2 n ≤ x

∣∣∣X∗n = 2dlog2 ne+j
}
− G̃j,γn(x+ 2j/γn)

∣∣∣∣→ 0.

Using (5) and the same conditioning as in the proof of Theorem 1 in [10] we obtain the statement.

This result implies that, as usual in this setup, along subsequences there is distributional
convergence. For the subsequence nk = bγ2kc, γ ∈ [1/2, 1], which in fact covers all the possible
limits, this was shown by Gut and Martin-Löf in Theorem 6.1 [13].

The infinite series representation of Gγ in Theorem 1 in [10] is in fact equivalent to the distri-
butional representation

Wγ
D
= WYγ−1,γ +MYγ ,γ2Yγγ−1,

where (Wj,γ)j∈Z, (Mj,γ)j∈Z and Yγ are independent random variables, Yγ has probability distri-
bution (pj,γ)j∈Z, Mj,γ has Poisson(γ2−j) distribution, conditioned on not being 0, and Wj,γ is
an infinitely divisible distribution given in (16). Let W ∗γ be a random variable with distribution
function G∗γ . Then, the same way (20) reads as

W ∗γ
D
= WYγ−1,γ + (MYγ ,γ − 1)2Yγγ−1.

Looking at the infinitely divisible random variable Wγ as a semistable Lévy process at time 1,
the meaning of the representation above is the following. The value 2Yγ/γ corresponds to the
maximum jump, MYγ ,γ is the number of the maximum jumps, and WYγ−1,γ has the law of the
Lévy process conditioned on that the maximum jump is strictly less than 2Yγ/γ. This kind of
distributional representations for general Lévy processes were obtained by Buchmann, Fan and
Maller, see Theorem 2.1 in [4].

3.2 Representation of the r-trimmed limit

Let Ek, k = 1, 2, . . . be i.i.d. Exp(1) random variables and Zk = E1 + . . .+ Ek.

Lemma 2. For any γ > 0, the sum

Yr,γ =

∞∑
k=r+1

(
Ψ(Zk/γ)

Zk
− Ψ(k/γ)

k

)
(21)

converges absolutely with probability 1 and its sum belongs to Lp for any 1 ≤ p < r + 1.

12



Proof. We have∣∣∣∣Ψ(Zk/γ)

Zk
− Ψ(k/γ)

k

∣∣∣∣ ≤ Ψ(Zk/γ)

∣∣∣∣ 1

Zk
− 1

k

∣∣∣∣+ |Ψ(Zk/γ)−Ψ(k/γ)|1
k

≤ 2|Zk − k|
1

kZk
+ |Ψ(Zk/γ)−Ψ(k/γ)|1

k
=: Ik + Jk. (22)

By the Hölder inequality we have for any p ≥ 1 and any P,Q > 1 with 1/P + 1/Q = 1,

E(|Zk − k|p(kZk)−p) ≤ k−p
(
E(|Zk − k|pP

)1/P
(EZ−pQk )1/Q. (23)

By the Rosenthal inequality ([19, Theorem 2.9]) we have

E(|Zk − k|pP ) ≤ c1k
pP/2, (24)

with some constant c1 > 0 depending only on pP . In the following c2, c3, . . . are positive constants,
whose values are not important. On the other hand, Zk is Gamma(k, 1) distributed and thus for
any β > 0 we have

E(Z−βk ) =

∫ ∞
0

1

xβ
xk−1

Γ(k)
e−xx. =

Γ(k − β)

Γ(k)
≤ c2k

−β,

for k > β, and thus in (23) we have

E(Z−pQk )1/Q ≤ c3k
−p, for k > pQ. (25)

Since p < r + 1, we can choose Q > 1 so close to 1 that for k ≥ r + 1 we have k > pQ and thus
(25) holds. Choosing Q close to 1 will make P = Q/(Q − 1) very large, but (24) is still valid.
Therefore, the left hand side of (23) is ≤ c4k

−3p/2, and consequently in (22) we have

‖Ik‖p ≤ c5k
−3/2, for k ≥ r + 1. (26)

To estimate Jk we first observe that by large deviation theory we have |Zk − k| ≤ k2/3 except
on a set Ak with P{Ak} ≤ a exp(−kδ) (k ≥ 1) for some absolute constants a > 0, δ > 0. To
estimate the difference Ψ(Zk/γ) − Ψ(k/γ) we have to make sure that Zk/γ and k/γ fall into
the same dyadic interval. Note that when k/γ or Zk/γ is close to a discontinuity point of Ψ,
i.e. to an integer power of 2, then we cannot give a good estimate. Therefore assume that 2j +
22(j+1)/3 ≤ k/γ ≤ 2j+1 − 22(j+1)/3. Then on the set Ack we have Zk/γ ∈ [2j , 2j+1] and thus
|Ψ(Zk/γ)−Ψ(k/γ)| ≤ 21−j |Zk − k| ≤ 4k−1/3. Therefore, for such k’s in (22) we have Jk ≤ 4k−4/3

except on Ak, and on Ak trivially Jk ≤ 2. Thus we proved

‖Jk‖p ≤ c6k
−4/3, for k ≥ r + 1, k ∈M,

with
M = ∪∞j=1

[
γ(2j + 22(j+1)/3), γ(2j+1 − 22(j+1)/3)

]
.

For k 6∈ M we only have that Jk ≤ 2/k, but since there are not so many such k’s it is enough,
more precisely ∑

k 6∈M
‖Jk‖p ≤

∞∑
j=1

4 · 22(j+1)/32−j <∞.

13



Consequently by (22), (26) we proved that

∞∑
k=r+1

∥∥∥∥Ψ(Zk/γ)

Zk
− Ψ(k/γ)

k

∥∥∥∥
p

<∞, for p < r + 1,

completing the proof of the lemma.

In the following theorem we need that the convergence of γnk to some limit γ is fast enough.
However, the natural subsequence nk = bγ2kc satisfies this condition.

Theorem 3. Assume that γnk = γ+O(n
−1/5
k ) along the subsequence nk, where γ ∈ (1/2, 1]. Then

for any r ≥ 0
1

nk
Snk,r − a

(r)
nk,γ

D−→ Yr,γ ,

with centering sequence

a(r)
n,γ =

n∑
j=r+1

Ψ(j/γ)

j
.

Proof. We rewrite the representation (11) in terms of the Poisson process determined by (Ei)i∈N.
Since for n fix

(U1n, U2n, . . . , Unn)
D
=

(
Z1

Zn+1
,
Z2

Zn+1
, . . . ,

Zn
Zn+1

)
,

we obtain

(X1n, . . . , Xnn)
D
=

(
Zn+1

Z1
Ψ(Z1/Zn+1), . . . ,

Zn+1

Zn
Ψ(Zn/Zn+1)

)
=: (X∗1n, . . . , X

∗
nn) .

By the strong law of large numbers Zn+1/n→ 1 a.s. whence it follows

X∗1,n =
n

Z1
Ψ

(
Z1

n

)
(1 + o(1)) a.s. (27)

Now if along a subsequence γnk → γ ∈ (1/2, 1] we obtain, using (27),

X∗1,nk
nk

→ 1

Z1
Ψ

(
Z1

γ

)
a.s.

Note that although Ψ is not continuous, the probability that Z1/γ falls in 2Z is zero. Similar
formulas apply for X∗j,nk/nk, and thus we get for any fixed K ≥ 1

1

nk
(X1,nk , . . . , XK,nk)

D−→
(

Ψ (Z1/γ)

Z1
, . . . ,

Ψ (ZK/γ)

ZK

)
.

Observe that
1

n
Sn,r

D
=

n∑
j=r+1

Ψ(Zj/Zn+1)

nZj/Zn+1
=
Zn+1

n

n∑
j=r+1

Ψ(Zj/Zn+1)

Zj
. (28)

14



Now by (28)

1

nk
Snk,r − a

(r)
nk,γ

D
=

(
Znk+1

nk
− 1

) nk∑
j=r+1

Ψ(Zj/Znk+1)

Zj

+

nk∑
j=r+1

(
Ψ(Zj/Znk+1)

Zj
− Ψ(j/γ)

j

)
=: Unk + Vnk .

By the strong law of large numbers, the sum in Un is O(lnn) a.s., further Chebyshev’s inequality
implies |Zn+1/n− 1| = OP (n−1/2), and thus Un → 0 in probability. Rewrite Vnk as

Vnk =

nk∑
j=r+1

(
Ψ(Zj/Znk+1)−Ψ(Zj/γ)

Zj

)
+

nk∑
j=r+1

(
Ψ(Zj/γ)

Zj
− Ψ(j/γ)

j

)
. (29)

The second sum obviously converges almost surely to Yr,γ .
We show that the first sum converges a.s. to 0. Using E|Zk−k|4 = O(k2), the Markov inequality

and the Borel–Cantelli lemma, it follows that Zn+1 = n + O(n4/5) a.s. Here, and in the sequel,
constants in the O depend only on ω. Thus for any 1 ≤ j ≤ n, by the logarithmic periodicity of Ψ

Ψ(Zj/Zn+1) = Ψ
(
(1 +O(n−1/5))Zj/n

)
= Ψ

(
(1 +O(n−1/5))Zj/γn

)
. (30)

To estimate |Ψ(Zj/Znk+1) − Ψ(Zj/γ)| we have to use the same idea as in the proof of Lemma 2.
Given 1 ≤ j ≤ nk, let m = m(j) be defined by j/γ ∈ [2m + 22(m+1)/3, 2m+1 − 22(m+1)/3]. Then

Zj ∼ j a.s. implies Zj/γ ∈ (2m, 2m+1], moreover (1 +O(n
−1/5
k ))Zj/γnk ∈ [2m, 2m+1], for j ≥ j0(ω).

The slope of Ψ(x) on this interval is 2−m ≤ 2/j and thus replacing 1 +O(n−1/5) by 1 changes the
last expression of (30) at most by O(n−1/5 (Zj/γn) (2/j)) = O(n−1/5) i.e., for such j’s

|Ψ(Zj/Znk+1)−Ψ(Zj/γ)| = O
(
n
−1/5
k

)
, j0(ω) ≤ j ≤ nk, j ∈M, (31)

where M = ∪∞m=1[2m + 22(m+1)/3, 2m+1 − 22(m+1)/3]. Here we used that γnk = γ + O(n
−1/5
k ). We

emphasize that (31) is not true for all j ≤ n. For the sum of these terms∑
j0(ω)≤j≤nk,j∈M

|Ψ(Zj/Znk+1)−Ψ(Zj/γ)|
Zj

= O(n
−1/5
k lnnk).

The remaining indices can be estimated exactly as in the proof of Lemma 2, and thus we obtain
that the first sum in (29) converges a.s. On the other hand, for each j

Ψ(Zj/Znk+1)

Zj
→ Ψ(Zj/γ)

Zj
a.s.

so the almost sure limit is 0. The convergence of the series (21) imply that Vnk → Yr,γ a.s. as
nk →∞, completing the proof of the theorem.
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3.3 Around the centering

The definition of the centering sequence a
(r)
n,γ is quite natural in view of Lemma 2. However, its

asymptotic behavior is not immediately clear, and more importantly, it is not continuous as a
function of γ. This is the reason why we cannot prove the merging counterpart of Theorem 3. In

this section we gather some information about a
(r)
n,γ .

Using that Ψ(z/γ)/z = 2−blog2(z/γ)c/γ we obtain

a(0)
n,γ =

n∑
k=1

Ψ(k/γ)

k
=

mn−1∑
m=0

dγ2m+1e−1∑
k=dγ2me

2−m

γ
+
n− dγ2mne+ 1

γ2mn

=

mn−1∑
m=0

dγ2m+1e − dγ2me
γ2m

+
n− dγ2mne+ 1

γ2mn
=
n+ 1

γ2mn
− 1

γ
+

mn∑
m=1

dγ2me
γ2m

,

with mn = blog2(n+ 1)/γc. Thus

a(0)
n,γ −mn =

n+ 1

γ2mn
− γ−1 +

mn∑
m=1

dγ2me − γ2m

γ2m
≤ n+ 1

γ2mn
< 4. (32)

For the subsequence nk = 2k and for γ = 1 we see that

a
(0)
nk,1
− log2 nk =

1

nk
→ 0,

and comparing (3) and Theorem 3, this means that W1 = Y0,1.
In general, for any γ ∈ (1/2, 1] it is easy to see that mnk−k → 0 on the subsequence nk = bγ2kc,

that is
mnk − log2 nk → − log2 γ.

Combined with (32) this implies that our centering is (apart from a constant) the same as the
usual log2 n centering in (3). More precisely, for any γ ∈ (1/2, 1], nk = bγ2kc,

a(0)
nk,γ
− log2 nk → 1− γ−1 +

∞∑
m=1

dγ2me − γ2m

γ2m
− log2 γ. (33)

In the limit in (33) appears the function

f(γ) =

∞∑
m=1

d2mγe − 2mγ

2mγ
, γ ∈ (1/2, 1].

The function

ξ(γ) = 2− 1

γ

∞∑
k=1

kεk
2k
− log2 γ, γ ∈ [1/2, 1],

was introduced by Csörgő and Simons [7], see also Kern and Wedrich [15]. Here γ =
∑∞

k=1 εk2
−k,

where εk’s are the dyadic digits of γ. This function appears naturally if one considers Steinhaus’
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resolution of the St. Petersburg paradox, see [7]. Csörgő and Simons [7, Theorem 3.1] show that ξ
is right-continuous, left-continuous except at dyadic rationals greater than 1/2 and has unbounded
variation. Moreover, Kern and Wedrich [15, Theorem 3.1] proved that the Hausdorff and box-
dimension of the graph of ξ is 1, meaning that ξ is not so irregular. These properties remain true
for our function f , as it turns out that

f(γ) = ξ(γ) + log2 γ − 1 +
1

γ
.

For any γ =
∑∞

k=1 εk2
−k we consider the representation, which contains infinitely many 1’s. Then

d2mγe = 2m
m∑
k=1

εk2
−k + I(∃k > m, εk = 1),

and so

d2mγe − 2mγ = I(∃k > m, εk = 1)−
∞∑

k=m+1

εk2
m−k.

Thus

f(γ) =
∞∑
m=1

1

2mγ

(
I(∃k > m, εk = 1)−

∞∑
k=m+1

εk2
m−k

)

=
1

γ
− 1

γ

∞∑
m=1

∞∑
k=m+1

εk2
−k =

1

γ
− 1

γ

∞∑
k=1

(k − 1)εk2
−k

=
1

γ
+ 1− 1

γ

∞∑
k=1

kεk2
−k = ξ(γ) + log2 γ − 1 +

1

γ
.

The limit appearing in (33) is exactly ξ(γ).

3.4 Uniform tail bound for the trimmed sums

In this section we obtain a uniform tail bound for the centralized and normalized trimmed sum.

Theorem 4. For any δ ∈ (0, 1), x ≥ e and n ≥ 1 there is a finite constant C > 0, such that

P
{
Sn,r
n
− a(r)

n,γn > x

}
≤ 2r+1

(r + 1)!
[(1− δ)x]−(r+1) + C δ−(r+3/2)x−(r+3/2).

Proof. As before, consider the representation

Sn,r
n
−

n∑
k=r+1

Ψ(k/γn)

k
=

n∑
k=r+1

(
Ψ(Un,k)

nUn,k
− Ψ(k/γn)

k

)
.

The tail of the first term is of order x−(r+1) (uniformly in n). We show that the Lp norm of the
remaining sum is bounded, that is for p ∈ (r + 1, r + 2)

sup
n

E

∣∣∣∣∣
n∑

k=r+2

(
Ψ(Un,k)

nUn,k
− Ψ(k/γn)

k

)∣∣∣∣∣
p

≤ Cp <∞. (34)

17



We use the same technique as in the proof of Lemma 2, the only difference is that we need a
uniform bound for the empirical quantile process. Write∣∣∣∣Ψ(Un,k)

nUn,k
− Ψ(k/γn)

k

∣∣∣∣ ≤ 2

∣∣∣∣ 1

nUn,k
− 1

k

∣∣∣∣+
|Ψ(Un,k)−Ψ(k/γn)|

k
=: Ik + Jk.

For P,Q ≥ 1 with 1/P + 1/Q = 1

E
∣∣∣∣ 1

nUkn
− 1

k

∣∣∣∣p ≤ k−p (E|nUkn − k|pP )1/P (E(nUkn)−pQ
)1/Q

. (35)

For the last factor we have

E(nUkn)−α = n−α
Γ(n+ 1)Γ(k − α)

Γ(n+ 1− α)Γ(k)
≤ c1 k

−α.

For the first factor in (35) we use Mason’s inequality ([18, Proposition 2]) with h ≡ 1, ν1 = ν2 = 0,
and we get

E
∣∣∣∣Uk,n − k

n+ 1

∣∣∣∣α ≤ cα kα/2n−α.
Since changing n+ 1 to n makes an error n−2, we obtain

‖Ik‖p ≤ c2 k
−3/2,

which is summable. The term Jk can be handled the same way as in the proof of Lemma 2, and
we obtain (34).

Putting w = 2−blog2 n(x+Ψ(k/γn)/k)c, more precise calculation gives

P
{

Ψ(Unk)

nUnk
− Ψ(k/γn)

k
> x

}
=

(
n

k

)
k

∫ w

0
uk−1(1− u)n−ku.

≤ 1

(k − 1)!

∫ 2/x

0
yk−1y. ≤

2k

k!
x−k.

Thus, using Markov’s inequality combined with (34), we obtain for any δ > 0

P
{
Sn,r
n
− a(r)

n,γn > x

}
≤ P

{
Ψ(Un,r+1)

nUn,r+1
− Ψ((r + 1)/γn)

r + 1
> (1− δ)x

}
+ P

{
Sn,r+1

n
− a(r+1)

n,γn > δx

}
≤ 2r+1

(r + 1)!
[(1− δ)x]−(r+1) + Cr+3/2 (xδ)−(r+3/2),

and the statement is proved.
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3.5 Tail behavior of the trimmed limit

Introduce the notation

Ar,γ =
r∑

k=1

Ψ(k/γ)

k
.

Using Lemma 2 we can determine the tail distribution of the trimmed limit. The tail behavior of
the semistable limit along the subsequence 2m + c (c fix, m→∞) was determined by Martin-Löf
[17, Theorem 4]. Our proof in the general r-trimmed setup and also the proof of Theorem 1 use
the same idea as Martin-Löf: conditioning on the maximum term.

Theorem 5. For any r = 0, 1, . . .

P{Yr,γ > x} ∼ 2{log2(γx)}(r+1)

(r + 1)!xr+1

[
2−r−1 + (2r+1 − 1)

×
1∑
`=0

2−`(r+1)P
{
Y0,γ +Ar,γ > x

(
1− 2`−{log2(γx)}

)}]
.

(36)

Proof. Simple calculation shows that for any k ≥ 1

P
{

Ψ(Zk/γ)

Zk
> x

}
∼ 1

k!

2{log2(γx)}k

xk
,

and by Lemma 2
P{Yr+1,γ > x} = o(x−(r+3/2)). (37)

We have for x large enough

P {Yr,γ > x} =
∞∑

m=−∞
P
{
Yr,γ > x, 2−blog2(Zr+1/γ)c = 2m

}
= P {Yr,γ > x, −blog2(Zr+1/γ)c ≤ blog2(γx)c − 1}

+ P {Yr,γ > x, C0}+ P {Yr,γ > x, C1}
+ P {Yr,γ > x,−blog2(Zr+1/γ)c ≥ blog2(γx)c+ 2}

=: I1 + I2 + I3 + I4,

where we introduced the notation C` = {−blog2(Zr+1/γ)c = blog2(γx)c + `}, for ` = 0, 1. Since
2blog2(γx)c−1 ≤ γx/2, by (37)

I1 ≤ P {Yr+1,γ > x/2} = o(x−(r+3/2)).

Conditioning on Zr+1 → 0 we have

Yr+1,γ =
∞∑

k=r+2

(
Ψ(Zk/γ)

Zk
−Ψ((k − r − 1)/γ)

k − r − 1

)
+

r+1∑
k=1

Ψ(k/γ)

k

D−→ Y0,γ +Ar+1,γ .
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Therefore, for I2, I3

P{Yr,γ > x, C`} = P{C`}P
{
Yr+1,γ −

Ψ((r + 1)/γ)

r + 1
> x(1− 2`−{log2(γx)})

∣∣∣C`}
∼ 2({log2(γx)}−`)(r+1)

(r + 1)!xr+1

(
2r+1 − 1

)
P
{
Y0,γ +Ar,γ > x(1− 2`−{log2(γx)})

}
.

By passing to the limit we used the absolute continuity of Y0,γ . Finally,

I4 = P {−blog2(Zr+1/γ)c ≥ blog2(γx)c+ 2}
− P {Yr,γ ≤ x,−blog2(Zr+1/γ)c ≥ blog2(γx)c+ 2} .

Martin-Löf (Lemma 1 in [17]) showed that the left tail is exponentially small (see also Theorem 5
by Watanabe and Yamamuro [23] in general), thus for second term we have

P {Yr,γ ≤ x,−blog2(Zr+1/γ)c ≥ blog2(γx)c+ 2}

≤ P{Yr+1,γ ≤ −x} ≤ P{Y0,γ ≤ −x} ≤ e−x
2/4,

therefore

I4 ∼
2({log2(γx)}−1)(r+1)

(r + 1)!xr+1
.

Combining the asymptotics the theorem follows.

Even in the untrimmed case our theorem refines the results (for general semistable laws) by
Watanabe and Yamamuro [23]. For r = 0 according to Theorem 5 we have

P{Y0,γ > x} ∼ 2{log2(γx)}

x

[
2−1 +

1∑
`=0

2−`P
{
Y0,γ>x

(
1− 2`−{log2(γx)}

)}]
. (38)

By (4) we see that exactly the tail of the Lévy measure appears, and we have

P{Y0,γ > x}
−Rγ(x)

∼2−1 +

1∑
`=0

2−`P
{
Y0,γ > x

(
1− 2`−{log2(γx)}

)}
.

From this we easily obtain

2−1 + 2−1P{Y0,γ > 0} = lim inf
x→∞

P{Y0,γ > x}
−Rγ(x)

< lim sup
x→∞

P{Y0,γ > x}
−Rγ(x)

= 1 + P{Y0,γ > 0},

which is the statement of Theorem 2 in [23]. From (38) also follows that

1 = lim inf
x→∞

xP{Wγ > x} < lim sup
x→∞

xP{Wγ > x} = 2,
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which is Theorem 3 (i) in [23]. However, note that we determine the exact asymptotics of the
ratio, and not only the limsup and liminf of it.

If {log2(γx)} > δ for some δ > 0, then x(1−2−{log2(γx)})→∞, and so the term corresponding to
` = 0 in (36) converges to 0. While if {log2(γx)} < 1−δ for some δ > 0, then x(1−21−{log2(γx)})→
−∞, and so the term corresponding to ` = 1 in (36) converges to 1. Thus the asymptotic has a
simple form when γx is not close to a power of 2. In particular for any δ ∈ (0, 1/2) we have

lim
x→∞,δ<{log2(γx)}<1−δ

P{Yr,γ > x} xr+1

2{log2(γx)}(r+1)
=

1

(r + 1)!
.

Moreover, for γx = 2m + c

lim
m→∞

(2m + c)(1− 2−{log2(2m+c)})→ c,

thus (36) reads as

P{Yr,γ > (2m + c)/γ} ∼ γr+12−m(r+1)

(r + 1)!

[
1 + (2r+1 − 1)P{Y0,γ +Ar,γ > c/γ}

]
,

as m→∞. In the untrimmed case (r = 0) for γ = 1 this gives

P{Y0,1 > 2m + c} ∼ 2−m [1 + P{Y0,1 > c}] , as m→∞,

which is exactly Martin-Löf’s asymptotics [17, Theorem 4, formula (9)].

Remark 3. The idea of our proof of Theorem 3 and the representation of the limit goes back to
LePage, Woodroofe and Zinn.

Let Y, Y1, Y2, . . . be i.i.d. random variables from the domain of attraction of an α-stable law,
α ∈ (0, 2). That is

P{|Y | > y} =
`(y)

yα
, lim
y→∞

P{Y > y}
P{|Y | > y}

= p, lim
y→∞

P{Y < −y}
P{|Y | > y}

= q,

with p, q ∈ [0, 1], p + q = 1. Let Sn denote the partial sum, and let an > 0 and bn such that
(Sn − nbn)/an converges in distribution to an α-stable law S. Let |Y1,n| ≥ |Y2,n| ≥ . . . ≥ |Yn,n|
denote the monotone reordering of |Y1|, . . . , |Yn|. LePage, Woodroofe and Zinn [16, Theorem 1’]
proved that the limit has the representation

S =

∞∑
k=1

(
δkZ

−1/α
k − (p− q)EZ−1/α

k I(Z
−1/α
k < 1)

)
,

where δ1, δ2, . . . are i.i.d. ±1 random variables with P{δ = 1} = p, and independently of δ’s
E1, E2, . . . are i.i.d. Exp(1) random variables and Zk = E1 + . . .+ Ek. Moreover,(

Sn − nbn
an

,
1

an
(|Y1,n|, |Y2,n|, . . . , |Yn,n|)

)
D−→
(
S, (Z

−1/α
1 , Z

−1/α
2 , . . .)

)
.

In case of the two-sided (symmetric) version of the St. Petersburg game similar results were ob-
tained by Berkes, Horváth and Schauer [3, Corollary 1.4].
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4 The generalized St. Petersburg game

In this last section we consider some of the previous results in a more general setup, in the case
of the so-called generalized St. Petersburg game. Since the proofs are similar to the proofs in the
classical case, we omit them.

In this setup Peter tosses a possibly biased coin, where the probability of heads at each throw
is p = 1 − q, and Paul’s winning is q−k/α, if the first heads appears on the kth toss, where
k ∈ N = {1, 2, . . .}, and α > 0 is a payoff parameter. The classical St. Petersburg game corresponds
to α = 1 and p = 1/2. If X denotes Paul’s winning in this St. Petersburg(α, p) game, then
P
{
X = q−k/α

}
= qk−1p, k ∈ N. In this section X1, X2, . . . are i.i.d. St. Petersburg(α, p) random

variables, and Sn, X∗n, and Sn,r stands for the partial sum, partial maximum, and the r-trimmed
sum, respectively.

For α ≥ 2 the generalized St. Petersburg distribution belongs to the domain of attraction of
the normal law.

For general α, p we do not have a closed formula for the probabilities P{Sn > x}. Nevertheless,
it turns out that the generalized St. Petersburg distributions are not subexponential for any choice
of the parameters.

Lemma 3. Let α > 0. Let X1, X2 be independent St. Petersburg(α, p) random variables. Then

2 = lim inf
x→∞

P{X1 +X2 > x}
P{X1 > x}

< lim sup
x→∞

P{X1 +X2 > x}
P{X1 > x}

= 2q−1.

The liminf result is a consequence of a recent result by Foss and Korshunov [9], as they proved
that for any heavy-tailed distribution the liminf is 2. The proof is simple, so we omit it.

By the definition of subexponential distributions in (6) the consequence of the lemma is that
there is no subexponential generalized St. Petersburg random variable.

The tail behavior of Sn,r in the general setup is the following. The proof is identical to the
proof in the classical case.

Theorem 6. Let α > 0. For any n > r

P {Sn,r > x} ∼
(

n

r + 1

)
q−(r+1){logq−1 xα}

x(r+1)α

×
(

1 + (q−r−1 − 1)P{Sn−r−1 > x(1− q{logq−1 xα}/α)}
)
.

Acknowledgement. Berkes’s research was supported by the grants FWF P24302-N18 and OTKA
K108615. Kevei’s research was funded by a postdoctoral fellowship of the Alexander von Humboldt
Foundation.

References

[1] Adler, A. Generalized one-sided laws of iterated logarithm for random variables barely with
or without finite mean. J. Theoret. Probab., 3, 587–597, 1990.

22
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[3] Berkes, I., Horváth, L., Schauer, J. Non-central limit theorems for random selections. Probab.
Theory Relat. Fields, 147, 449–479, 2010.

[4] Buchmann, B., Fan, Y., Maller, R. Distributional Representations and Dominance of a Lévy
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[20] Sato, K. Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced
Mathematics 68, Cambridge University Press. 1999.

[21] Shimura, T., and Watanabe, T. Infinite divisibility and generalized subexponentiality.
Bernoulli, 11 (3), 445–469, 2005.

[22] Steutel, F. W., and van Harn, K. Infinite divisibility of probability distributions on the real
line. Marcel Dekker, New York, 2004.

[23] Watanabe, T., and Yamamuro, K. Tail behaviors of semi-stable distributions. Journal of
Mathematical Analysis and Applications, 393, No. 1. pp. 108–121, 2012.

24


	1 Introduction
	2 Tail behavior of the sum and the trimmed sum
	2.1 The O-subexponentiality of the St. Petersburg distribution

	3 Properties of the limit
	3.1 Properties of the 1-trimmed limit
	3.2 Representation of the r-trimmed limit
	3.3 Around the centering
	3.4 Uniform tail bound for the trimmed sums
	3.5 Tail behavior of the trimmed limit

	4 The generalized St. Petersburg game

