
12/1

Abstract

A mixed-signal Cellular Visual Microprocessor architecture with digital processors is

described. An ASIC implementation is also demonstrated. The architecture is composed of a

regular sensor readout circuit array, prepared for 3D face-to-face type integration, and one or

several cascaded array of mainly identical (SIMD) processing elements. The individual array

elements derived from the same general HDL description and could be of different in size, aspect

ratio, and computing resources.

Keywords:

Focal plane, sensor-processor, parallel processing, SIMD, 3D integration

I. INTRODUCTION

In this paper, we introduce in details our configurable, scalable, and clusterable cellular focal-plane
sensor processor architecture and an operational ASIC validating the approach.

The architecture is derived from the concept introduced in [4]. Its functionality, near-sensor
processing capability, and topographic architecture are inspired by the Cellular Neural Network
Universal Machines [1]-[3].

In a typical standalone vision system, we can find sensor, AD converters, processor and memory,
and the embedding and communication circuits [5]-[6]. It is obvious, that it is difficult to implement
efficiently all these components in a single chip. On the other hand, the tight integration of such a
system would be favourable due to compactness, performance, price, power consumption, etc. Our
approach is to integrate as much functionality as possible from sensing through data conversion,
reaching low and high level image processing and possible decision making into this architecture.

The 3D or vertical integration technologies for sensor integration are extensively researched
nowadays [21]-[24], and become commercially available [26]-[27]. Following this trend, we inserted a
separate sensor layer above the processor layer. In this way, the electrical interface and the processing
kernel can be implemented with the help of mainstream semiconductor methodology, while the sensory
technology and materials become arbitrary. The interconnection between the sensors and the processors
are produced by 3D bump bonding technology.

We describe the concept of the system architecture in Chapter II, in Chapter III the processor array
design is summarized; in Chapter IV general considerations are given about the sensory interfacing.
The ASIC implementation called, Xenon V3, is described in Chapter V, and finally the conclusions are
given.

II. SYSTEM ARCHITECTURE

A. Motivations

In the design of focal-plane sensor processor arrays, there are several tight trade-offs [4], [8]-[9],
[32]-[33]. One of them is the antagonism of the required sensor resolution and the attached processing
power. Another compromise is the sensor size versus the processor size. One must also take care of the
application point of view of such a systems: a typical vision task could be mapped to a generic
operation sequence, which contains sensing, grayscale filtering, segmentation, binary morphological
feature extractor, classification, object tracking, decision making.

With the rise of 3D integration technologies, the possibility is given to separate the sensing
technology from the rest of the system. This opportunity leads to another question, namely which type

Cellular Sensory and Wave Computing Research Laboratory, in the Computer and Automation Research Institute of the
Hungarian Academy of Sciences, also with Eutecus Inc Berkeley, California. E-mail: [foldesy,zarandy,rcsaba]@sztaki.hu; web:
www.sztaki.hu, www.eutecus.com

Configurable 3D integrated focal-plane
cellular sensor-processor array architecture

Péter Földesy, Ákos Zarándy, and Csaba Rekeczky

12/2

of sensor would be connected to the system. Our approach is to create a generalized host interface for
many different sensor arrays. As the application demands, the signal conditioning could be altered
without affecting the processing system and vice-versa. In order to achieve it, the analog signal
conditioning and the AD conversion is tightly coupled to the physical sensor grid. The digital processor
array takes place next to the mixed-signal block (possibly in different ICs may be quilt packaged). The
connectivity in between is maintained through a well-defined protocol (the reader is referred in the
topic of near pixel AD conversion to [35]-[38]).

Regarding the processor architecture, we have developed a scalable array, where the complexity –
number and type of the embedded resources – of a single processor can vary in a wide assortment. The
programming environment (such as the assembly compiler) is also prepared to accommodate the
reduced or extended instruction set and size.

B. Configurability and flexibility

The architecture is highly scalable, and this property allows us to build customized processing chains
from dedicated processor arrays. The parametric space enables to change not only the number of
processors and the aspect ratio of a processor array (e.g. in multi-cluster case, the series of wide
processor vectors), but to customize the local memory size of the processors, the ALU (arithmetic and
logic unit) resources, the number of sensors and the involved ADCs attached to a processor.

An important observation is that a single function or operator should be executable independently
from the position of the particular pixel within an image. Similarly, the functionality should not depend
on the number or data sharing method of the processors. These facts motivate that the processor arrays
operates in single instruction multiple data (SIMD) type concurrency. Naturally, the function changes
as the data flows through the chain. Consequently, each processor array has its own repetitive task, but
these tasks differ from array to array. With this generalization, the architecture becomes so-called
multi-SIMD type. The practical form of this architecture is to insert instruction decoders per processor
array, where each of the array elements within an array shares the decoded microinstructions.

At the processor level, there are typical building blocks such as registers, crossbars, memory banks,
and arbiters. On the top of this general skeleton, we have included arithmetical and mathematical
morphology oriented modules as well. These modules are optionally included and parameterized
during array formation. Furthermore, considering the large area requirement of on-chip mass storage,
the processors’ memory banks could be also excluded.

Figure 1 shows a typical mapping of a general vision task to the described architecture. Note that the
individual processor arrays are equipped with different operation capabilities. The reader is referred to
the following chapters about the implementation details that are also shown here.

Implemented in the
Xenon V3 ASIC

Implemented in FPGA

Implemented in software

Figure 1. The figure shows an example of a cluster of task specialized processor arrays. Such a cluster
can be easily derived from the described architecture on different platforms.

C. Functional organization

The high level organization of the integrated sensor interface processor array [4], [34] is shown in
Figure 2. As it can be seen in the figure, each array is embedded into a relatively simple shell. This
shell contains the programming and data communication modules that are described in details in the
next Chapter as well.
The close sensor-processor organization must be emphasized, since as we mentioned the physical

12/3

topology is different due to implementation considerations. The interactivity between the sensor and
processor modules can provide the proactive or adaptive sensing [11]-[15] feature that is not available
in the typical separated sensor processor architectures.

External
interface

Program
buffer

Program fetch
and decoder

MUX

Local
I/O

ADC

DP-
SRAM

Global
I/O

Core ALU modules

Cross
bar

Photosensor
interfaces

Sensor interface –
processor array

Data I/O

Figure 2. Architecture of the generalized processor array.

III. PROCESSOR ARRAY DESIGN

The complete system is formulated in Verilog RTL (register transfer level) code. With careful
programming the code is synthesizable not only for ASIC target, but for FPGAs as well (or in case of
clusters, for a mix of targets).

The source code is prepared for advanced testability, synthesis, and implementation design flows.
The involved features are the coding style to minimize the power consumption (e.g. extensive clock
gating); CRC checking that is employed at critical buses; and well-defined portion of the design is
accessible through scan chain.

For the shake of generality and keeping in mind that different implementation platform offers
different core speed and I/O bandwidth, the processor array is divided into four main clock domains
and several minor test clock domains. The main clock domains are the data transfer, program transfer,
processor core, and additionally the sensor interface’s ADC control and data buffering. The separation
of operational speed enables to run each block at the highest possible clock rate without being
restrained by others. It is typical in a system that the clock of the data bus is lower than the main
processor clock.

In addition, each domain is designed to be able to operate in parallel. That is, the image acquisition,
conversion, processing, and data transfer can be done at the same time, resulting in a pipelined high
throughput procedure.

The case of the program transfer is special. The instruction flow for the individual arrays comes from
the same central program scheduler. In order to mitigate this possible transfer bottleneck, two
mechanisms have been built in. First, the instruction streams are compacted, and secondly the
communication shell around the processor arrays employs a buffer mechanism. This buffer allowing
the instruction decoder to act independently without being affected by the fluctuating transfer speed. At
the edges of the different clock domains dual-port memories, FIFO and dual sampled registers
maintains the signal integrity.

At the points, where the buses forks, joins, or changes the data representation or bus speed, bus
bridges are inserted. Both external and most of the internal connectivity is maintained by a standard bus
protocol, called Wishbone [39]. This protocol is a public domain System-on-Chip (SoC) interconnect
architecture for portable IP cores and interfaces. It supports, among others, point-to-point interfaces,
shared bus architectures, crossbar switches, and off-chip routing. These properties are widely used in
the design. In the external communication, additional handshaking signals are integrated too. The
bidirectional signals force the system to be synchronized to external devices.

The architecture of a processor array can be seen in Figure 3.

12/4

Figure 3. Organization of the sensor interface, the processor array, and the external interfacing showing
typical bus width as well.

A. Individual processors

The basic constructing element of our digital sensor-processor architecture is the parametric
processors. The processors are a composition of a core and connected I/O and data memory units. The
processor does not have local program memory accordingly to the SIMD operation mode.

1) Processor core

The processor core is arranged around a crossbar switch. The design of the crossbar switch makes
easier the inclusion or exclusion of the different operation modules of the core.

The maximum configuration processor core contains an arithmetic unit, a morphologic unit, register
bank, standby logic, and flags (Figure 4). Since basic image processing operators are defined over the
single byte (8 bit) precision, we accommodated this data representation throughout the processor.
However, the arithmetical unit is an exception, as it can handle 16 or 24 bit data as well.

Signed
comparator#

Clock gating
standby

Binary
morphology#

Arithmetic
unit#

State flags

Processor core

Inter-core
crossbar
switch

Dual port
RAM

Neighbor
connection

Local microcode decoder

WB data bridge

From the instruction

Register
bank

Intra-core crossbar switch

Figure 4. The architecture of a single processor. The modules marked by hashmark are optionally
included during the processor instantiation.

2) Arithmetical and comparator unit

The arithmetic unit contains an 8 bit multiply-add datapath logic with a 24 bit accumulator. The data
path enables either 8 or 16 bit precision calculations. The arithmetic unit can calculate multiplication,
multiple-add, addition, subtraction, and saturation operations (Figure 5a). Adopted from the common
practice of handling both signed and unsigned data by the same unit, the hardware multiplier is of
signed 9 by 9 bit precision, and the barrel shifter and the accumulator logic supports sign extension as
well. The saturation mechanism also has a great importance in image processing, allowing the user to
avoid the time consuming overflow and underflow management. Beside the arithmetical operations,
this unit encompasses bit-field access as well.

12/5

The comparator unit is capable to evaluate the relation between signed or unsigned data of the
modules. Depending on the outcome of the relation it sets several flags that are used in later operations.

3) Morphology unit

The morphology unit supports the processing of black-and-white images (i.e. the pixel representation
is one bit per pixel). It contains eight pieces of identical single bit morphology processor (Figure 5b).
Hence, it accelerates greatly the parallel calculation of local or spatial logic operations, like erosion,
dilation, opening, closing, hit and miss operations [29]-[30].

24-bit signed
accumulator

Barrel shifter
Sign extension

Saturation (signed /
unsigned 8-bit/16-bit)

Overflow,
negative, is zero

+

Barrel shifter
Sign extension

* 9-bit by 9-bit signed multiplier

From register
bank

Program coded
constant

Intra-core crossbar switch

Sign extension

To state flag unit

(a)

Input selector

General LUT

Output selector

enable

Work register Lock register

A bit
slice

Intra-core crossbar switch

(b)

Figure 5. The architecture of the arithmetical (a) and the binary morphology (b) units.

4) Memory and neighboring connectivity

The evergreen challenge of self and off-processor data access is solved by mapping the neighboring
memories into the processors’ memory map. This has been obtained simply by inserting an arbiter
between the processor cores and their main memory. The neighboring connectivity works concurrently
all over the array, which excludes data congestion.

The arbiter is capable to access the neighboring memories and substitute the required data by the
neighbor’s one. In this way, the processor needs no distinguished instructions to operate on image
pixels that are actually stored in a nearby processor. The arbiter has a special task as well in case of
binary image processing. Specifically, when the pixel representation is 1 bit per pixel, the near
neighbors of a given pixel could fall in only in a few pixel radius. To get most out of the morphology
unit, the arbiter is capable to align the data access to 1 bit resolution.

As regarding to the neighborhood operators, the neighboring access is not limited to support

12/6

processing of large kernels (e.g in Xenon V3 this kernel size is 15 by 15).
Furthermore, there are special boundary modules that are straightforward extensions of the arbiter

mechanism. These modules provide the boundary condition for the operations.

5) Other elements

Most of the processor’s operations can be set to be conditionally executed (i.e. masked) depending
on the state of the flags. This means, that content dependent masks may enable or disable the execution
of a certain image processing operation in arbitrary pixel locations. This is extensively used for
example in many nonlinear operators such as the rank order filters [31].

There is another way to block the processor operation, namely using the standby mechanism. The
processors can individually enter standby state and wake up depending on their own data. Whenever it
is set by the result of a comparison or another single bit operation, the whole processor idles (except
from the memory and the inter-core data arbitration). In other words, it enables program alteration in
this way.

Finally, there is an array wide logic value evaluation operation (global OR). Its sources are the flags
of the processors, and it provides external feedback through the handshaking mechanism about the
existence of an active or inactive processors.

B. Instruction set

A processor array can be considered from the programmer’s point-of-view as a 8-bit CISC (complex
instruction set computer) microprocessor with a number of replicated arithmetical unit and distributed
memory. Since the same program controls all the processors, they execute always the same instructions
on their own data (SIMD operation model).

Using the rich instruction set (112 in total without the conditional counterparts) one can efficiently
implement a basic image processing function library (convolution, statistical filters, gradient, grayscale
and binary mathematical morphology, etc). During processor specialization, several instructions may
fall out of the range of the simplified processor array. This situation is handled by the compilers simply
rejecting the unavailable instructions.

The general set of the instructions can be divided into five main groups with close relationship to the
architecture:

• Initialization instructions
• Data transfer instructions
• Arithmetic instructions
• Logic instructions
• Comparison instructions

The initialization instructions are needed to clear or set the accumulator, the boundary condition
registers, the flags, and other registers of the processor. These set also contains special instructions to
setup and operate the sensor interface. Its importance is clear, as the synchronicity between the sensing
and processing should be maintained continuously.

The data transfer instructions are used to transfer data between the internal registers and the memory.
The cells can also access the memory of their direct neighbors through the neighborhood crossbar.
From programming point of view, there are no distinguished instructions to handle the neighboring
pixels. This dramatically improves the efficiency of programming e.g. larger neighborhood operators.

The arithmetic operation set contains addition, subtraction, multiplication, multiply-add operation,
and left/right shift. All operators can be signed, unsigned, or mixed. These operators certainly set the
state flags. These flags can be used later in the next instructions as conditions, carry propagation, or
even block the processor by the standby module.

The collection of logic operations supports the execution of the binary mathematical morphology
operations, like erosion and dilation, hit-or/and-miss type operators [29].

The comparison instructions are introduced to calculate the relation between two scalars. These
operators can be used for statistical filter implementations.

The Figure 6 shows a piece of the Sobel operator’s assembly code.

12/7

Figure 6. The assembly code of the vertical Sobel operator.

IV. SENSOR INTERFACE

In this chapter we describe the proposed interface architecture in general. To cope with the sensor
processor resolution, technology trade-offs, we found a balanced solution by introducing relatively
complex digital processors – and processor array clusters – serving a small array of sensor pixels. As to
the technology and area problem, we have separated the sensors from the processors by adding and
extra sensor layer above the processor layer.

In order to make the architecture technology independent as much as possible, we have formulated a
simple synchronization protocol for the communication between the processors and the mixed-signal
sensor interfaces. Each interface tile is connected directly to a single processor in the array through data
buffer modules. The interface and the buffer modules are controlled by the associated processors and in
return, the modules give feedback about the operation state to them.

Each of the sensor interfaces contains M by N external sensor mechanical and electrical interfaces,
multiplexers, and an AD converter. These tiles work as simple high-speed imagers (Figure 7). Note that
all the tiles are connected to the processors in parallel. The output of the sensor and ADC array is
buffered, so the ADC can work at full speed without the need for waiting until their data processed.

S/H

ADC

Processor

Handshaking
signals

Data
buffer

Address
decoder
Sensor
control

Column decoder

R
ow

 decoder

Figure 7. The figure shows the proposed sensor interface containing the analog sensor pad array, analog
to digital converter, buffering, and necessary handshaking signals.

A. Electrical sensor interface

As to the electrical interfacing, there are uncountable options [16]-[20]. In our work, we have
considered so far three basic integration type circuit configurations (Figure 8). These configurations are
the active pixel sensor (APS), separated integrating capacitor, and capacitive transconductance
amplifier (CTIA) cases. Each type has their strengths and weaknesses in terms of area, sensitivity,
noise, and linearity [16]-[20].

In our former work [4], we have employed the separated integrating capacitor architecture in order to

12/8

achieve higher speed. This interface is now attached to high sensitivity III-V compound semiconductor
diode array. In the Xenon V3, that is to be described, the APS architecture is selected. This structure
gives the most compact design, and the smallest sensor pitch. We intend to use this interface type with
classic silicon and InP diode arrays.

1x

Reset

Cint

Reset

1x

Cint

Reset

Figure 8. Three considered integrated photocurrent sensor architecture for different photodiode and
application types (from left to right: active pixel sensor, separated integrating capacitor, and capacitive

transconductance amplifier)

B. Mechanical sensor interface

The great advantage of the 3D bonding technology (Figure 9) is that it enables close to 100% fill
factor without using up the valuable silicon space from the processors. The other advantage comes
from the freedom of the choice of using different material for sensor and processor layer. This is very
important, because the dedicated sensor silicon technologies are typically not the best for building high
density processor arrays, and those technologies, which are excellent for building processors are not
light sensitive enough. Moreover, besides silicon sensor, the utilized bump bonding technology enables
the usage of exotic sensor materials sensitive in different wavelengths [26]. As it can be seen in the
figure, this is a face-to-face bond type.

Sensor layer

Bump bonding

Top metal
openings

Routing layers

Silicon substrate

Figure 9. Illustration of the Indium Bump Bonding method.

From design point of view, the requirements for enabling 3D bump bonding technology are quite
straightforward. It usually requires an array of standard openings on the passivation and sensor
substrate connection ring around the array. The topological rule set, such as the opening size, minimal
sensor pitch, and distance from unrelated bonding are easy to fulfill as they are far within the nowadays
technology resolution (typically 5-10 um range).

V. ASIC IMPLEMENTATION

The Xenon V3* is an ASIC implementation of the proposed architecture. In this chapter, we describe
this implementation details.

A. Overview

The Xenon V3 comprises a single array of 8 by 8 full-featured processors of this generalized
architecture, set for sensing and processing 64 by 64 pixel sized images. With other words, the ratio
between the processor and the associated sensor array is 1:64. Each of the processors’ tiny sensor array
has a resolution of 8 by 8 pixels. In order to evaluate the cluster operation of the architecture, we have
integrated it into a smart camera, that contains among other components a high performance DSP and
an FPGA as well [10], [25].

The used technology is 0.18 um drawn feature sized, contains one poly, and six metal layers offered

* The implemented IP is owned by Eutecus, Inc.

12/9

by UMC. The design contains more than half million transistors in total. Figure 10 shows the floorplan
of the Xenon V3 overlaid on a die microphoto. Table I. concludes the general features of the design.

Processors’ data
memories

Program memory,
decoder/scheduler

Processor array
distributed in a

quasi topological
way

64x64 sensor interfaces
containing the ADCs

Figure 10. The floorplan of the Xenon V3. (Source: Eutecus Inc.)

TABLE I. GENERAL FEATURES

Technology UMC 0.18 um 1P6M generic process
Die size 5x5 mm2
Equivalent gates 596 Kgates
Pixel array size 64x64
Processor array size 8x8
Area per sensor interface and processor 0.23 mm2
Peak power consumption (digital array) 35 mW
I/O bus width 32-bit
I/O bus bandwidth 320 Mbyte/sec
Continuous conversion rate 100 Kframes per second

B. Processor array

The processor array and the chip level integration have been implemented by following the classic
standard cell based digital design flow (i.e. synthesis, place, routing, post-layout verification).

The processors contain all of the optional modules, which have been described in the architecture
introduction. Each processor contains 512 bytes of data memory. These memories are dual port SRAM
IPs. These are not very efficient from silicon area point of view; however, this approach leads to the
most robust digital ASIC implementation and helps to retain the portability of the source code.

Table II. shows anticipated execution time of different image processing operators running on the
ASIC implementations. The performance is compared to a 1GHz DSP of Texas Instruments [28]. The
figures show the per pixel execution times in nanosecond supposing the same image size, properly
optimized codes, and excluding the external I/O. As it can be seen, the high-end DSP has a larger
computational performance. However, we have to consider the used technology, the silicon area, and
the power consumption differences to fairly compare the two designs.

TABLE II. PERFORMANCE COMPARISION. FIGURES SHOWS EXECUTION TIME OF THE LISTED IMAGE PROCESSING
OPERATIORS IN NANOSECOND NORMALIZED TO A SINGLE PIXEL.

Operation Xenon V3 Texas DSP 6415 @ 1GHz
Sobel operator 1.51 1.39
Convolution (3x3 kernel) 2.03 1.54
Convolution (9x9 kernel) 7.81 6.16
Local minima (3x3 kernel) 1.03 0.85
Binary dilation/erosion 0.76 0.84
Skeletonization 6.05 25.82

C. Sensor interface

The sensor interface is a combination of both mechanical and electrical constructs. As the
mechanical arrangement should follow the sensor array regular topology, the interface is designed to be
pitch matched to a rectangular grid. The illustrative floorplan of the interface can be seen in Figure 11.

12/10

The complete interface array is packed into a closed layout portion of the chip, near to the analog pad
ring section, in order to isolate it from the digital noise, injected by the processor array (Figure 10).

1) Mechanical interface

The pads are 5 micron diameter openings in a 32 micron pitch. These pads are arranged to a 64x64
regular grid. Around the 64x64 grid, there are few more lines of pads, which are used to connect the
common cathode voltage of the photo-diodes in the array to a reference point.

Sensor interface circuit
for the 8x8 sensors and
the ADC

Sensor interface pads (top layer)

Analog power and reference
lines, output data bus towards
the processors

Figure 11. The floorplan of the 64 by 64 sensor interface pads are arranged to 8x8 blocks. The drawing
also shows the conditioning and conversion circuitry; and the power, ground, and data lines.

2) Electrical interface

The external photosensor read-out interface circuit is designed to handle anode-connected
photodiodes in integration mode (Figure 12). As integration capacitor, the photodiodes self-capacitance
is used. Its operation starts with a reset phase and than integration phase, in which the diode’s junction
capacitance is discharged by the photocurrent. As the diodes are to be connected at their anodes to the
circuit (while their cathode is shortened together), the voltage appears on the output increases.

The circuit works on 3.3V, and has been built with thick gate oxide transistors only. This choice
enables higher signal swing and operation that is more robust. In order to increase the reliability, the
circuit encompasses basic ESD (electrostatic discharge) protection as well.

Figure 12. The implemented sensor interface.

3) AD conversion

The employed ADC is an 8-bit successive approximation type with current steering DAC. It has a
1V useful single-ended input range at 1.8V power supply and its effective number of bits is 7.2. The
nominal operation speed is 8 Msamples per second. This conversion rate enables to reach less than
10µs conversion time for the connected array. As the interfaces work in parallel, this time is the
conversion rate of the whole 64 by 64 image.

For test purposes, the control and the output of the AD converters can be accessed through an
external bus also resulting in nothing but a 64 by 64 high speed camera chip.

12/11

SAR

DAC

8x8 sensor readout circuits

250 um

Comparator

200 um

Figure 13. The layout and the size of the signal conditioning and conversion circuitry of the sensor
interface. (Source: Eutecus Inc.)

VI. CONCLUSIONS

In this paper, we have given a deeper insight to our continuous efforts to integrate the focal plane
sensing and tightly coupled processing. As we have shown, a general architecture has been developed
to be flexible and customizable in low level and system level, and to be a versatile host for various
exotic sensory integration.

We have demonstrated the proposed architecture by a functional ASIC implementation. This system
is capable to continuously acquire up to 100 thousand images per seconds. Meanwhile, a large variety
of image processing primitives can be efficiently executed on its processors, like convolution, look-up
table, diffusion, rank order filters, contour detection.

ACKNOWLEDGMENT

This research was founded by US DoD small business R&D and transition program funding for
Eutecus, Inc; Grant of the National Science Fund of Hungary (OTKA); the multidisciplinary doctoral
school at the Faculty of Information Technology of the Pázmány Peter Catholic University.

REFERENCES
[1] T.Roska and L.O.Chua, “The CNN Universal Machine: An Analogic Array Computer”, IEEE Trans. Circuits and Systems,

Ser.II., vol. 40, pp. 163-173, 1993
[2] T. Roska, ”Computer-Sensors: Spatial-Temporal Computers for Analog Array Signals, Dynamically Integrated with

Sensors”, Journal of VLSI Signal Processing, Vol.23, pp.221-237, 1999
[3] T. Roska and Á. Zarándy: ”Proactive Adaptive Cellular Sensory-Computer Architecture via extending the CNN Universal

Machine”, to be published on the ECCTD ‘03 European Conference on Circuit Theory and Design, 1 - 4 September 2003,
Kraków, Poland

[4] P. Földesy, Á. Zarándy, Cs. Rekeczky, and T. Roska „Digital implementation of cellular sensor-computers”, International

Journal of Circuit Theory and Applications, Vol. 34, No. 4, pp. 409-428., July 2006.
[5] L. Li, D. Cochran, and R. Martin, ”Target Tracking with an Attentive Foveal Sensor”, Conference Record of the Thirty-

Fourth Asilomar Conference on Signals, Systems and Computers, pp. 182-185, 2000.
[6] Rekeczky, C.; Szatmari, I.; Balya, D.; Timar, G.; Zarandy, A., “Cellular multiadaptive analogic architecture: a

computational framework for UAV applications”, IEEE Transactions on Circuits and Systems I, Volume 51, Issue 5, pp.
864 – 884., May 2004.

[7] http://www.analogic-computers.com/ProdServ/Bi-i/index.html
[8] G. Linan: “ACE16K: an Advanced Focal-Plane Analog Programmable Array Processor”, ESSCIRC 2001 Presentations

27th European Solid-State Circuits Conference, Villach, Austria, 18-20 September 2001
[9] P.Dudek, "Accuracy and Efficiency of Grey-level Image Filtering on VLSI Cellular Processor Arrays", CNNA 2004,

Budapest, pp.123-128, Budapest, July 2004.
[10] “Bi-i Real-time Intelligent Cameras”, Analogic-computers Ltd. whitepaper, available at http://www.analogic-

computers.com/ProdServ/Bi-i
[11] T. Hamamoto and K. Aizawa: “A Computational Image Sensor with Adaptive Pixel-Based Integration Time”, IEEE

Journal of Solid State Circuits, Vol. 36. No. 4., pp. 580 – 585., April. 2001
[12] R. Wagner, Á. Zarándy and T. Roska “Adaptive Perception with Locally-Adaptable Sensor Array”, IEEE Transactions on

Circuits and Systems I: Fundamental Theory and Applications, Vol. 51., No. 5., pp: 1014 - 1023, May 2004.
[13] M. D. Grossberg and S. K. Nayar: “High Dynamic Range from Multiple Images: Which Exposures to Combine?”, Int.

Proc. ICCV Workshop on Color and Photometric Methods in Computer Vision (CPMCV), Nice, France, October 2003.
[14] S. K. Nayar and T. Mitsunaga: “High Dynamic Range Imaging: Spatially Varying Pixel Exposures”, Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina, June 2000.
[15] Bolotski, M. Abacus: A Reconfigurable Bit-Parallel Architecture for Early Vision. PhD thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, 1996.

12/12

[16] A. El Gamal: “High Dynamic Range Image Sensors”, Tutorial at International Solid-State Circuits Conference, February
2002, Available: http://www-isl.stanford.edu/~abbas/group/papers_and_pub/isscc02_tutorial.pdf

[17] Hui Tian; Fowler, B.; Gamal, A.E.,”Analysis of temporal noise in CMOS photodiode active pixel sensor”, IEEE Journal of

Solid-State Circuits, Volume 36, Issue 1, pp. 92 – 101, Jan. 2001.
[18] Peter B. Catrysse, Brian A. Wandell, „Optical efficiency of image sensor pixels”, JOSA, Volume 19, Issue 8, 1610-1620,

August 2002.
[19] El Gamal, A., “Trends in CMOS image sensor technology and design”, Electron Devices Meeting, IEDM '02, Digest.

International, pp. 805- 808, 2002.
[20] B. Schneider et al., “Image sensors in TFA (thin film on ASIC) technology,” in Handbook on Computer Vision and

Applications. Boston, MA: Academic, 1999.
[21] Topol, A.W.; Furman, B.K.; Guarini, K.W.; Shi, L.; Cohen, G.M.; Walker, G.F., “Enabling technologies for wafer-level

bonding of 3D MEMS and integrated circuit structures”, in Electronic Components and Technology Conference, 2004.
Proceedings. 54th, Vol. 1, June 2004, pp.: 931 - 938

[22] V. Suntharalingam, R. Berger, J. Burns, C. Chen, C. Keast, J. Knecht, R. Lambert, K. Newcomb, D. O'Mara, C. Stevenson,
B. Tyrrell, K.Warner, B. Wheeler, D.Yost, and D.Young, “CMOS image sensor fabricated in three-dimensional integrated
circuit technology”, in IEEE International Solid-State Circuits Conference, vol. 1, February 2005, pp. 356-357.

[23] M. Koyanagy, Y. Nakagawa, K. W. Lee, T. Nakamura, Y. Yamada, K. Park, and H. Kurino, “Neuromorphic vision chip
fabricated using three-dimensional integration technology”, in IEEE International Solid-State Circuits Conference, vol. 1,
February 2001, pp. 270-271.

[24] Stephan Benthien et al., “Vertically Integrated Sensors for Advanced Imaging Applications”, IEEE Journal of Solid-State

Circuits, Vol. 35, No. 7, pp. 939-946, July 2000.
[25] Tom R. Halfhill, “Faster Than a Blink”, In Stat Processor Watch, 02/12/2007

http://www.mdronline.com/watch/watch_abstract.asp?Volname=Issue%20%23021207&SID=1826
[26] http://www.solidstatescientific.com/a_home.html
[27] http://www.tezzaron.com
[28] www.ti.com
[29] J. Serra, Image Analysis and Mathematical Morphology. New York: Academic, 1982.
[30] Diamantaras, K.I.; Zimmermann, K.H.; Kung, S.Y., ”Integrated fast implementation of mathematical morphology

operations in image processing”, IEEE International Symposium on Circuits and Systems, Vol.2, pp. 1442 – 1445, 1-3 May
1990

[31] Edward R. Dougherty and Jaakko Astola, Mathematical Nonlinear Image Processing, Springer, 1992.
[32] M.C. Herbordt, J.B. Cravy, R. Sam, O. Kidwai, C. Lin, “A System for Evaluating Performance and Cost of Massively

Parallel Array Designs”, Journal of Parallel and Distributed Computing, No. 60 (2), pp. 217-246.
[33] L. Wanhammar, DSP Integrated Circuits, Academic Press, 1998.
[34] Foldesy, P.; Zarandy, A.; Rekeczky, C.; Roska, T., “High performance processor array for image processing”, IEEE

International Symposium on Circuits and Systems, ISCAS 2007, pp.: 1177 – 1180, 27-30 May 2007
[35] “Pixim Digital Pixel System”, Pixim Inc., 2005.
[36] Robert Johansson, Leif Lindgren, Johan Melander, and Bjrn Mller, “A Multi-Resolution 100 GOPS 4 Gpixels/s

Programmable CMOS Image Sensor for Machine Vision”, IEEE Workshop on Charge Coupled Devices And Advanced

Image Sensors, 2003.
[37] Tonia Morris, Erica Fletcher, Cyrus Afghahi, Sami Issa, Kevin Connolly, Jean-Charles Korta. "A Column-based Processing

Array for High-speed Digital Image Processing", IEEE ARVLSI, vol. 00, no. , p. 42, 20th 1999.
[38] S. Kleinfelder, SukHwan Lim, X. Liu, and A. E. Gamal,, “A 10 000 Frames/s CMOS Digital Pixel Sensor”, IEEE Journal

of Solid-State Circuits, Vol. 36, No. 12, pp. 2049- 2059., December 2001.
[39] https://www.opencores.org

