
VARIANTS OF P COLONY AUTOMATA

Kristóf Kántor György Vaszil

Department of Computer Science, Faculty of Informatics
University of Debrecen

Kassai út 26, 4028 Debrecen, Hungary
{kantor.kristof, vaszil.gyorgy}@inf.unideb.hu

Abstract
We give an overview of P colony automata presenting recent results and research directions of
the area.

1. Introduction

P colonies are tissue-like membrane systems modeling a community of very simple computing
agents (cells), living together and interacting in a shared environment, see [17, 18]. The name
colony comes from the theory of grammar systems (see [7]), from one of the grammatical models
studied in the field called a colony of grammars. Such a colony (see also [16]), is a collection
of very simple generative grammars (generating finite languages each), but by behaving as a
cooperating system, they are able to generate fairly complicated languages, thus, the computing
power of the system as a whole increases considerably when compared to the power of the
individual components.

P colonies represent this approach in the framework of membrane computing. The model is
similar to tissue-like membrane systems, the environment and the computing agents are both
described by multisets of objects which are processed by the colony member cells using rules
which enable the transformation of the objects and the exchange of objects between the cells
and the environment. The capabilities of the computing agents are very restricted, both from
the points of view of information storage and information processing possibilities. First, only
a limited number of objects are allowed to be present inside the cells simultaneously (this is
called the capacity of the system), and second, the rules are very simple, they are either of the
form a→ b (for changing an object a into an object b inside the cell), or a↔ b (for exchanging
an object a inside a cell with an object b in the environment). The rules are grouped into
programs. If the capacity of the colony is k, then each program consists of k rules which
(when the program is applied) are applied to the k objects simultaneously. A computation
of the colony consists of a sequence of computational steps during which the colony member
cells execute their programs in parallel, until the system reaches one of the final configurations
(usually given as the set of halting configurations, that is, those situations when no programs
can be applied by any of the cells).

18 Kristóf Kántor, György Vaszil

P colonies have been extensively studied, it has been shown, for example, that although they
are extremely simple, they are computationally complete computing devices even with very
restricted size parameters and other syntactic or functioning restrictions. For these, and more
topics, results, see [5, 6, 4, 3, 8, 9, 12, 13].

As P colonies work with multisets of objects, it is natural to look at the result of the compu-
tations as sets of numbers (sets of vectors) represented by the multiplicities of certain objects
present in the final configurations. On the other hand, being able to describe sets of strings
instead of numbers, is also of interest. P colony automata were introduced in [2] for this pur-
pose: to be able to accept with P colonies strings and string languages (instead of multiset
collections). The idea of P colony automata is to assume the presence of an input tape with
an input string, and designate certain rules as tape rules. When such a tape rule is applied,
the symbol which is processed by the rule should also be read from the input tape. The dif-
ficulty of this idea comes from the possibility of applying several programs, and thus, several
tape rules simultaneously, which gives rise to possible conflicts between tape rules which would
need to read different symbols from the same input. Nevertheless, several variants of P colony
automata turned out to be computationally complete, as shown in [2] and later in [1].

Here we consider a different way of dealing with strings in P colonies. The model was introduced
in [15] under the name of generalized P colony automata, and studied further in [14]. The idea
is to define the reading of input symbols in a way that is more close to the nature of other kinds
of membrane computing systems, especially antiport P systems and P automata in particular.
P automata, introduced in [11] (see also [10]), are P systems using symport and antiport rules
(see [19]), characterizing string languages in a different way than “ordinary” P colony automata.
They do not have input tapes with predefined input strings. Instead of reading input tapes,
they associate strings to their computations by keeping track of the communication with the
environment. They are not forced to a certain behavior through the given input, but operate and
communicate freely with the environment, where each object which can be requested for input
by the communication rules of the P system is assumed to be available in an unbounded supply.
The accepted strings (the strings which are said to be read by the system) are determined by the
sequences of those multisets which enter the system from the environment during computations.
Such a sequence of multisets is mapped to a string, a sequence of symbols which constitute the
string accepted by a particular computation.

A similar idea is employed in generalized P colony automata, the idea of characterizing strings
through the sequences of multisets processed during computations. The computations of the
colony define accepted multiset sequences, which are turned into accepted strings by mapping
the multiset sequences to symbol sequences (strings) over some previously given alphabet. They
also have rules distinguished as tape rules, and the application of such a tape rule also implies
the reading of the processed symbol from the input (as in “ordinary” P colony automata), but
unlike in the original model, the automaton is allowed to read more than one such symbol in
a single computational step. This way generalized P colony automata avoid the conflicts that
would arise by the simultaneous use of tape rules processing (and therefore reading) different
symbols, but they may read several symbols (a multiset of symbols) in one computational
step. This means that during a computation consisting of a sequence of computational steps,
a sequence of multisets is read from the input. This sequence of multisets then can be mapped

VARIANTS OF P COLONY AUTOMATA 19

into a string (a sequence of symbols) in a similar way as in P automata.

In [15], some basic variants of the model were introduced and studied from the point of view
of their computational power. In [14] we continued the investigations structuring our results
around the capacity of the systems, and different types of restrictions imposed on the use of
tape rules in the programs of the systems. We considered three possible ways of dealing with
tape rules in the programs: (1) the unrestricted case, (2) the case when all programs must
contain at least one tape rule (all-tape programs), and (3) the case when all communication
rules are tape rules (com-tape programs).

2. P Automata and Generalized P Colony Automata

A genPCol automaton of capacity k and with n cells, k, n ≥ 1, is a construct

Π = (V, e, wE, (w1, P1), . . . , (wn, Pn), F)

where

• V is an alphabet, the alphabet of the automaton, its elements are called objects;

• e ∈ V is the environmental object of the automaton, the only object which is assumed to
be available in an arbitrary, unbounded number of copies in the environment;

• wE ∈ (V − {e})∗ is a string representing the multiset of objects different from e which is
found in the environment initially;

• (wi, Pi), 1 ≤ i ≤ n, specifies the i-th cell where wi is a multiset over V , it determines the
initial contents of the cell, and its cardinality |wi| = k is called the capacity of the system.
Pi is a set of programs, each program is formed from k rules of the following types (where
a, b ∈ V):

– tape rules of the form a
T→ b, or a

T↔ b, called rewriting tape rules and communication
tape rules, respectively; or

– nontape rules of the form a → b, or a ↔ b, called rewriting (nontape) rules and
communication (nontape) rules, respectively.

A program is called a tape program if it contains at least one tape rule.

• F is a set of accepting configurations of the automaton which we will specify in more detail
below.

A genPCol automaton reads an input word during a computation. A part of the input (possibly
consisting of more than one symbols) is read during each configuration change: the processed
part of the input corresponds to the multiset of symbols introduced by the tape rules of the
system.

A configuration of a genPCol automaton is an (n + 1)-tuple (uE, u1, . . . , un), where uE ∈
(V − {e})∗ represents the multiset of objects different from e in the environment, and ui ∈
V ∗, 1 ≤ i ≤ n, represent the contents of the i-th cell. The initial configuration is given by

20 Kristóf Kántor, György Vaszil

(wE, w1, . . . , wn), the initial contents of the environment and the cells. The elements of the set
F of accepting configurations are given as configurations of the form (vE, v1, . . . , vn), where

• vE ⊆ (V −{e})∗ represents a multiset of objects different from e being in the environment,
and each

• vi ∈ V ∗, 1 ≤ i ≤ n, is the contents of the i-th cell.

Instead of the different computational modes used in [2], in genPCol automata, we apply the
programs in the maximally parallel way, that is, in each computational step, every component
cell non-determinically applies one of its applicable programs. Then we collect all the symbols
that the tape rules “read” (these multisets are denoted by read(p) for a program p in the
definition below), this is the multiset read by the system in the given computational step. A
successful computation defines this way an accepted sequence of multisets: the sequence of
multisets entering the system during the steps of the computation.

Let Π = (V, e, wE, (w1, P1), . . . , (wn, Pn), F) be a genPCol automaton. The set of input se-
quences accepted by Π is defined as

A(Π) = {u1u2 . . . us | ui ∈ (V − {e})∗, 1 ≤ i ≤ s, and there is a configuration

sequence c0, . . . , cs, with c0 = (wE, w1, . . . , wn), cs ∈ F, and

ci =⇒ ci+1 with
⋃

p∈Pci

read(p) = ui+1 for all 0 ≤ i ≤ s− 1}.

Let Π be a genPCol automaton, and let f : (V −{e})∗ → 2Σ∗
be a mapping, such that f(u) = ε

if and only if u is the empty multiset.

The language accepted by Π with respect to f is defined as

L(Π, f) = {f(u1)f(u2) . . . f(us) ∈ Σ∗ | u1u2 . . . us ∈ A(Π)}.

We define the following language classes.

• L(genPCol,F , com-tape(k)) is the class of languages accepted by generalized PCol au-
tomata with capacity k and with mappings from the class F where all the communication
rules are tape rules,

• L(genPCol,F , all-tape(k)) is the class of languages accepted by generalized PCol automata
with capacity k and with mappings from the class F where all the programs must have at
least one tape rule,

• L(genPCol,F , ∗(k)) is the class of languages accepted by generalized PCol automata with
capacity k and with mappings from the class F where programs with any kinds of rules
are allowed.

Let the mapping fperm and the class of mappings TRANS be defined as follows:

• fperm : V ∗ → 2Σ∗
where V = Σ and for all v ∈ V ∗, we have f(v) = {a1a2 . . . as | |v| = s,

and a1a2 . . . as is a permutation of the elements of v};

VARIANTS OF P COLONY AUTOMATA 21

• for some f : V ∗ → 2Σ∗
, we say that f ∈ TRANS if for any v ∈ V ∗, we have f(v) = {w} for

some w ∈ Σ∗ which is obtained by applying a finite transducer to the string representation
of the multiset v, (as w is unique, the transducer must be constructed in such a way that
all string representations of the multiset v as input result in the same w ∈ Σ∗ as output,
and moreover, as f should be nonerasing, the transducer produces a result with w 6= ε for
any nonempty input).

We denote these language classes as LX(genPCol, Y (k)), where X ∈ {fperm,TRANS}, Y ∈
{com-tape, all-tape, ∗}.

Now we present an example to demonstrate the above defined notions.

Example 2.1 Let Π = ({a, b, c}, e, ∅, (ea, P), F) be a genPCol automaton where

P = {〈e→ a, a
T↔ e〉, 〈e→ b, a

T↔ e〉, 〈e→ b, b
T↔ a〉, 〈e→ c, b

T↔ a〉,
〈a→ b, b

T↔ a〉, 〈a→ c, b
T↔ a〉}

with all the communication rules being tape rules. Let also F = {(ε; v, ca) | a 6∈ v} be the set
of final configurations. A possible computation of this system is the following:

(∅, ea)⇒ (a, ea)⇒ (aa, ea)⇒ (aaa, eb)⇒ (aab, ba)⇒ (bba, ba)⇒ (bbb, ac)

where the first three computational steps read the multiset containing an a, the last three
steps read a multiset containing a b, thus the accepted multiset sequence of this computation
is (a)(a)(a)(b)(b)(b).

It is not difficult to see that similarly to the one above, the computations which end in a final
configuration (a configuration which does not containg the object a in the environment) accept
the set of multiset sequences A(Π) = {(a)n(b)n | n ≥ 1}.

If we consider fperm as the input mapping, we have L(Π, fperm) = {anbn | n ≥ 1}. On the
other hand, if we consider a mapping f1 ∈ TRANS with f1 : {a, b}∗ → {c, d, e, f}∗ and
f1(a) = {cd}, f1(b) = {ef} (and f1 undefined in all other cases), we get the language L(Π, f1) =
{(cd)n(ef)n | n ≥ 1}.

3. Recent Results on Systems with Input Mappings from

TRANS

For any class of mappings F , we have (see [14])

1. L(genPCol,F , com-tape(k)) ⊆ L(genPCol,F , ∗(k)) and
L(genPCol,F , all-tape(k)) ⊆ L(genPCol,F , ∗(k) for k ≥ 1; and

2. L(genPCol,F , X(k)) ⊆ L(genPCol,F , X(k + 1)) for k ≥ 1, X ∈ {com-tape, all-tape, ∗}.

22 Kristóf Kántor, György Vaszil

The computational capacity of genPCol automata with input mappimg fperm was investigated
in [15] and [14]. It was shown that Lperm(genPCol, ∗(1)) = L(RE), thus, it is not surprising,
but the same holds also for the class of mappings TRANS.

Proposition 3.1
LTRANS(genPCol, ∗(1)) = L(RE).

A similar result holds for all-tape systems with capacity at least two. From [14] we have that
Lperm(genPCol, all-tape(k)) = L(RE) for k ≥ 2, and we can show the same for systems with
input mappings from TRANS.

Proposition 3.2

LTRANS(genPCol, all-tape(k)) = L(RE) for k ≥ 2.

For systems with capacity one, it is not difficult to see that all regular langugaes can be
characterized, but a more precise characterization of the corresponding langugae classes are
still missing.

Proposition 3.3

REG ⊆ LTRANS(genPCol,X(1)), for X ∈ {all-tape, com-tape}.

The characterization of langugaes of com-tape systems is an interesting research direction.
Similarly to systems with input mapping fperm, we have the following, where r-1LOGSPACE
denotes the class of languages characterized by so-called restricted one-way logarithmic space
bounded Turing machines, see [10] for more on this complexity class.

Proposition 3.4

LTRANS(genPCol, com-tape(2)) ⊆ r-1LOGSPACE.

4. Conclusions

As the class of languages characterized by P automata is strictly included in r-1LOGSPACE,
the above theorem does not give any information on the relationship of the power of P automata
and genPCol automata. We know, however, that genPCol automata with fperm and com-tape
programs are more powerful than P automata using the mapping fperm.

As P automata with sequential rule application and input mappings from TRANS characterize
exactly the language class r-1LOGSPACE, the relationship of this language class and genPCol
automata with input mappings from TRANS seems to be an especially interesting research
direction.

Further, the effect of using checking rules, as defined in [17] for P colonies, is also an interesting
topic for further investigations, just as the investigation of systems with other classes of input
mappings besides fperm.

VARIANTS OF P COLONY AUTOMATA 23

Acknowledgements

This research was supported in part by grant no. MAT120558 of the National Research, De-
velopment and Innovation Office, Hungary.

References

[1] L. CIENCIALA, L. CIENCIALOVÁ, P Colonies and Their Extensions. In: J. KELEMEN,
A. KELEMENOVÁ (eds.), Computation, Cooperation, and Life – Essays Dedicated to Gheorghe
Paun on the Occasion of His 60th Birthday . Lecture Notes in Computer Science 6610, Springer,
2011, 158–169.

[2] L. CIENCIALA, L. CIENCIALOVÁ, E. CSUHAJ-VARJÚ, G. VASZIL, PCol automata: Rec-
ognizing strings with P colonies. In: M. A. MARTÍNEZ DEL AMOR, G. PĂUN, I. PÉREZ
HURTADO, A. RISCOS NUÑEZ (eds.), Eighth Brainstorming Week on Membrane Computing,
Sevilla, February 1–5, 2010 . Fénix Editora, 2010, 65–76.

[3] L. CIENCIALA, L. CIENCIALOVÁ, A. KELEMENOVÁ, On the Number of Agents in P
Colonies. In: G. ELEFTHERAKIS, P. KEFALAS, G. PAUN, G. ROZENBERG, A. SA-
LOMAA (eds.), Membrane Computing, 8th International Workshop, WMC 2007, Thessaloniki,
Greece, June 25–28, 2007 Revised Selected and Invited Papers. Lecture Notes in Computer Science
4860, Springer, 2007, 193–208.

[4] L. CIENCIALA, L. CIENCIALOVÁ, A. KELEMENOVÁ, Homogeneous P Colonies. Computing
and Informatics 27 (2008) 3+, 481–496.

[5] L. CIENCIALOVÁ, L. CIENCIALA, Variation on the theme: P colonies. In: D. KOLĂR,
A. MEDUNA (eds.), Proc. 1st Intern. Workshop on Formal Models. Ostrava, 2006, 27–34.

[6] L. CIENCIALOVÁ, E. CSUHAJ-VARJÚ, A. KELEMENOVÁ, G. VASZIL, Variants of P
colonies with very simple cell structure. International Journal of Computers, Communication
and Control 4 (2009) 3, 224–233.

[7] E. CSUHAJ-VARJÚ, J. DASSOW, J. KELEMEN, G. PĂUN, Grammar Systems – A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, London, 1994.

[8] E. CSUHAJ-VARJÚ, J. KELEMEN, A. KELEMENOVÁ, Computing with Cells in Environ-
ment: P Colonies. Multiple-Valued Logic and Soft Computing 12 (2006) 3–4, 201–215.

[9] E. CSUHAJ-VARJÚ, M. MARGENSTERN, G. VASZIL, P Colonies with a Bounded Number of
Cells and Programs. In: H. J. HOOGEBOOM, G. PAUN, G. ROZENBERG, A. SALOMAA
(eds.), Membrane Computing, 7th International Workshop, WMC 2006, Leiden, The Netherlands,
July 17–21, 2006, Revised, Selected, and Invited Papers. Lecture Notes in Computer Science 4361,
Springer, 2006, 352–366.

[10] E. CSUHAJ-VARJÚ, M. OSWALD, G. VASZIL, P automata. In: G. PAUN, G. ROZENBERG,
A. SALOMAA (eds.), The Oxford Handbook of Membrane Computing . Oxford University Press,
Inc., 2010.

24 Kristóf Kántor, György Vaszil

[11] E. CSUHAJ-VARJÚ, G. VASZIL, P Automata or Purely Communicating Accepting P Systems.
In: G. PAUN, G. ROZENBERG, A. SALOMAA, C. ZANDRON (eds.), Membrane Computing,
International Workshop, WMC-CdeA 2002, Curtea de Arges, Romania, August 19–23, 2002,
Revised Papers. Lecture Notes in Computer Science 2597, Springer, 2002, 219–233.

[12] R. FREUND, M. OSWALD, P Colonies Working in the Maximally Parallel and in the Sequen-
tial Mode. In: D. ZAHARIE, D. PETCU, V. NEGRU, T. JEBELEAN, G. CIOBANU,
A. CICORTAS, A. ABRAHAM, M. PAPRZYCKI (eds.), Seventh International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2005), 25–29 September
2005, Timisoara, Romania. IEEE Computer Society, 2005, 419–426.

[13] R. FREUND, M. OSWALD, P colonies and prescribed teams. Int. J. Comput. Math. 83 (2006)
7, 569–592.

[14] K. KÁNTOR, G. VASZIL, On the Class of Languages Characterized by Generalized P Colony
Automata. Theoretical Computer Science to appear.

[15] K. KÁNTOR, G. VASZIL, Generalized P Colony Automata. Journal of Automata, Languages
and Combinatorics 19 (2014) 1–4, 145–156.

[16] J. KELEMEN, A. KELEMENOVÁ, A grammar-theoretic treatment of multiagent systems. Cy-
bernetics and Systems 23 (1992), 621–633.

[17] J. KELEMEN, A. KELEMENOVA, G. PAUN, Preview of P colonies: A biochemically inspired
computing model. In: Workshop and Tutorial Proceedings, Ninth International Conference on the
Simulation and Synthesis of Living Systems, ALIFE IX, Boston, Mass. 2004, 82–86.

[18] A. KELEMENOVÁ, P colonies. In: G. PAUN, G. ROZENBERG, A. SALOMAA (eds.), The
Oxford Handbook of Membrane Computing . Oxford University Press, Inc., 2010, 584–593.

[19] A. PAUN, G. PĂUN, The Power of Communication: P Systems with Symport/Antiport. New
Generation Comput. 20 (2002) 3, 295–306.

	1 Introduction
	2 P Automata and Generalized P Colony Automata
	3 Recent Results on Systems with Input Mappings from TRANS
	4 Conclusions
	References

