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§ 1. Introduction

In the algebra there are several kinds of structure theorems which can be for-
mulated without operations, using only homological tools. For instance, the well-
known fact that any universal algebra can be subdirectly embedded in a direct
product of subdirectly irreducible algebras, can be formulated in a pure category-
theoretical manner. Now the question arises what its dual statement asserts. Our
purpose is to give such a category which satisfies certain selfdual conditions, and
making use of these, to prove structure theorems and their dual statements. The
structure theorems themselves are, of course, well-known statements for algebraic
stuctures. However, their duals yield some theorems of unusual type. About the
possibility of the dualization there occurs some trouble. The most of the difficulties
is at finding selfdual conditions being necessary to prove the theorems. So we must
not make use of the condition ’every epimorphism is a normal one’ which is fulfilled
for groups, since its dual is false. Further the lattice of all congruence-
relations of any universal algebra is a so-called compactly generated lattice. This
fact plays a very important role in the proof of the theorem according to subdirect
embeddings of universal algebras, nevertheless compactly generating is not a seifdual
notion.

Applying the theorems proved for certain categories, we establish some par-
ticular theorems for rings, groups, modules, respectively.

In § 2 we give a detailed enumeration of the usual notions and assertions of
the theory of categories with respect to the importance of the dual notions and
assertions, moreover, we form a system of selfdual conditions which will be satisfied
by the category we are dealing with. § 3 is devoted to the investigation of subdirect
embeddings, subdirect irreducibility and to the dualization of those. In § 4 we applicate
the results developed before for rings, groups, modules and abelian groups. Most
of the applications are concerned with rings.

§ 2. Pireliminaries

Let % be a category. The objects and maps of € will be denoted by small Latin
and small Greek letters, respectively. By definition & satisfies the following con-
ditions:

(C)) If a:a—~b and B:b-c are maps, then there is a uniquely defined map
of:a—c, which is called the product of the maps o and f3;

(C,) If w:a—~b, B:b—c, yic—~d are maps, then (aff)y =a(fy) holds.

(C;) For each object a€¥ there is a map ¢,:a—a, called the identity map of
a such that for each o:b —~a and f:a —c we have og,=a, &, = p.
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The dual category of the category %, denoted by €*, consists of the same objects:
as %, and o*:b—a is a map of €* if and only if a:a—b is a map of 4. Clearly
(¢*)* =%, and if a statement P is true for category %, then there is a dual statement
P* which will be true for ¢*. In what follows we shall assume that the category
& satisfies some additional assumptions. These requirements will be selfdual which
means that both of € and €* satisfy them. So any statement P which can be proved
Jfor €, will be true for €* too. Hence statement P* is true for (¢*)* =4%.

Let H(a, b) denote the class of all maps of ¥ which map « into b. An object
0 €% is said to be a zero object if for any object a of € both of the classes H(a, o)
and H (o, a) contain only one map.

We assume that

(C,) € possesses zero objects.

Obviously also €* contains zero objects. We shall say that % is a category
with zero maps, if for any ordered pair of objects a, b there is a map g :a—b
such that for any a:c—a, f:b—~d we have aw,, = and 0, = w4, If € possesses
zero objects, then & is a category with zero maps (cf. KUROS—L1vSITS—SULGEIFER—
TsaLENKO [8]). If there is no doubt between which objects the zero map operates,

then that zero map will be shortly denoted by w.

A map a:a—c will be called a
monomorphism, if for any maps ¢:b —a,
o:b—a from gx=oa it follows o =oa.

A map o:c—a will be called an
epimorphism, if for any maps ¢:a—~b,
g:a—b from ap=uaoc it follows g=a0.

The notion of epimorphism is dual to that of monomorphism in the sense
that o is a monomorphism of ¥ if and only if «* is an epimorphism of #*.

The product of two mono-
morphism (if it exists) is again a mono-
morphism. If «f is a monomorphism,
then « is also a monomorphism.

The product of two epimorphisms.
(if it exists) is again an epimorphism.
If po is an epimorphism, then « is.
also an epimorphism.

The statements are well-known (cf. KUROS—Li1v8ITs—SULGEIFER—TSALENKO [8],.
or MitcHELL [9]). Now we are going to give the definitions of some usual notions.

together with their duals.

Let p,:by—~a and f,:b,—>a be
monomorphisms. We shall say that
(b,, Br)=(by, By), if there exists a map
¢ (which has to be a monomorphism)
such that of;=p,. If both of
(b2, Bs) = (by, By) and (by, By) =
= (b5, f,) hold then the pairs (b, ;)
and (b,, f,) are said to be equivalent.
If (b,, B,)=(b,, ;) but they are not
equivalent, then we shall write
(b,, By)<(by, B1). The -equivalence
classes of the relation thus defined will
be called the subobjects of a. For
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Let B,:a—by and f,:a—~b, be
epimorphisms. We shall say that
(B2, b)) =(B,, by) if there exists a map
¢ (which has to be an epimorphism)
such that f,0=§,. If both of (8,, b,) =
é(ﬂl ] bl) and (:Bl ’ bl)é(ﬁZa bl) hOld,
then the pairs (B, ;) and (B,, b,)
are said to be equivalent. If (8,, b,) =
=(p,, b,) but they are not equivalent,.
then we shall write (8,, b,)<(f,, by).
The equivalence classes of the relation
thus defined will be called the factor--
objects of a. For convenience the:
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convenience the equivalence class rep-
resented by the pair (b, f) will also
be denoted by (b, p).

A commutative diagram

k—*ud,
kzi l&x
d, - a

02

is called a pullback for 6, and §,, if
for any object c€% and commutative
diagram

c 71 "dl
ol ls
/2¢ % ¢1
d, -a

there exists a unique map y:c -~k such
that the diagram

c —> d;
A o2
d; i —> a

is again commutative.

A subobject (k,») of an object
ac¥ is said to be a kernel of the map
o:a—b, if

k—-0
o |
e
a -b

is a pullback diagram. Here the map
» has to be a monomorphism. Equi-
valently, the subobject (k, %) is the
kernel of o if (i) xa=w; (ii) for each
y:c—a satisfying yu=cw, there is a
unique map y”:c—~k such that y'x=y.
If (k,x) is a kernel of a, then we
shall write - Ker a =(k, %), or only
Ker o =k. The map x is called a normal
monomorphism and the subobject (k, %)
is a normal subobject or an ideal of a.

equivalence class represented by the
pair (B, b) will also be denoted by

(B, b).

A commutative diagram

o1

a _’dl
le ‘xl
' +
d2 = —’k

is called a pushout for 8, and 9,,
if for any object ¢ € ¢ and commutative
diagram

L

-~d,
Jzi

l)‘l
d2 72 Sip

there exists a unique map 7y:k—c
such that

8,

" a > d

,,-x/vn\;c

is again commutative.

A factorobject (%, k) of an object
ac% is said to be a cokernel of the
map o:b—a if

B—" g
ol
0 -k

is a pusout diagram. Here the map
» has to be an epimorphism. Equi-
valently, the factorobject (x, k) is the
cokernel of o if (i) ax=w; (ii) for
each y:a—c satisfying oy =, there is
a unique map 7":k—-c¢ such that
xy'=v. If (%, k) is a cokernel of a,
then we shall write Coker o =(x, k)
or only Coker o =k. The map x is
called a normal epimorphism and the
factorobject (%, k) is a normal factor-
object of a. ;
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These definitions correspond to those of MiTcHELL [9] and SurLmiski [13].
In KUrOS—Liv3ITs—SULGEIFER—TSALENKO [8] ideals and normal subobjects
(and so their duals) are not the same notions, but under conditions supposed below
they coincide.

In the category of groups every epimorphism is a normal one, but not every
monomorphism is a normal one (i.e. not every subgroup is a normal subgroup).
The product of two normal monomorphisms need not be a normal one.
Moreover, if o is a monomorphism, then Ker a=(o, w), but the converse state-
ment does not hold.

If aff is a normal monomorphism and f is a monomorphism, then o is a normal
monomorphism. (Cf. [8] § 8.3). The dual statement also holds for normal epi-
morphisms.

We assume that

(Cs) Every map has a kernel and a cokernel.

ProrosiTiON 1. Ker Coker Ker o =Ker =.

PrOOF. Let a:a—b be a map, and put Kera=(k, ¥) and Coker x =(4, /).
We have to prove Ker 1= (k, x). (i) Since (4, /)= Coker %, so by definition xA=w
holds. (ii) Let y:c—a be a map with yA=w. By definition of Coker x there is a
unique map y”:c —~k such that yp’»2=7y. Thus from yA=w we get the existence of
a unique map 7y~ satisfying y’» =y. Hence Ker A=(k, x) is valid.

Dualizing we get
ProrosiTioN 1% Coker Ker Coker o= Coker o.

We suppose that

(Co) The class of all subobjects and factorobjects of any object a is a set, and it
Jforms a complete lattice L, and L% with respect to the relation = defined for
subobjects and fuctorobjects, respectively.

(C,) For each object ac¥ the set of all normal subobjects and normal factor-
objects, forms a complete sublattice of L, and LY, respectively.

The intersection ) andunion U in thelattices L, and L} of the ideals and normal
factorobjects of the objects @ can be defined in the following way.

The intersection (k, %) of two
ideals (d,, &), (d,, 0,) is an ideal
such that

> d,

l |

d2

|
:

is a pullback diagram.
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The intersection (%, k) of two
normal factorobjects (8, d,), (5,, d,)
is a normal factorobject such that

4

a > dy
k

é :l &

d,

Y,

is a pushout diagram.
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The union (/, 2) of two ideals (d,, 0,), (d,, 0,) means an ideal for which

l

|

ds

d)

is a commutative diagram, and for any monomorphism y:c—a and diagram

ds

there is a monomorphism A":/—c¢ such that A’y=/], and the diagram becomes
commutative.

The union of two normal factorobjects is defined in the dual way.

These definitions of the unions correspond to the relation = defined on L,
and L}, respectively. However, in MITCHELL [9] the unions are defined in a somewhat
different manner.

PROPOSITION 2. The lattice L, of the ideals of an object a is dually isomorphic
to the lattice L} of the normal factorobjects of a in the following sense. Any ideal
(k, %) of L, is a kernel Ker o of a map o. The correspondence Ker oo ~Coker Ker o =
=(4,1) is one-to-one, further the relation (k,,x)=(k,,»,) holds if and only if
(A1, L) =4y, 1) is valid for their cokernels in L.

PrOOF. Proposition 1 implies that Ker o —Coker Ker o is a one-to-one cor-
respondence.

Assume (kq, #)=(k,,%,)€L,, and put Coker »;=(4, ), i=1,2. By
definition

()

is a pushout diagram. Since (k,, %,)=(k,, #,), so there is a map x":k; ~k, such
that x'%,=x,. Thus

| Ao
| I
} e
Ok

is a commutative diagram, and since (1) is a pushout, therefore there is a map
Ay =1, such that 4,4’=41;. This means (4,, [,)=(4,, ).
(
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Dualizing, (4,,/,)=(4,,1,) implies (k,, %;)=(k,,»,). Thus proposition 2
is proved. One can formulate this statement as follows:

(ks %) N (ko %) =(c, 7),
(ks %) Uk, %) =(d, )

are valid if and only if

(A1, 1)) U(A,, 1) =Coker y,

(ll ) li) m (lz s lz) = Coker o

are valid.

Let a:a—b be a map. If u:a—-m
is an epimorphism and v:m —b a mono-
morphism with puv=a, then the sub-
objects (m, v) of b will be called an
image of a (with the epimorphism ),
(m, v) is said to be a normal image,
if p is a normal epimorphism.

Let (k, ) be a subobject of the
object @ and let o:a—b be an epi-
morphism. If (m,v) is an image of

Let a:b—a be a map. If pyxm—a
is a monomorphism and v:b—m is an
epimorphism with vu=«, then the
factorobject (v, m) of b will be called
a coimage of o (with the monomorphism
W), (v,m) is said to be a normal coimage,
if u is a normal monomorphism.

Let (x, k) be a factorobject of
the object a and let a:b ~a be a mono-
morphism. If (v,m) is a coimage of

xa, then (me, v) will be called an
image of (k, ») by the epimorphism .

ok, then (v, m) will be called a coimage
of (%, k) by the monomorphism o.

A normal image (and normal coimage) is uniquely determined, but image (and
coimage) is not (cf. KUROS—Li1v31Ts—SULGEIFER—TSALENKO [8]). If (m, v) is an ima-
ge of b such that for every image (m’, V'), of b (m,v) = (m’,V’), then (m,v) will
be denoted by Im . Coim o will denote the dual notion.

In the category of groups or rings, for any map « both of Ima and Coim «
does exist, moreover, Im o is always a normal image, but Coim « need not be a
normal coimage.

Let us assume that

(Cg) For any map o there exist Im o and Coim o (they need not be normal).

(Cy) An im ageof an ideal by a normal epimorphism is always a normal ideal, and a
coimage of a normal factorobject by a normal monomorphism is always a normal
factorobject.

Obviously all axioms (C,)—(Cg) are satisfied in the category of groups or
rings. This category satisfies clearly the first condition of axiom (C,). Also the second
condition is fulfilled. Consider the coimage (v, M) of a normal factorobject (x, K)
by a monomorphism o:B—~A. Now the group (or ring) K is a factorgroup A/C
and B is a subgroup of A. By the Second Isomorphism Theorem B/B(\C is iso-
morphic to a subgroup B’/C of 4/C, and if B is a normal subgroup of 4, then B’/C
is also a normal one of A4/C.

PROPOSITION 3. If the map o has a normal image and Ker o= (o, w), then «
is a monomorphism.
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This statement is proved in KUROS—LIVSITS—SULGEIFER—TSALENKO [8]
§ 10,6.
Let g; (i€1) be a family of objects of the category %.

An object g is said to be a direct ‘ An object f is said to be a free
product of the objects a; (i€l), if product of the objects a; (i€1) if there
there are maps m;:g—a; (i€1) (called ‘ are maps ¢;:a;—~f (i€l) (called the
the projections of g onto a;) such that injections of a; into f) such that for
for each object #€% and for any | each object /€% and for any system
system of maps «;:h—a; (i€1), there 1 of maps o;:a;—~h (i€l) there is a
is a unique map (called the canonical | unique map (called the canonical map)
map) y:h—g such that ym;=a; for ‘ y:f—h such that ¢;y=o; for all i€l
all icl. g will be denoted by g= f will be denoted by f= > aio;)-
= J[ a(m). I o

i€l |

Assume that

(C,o) Every family of objects has a direct product and a free product.

Axiom (C,) implies that all the projections =; (injections ;) of a direct product
g= [[ a(x) (free product f= 2 a,-(g,.)] are epimorphism (monomorphisms).
iel i€l

Moreover, to every projection r; there is a normal monomorphism o¢;:a; ~g such
that o;m;=¢,, and o;1;=w (i #j) hold, and so (a;, ¢;) is an ideal of g (dually: to
every injection g; there is a normal epimorphism 7;:f—a; satisfying o;1;,=¢,,,
1= (i#])). These facts are proved in [8].

PROFOSITION 4. Let (k;, »;) (i€1) be a family of ideals of an object ac¥, and
let o;:a—a; be epimorphisms with Ker o; = (k;, »;) (i€ ). Consider the direct product
g= [] a(n,), and the canonical map y:a—~g(ym; =0, i€1). Then Ker y= ) (k;, ;)

3

iel
is valid.

For the proof we refer to SULINSKI [13], Proposition 2. 1. We omit to formulate
the dual statement.

An object a€¥ is said to be sub-
directly embedded in the direct product
g= ][] a(x;) if there exists a mono-

‘[ An object a€% is said to be a
|
i€l

transfree image of the free product

f= > a(e), if there exists an epi-
icl

morphism y:a—g such that all maps

o, =yn;:a—~a; (i€l) are normal epi-

morphisms (cf. [13]).

morphisms o: f—a such that all maps
B:= 0:;0::a;—~a (i€ I') are normal mono-
morphisms.

Let us remark that according to this definition generally g can not be embedded
subdirectly in itself, for the projections 7; need not be normal epimorphisms. The
dual consideration holds for transfree images.
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PROPOSITION 5. An object a€ € can be subdirectly embedded in the direct product
g= ]] a(w,) if and only if there is a family of ideals (k;, »;) (i€I) of a such that each

of them is the kernel of the normal epimorphism o;:a—~a; (i€l) and ﬂ (ki %) =
= (0, w) holds.
Dualizing we obtain
PROPOSITION 5*. An object a € ¥ is a transfree image of the free product f = Z a(0;)

if and only if there is a family of normal factorobjects (2;, 1) (i€1), of a such that
each of them is the cokernel of the normal monomorphism f;:a;—~a (icI) and
N (4, ) = (@, 0) holds.

icl

The statement of Proposition 5 is proved in SurLINskI [13] (Theorem 2, 3),
assumed that every epimorphism is a normal one. Thus we give a modificated proof
of this assertion.

Let a be subdirectly embedded in g by a monomorphism y:a—g. Now every
o;=ym; (i€1) is a normal epimorphism. If (k;, ;) =Ker o;, then by Proposition 4
we get Ker y= ) (k;,%;). Since y is a monomorphism, therefore [ (k;; %)=

icl iel
= (0, w) is valid.

Conversely, let (k;, »;) be a family of ideals of a such that (k;, »;) = Ker «;
where o;:a —a; are normal epimorphisms and [ (k;, %) = (0, @) holds. Then there

icl

isamap y:a—g such that ym; =0, for i€ I. Applying Proposition 4, we get Ker y=
— ﬂ(k,, %;) = (0, w). By Proposmon 2 we obtain U(a,,a,) = Coker w=(g,, a).

Conmder Im y=(m, v) with the eplmorphlsm u (1c v is a monomorphism and
y=wv). Since o; = pvr; and o; (i € I) is an epimorphism, so vr; is also an epimorphism.’
Thus (u, m)= (rx,, a;) holds for every i€1. Therefore we have (1, m)= U (o, ;)=

=(g, a). So (u, m) is equivalent to (g,, @), and u is a normal eplmorphlsm There-
fore Proposition 3 implies that y is a monomorphism, and Proposition 5 is proved.

An object a€% is said to be |

subdirectly irreducible, if the intersection

An object a€% is said to be
traiisfreely irreducible, if the inter-

all of its non-zero ideals is a non-zero section all of its non-zero normal factor-
ideal. objects is a non-zero normal factor-
| object.

According to Proposition 2, an object a € % is transfreely irreducible if and only
if the join of all its ideals #(a, ¢,) differs from (a, ¢,).

Finally, let us mention that the categories of all rings and groups, respectively,
and their dual categories fulfill axioms (C,)—(C,).
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§ 3. Subdirect embeddings and transfree images

It is well-known that any universal algebra can be subdirectly embedded in
a direct product of subdirectly irreducible universal algebras (G. BIRKHOFF [4]).
In the proof there is making use of the fact that the lattice of congruence-relations
of any universal algebra is compactly generated.

Let L be a complete lattice. An element k€ L is said to be a compact element,

if k=U I implies k= Ul for some finite JS1. The lattice is called compactly
iel
generated, if L is comp]ete and every element of L is a union of (an infinite number of’)

compact elements.

In his paper [13] SuLiXskI asked whether every object of a category satisfying
somewhat stronger conditions than (C;)—(C,,), can be subdirectly embedded in
a direct product of subdirectly irreducible objects. Concerning this problem for
a category % satisfying axioms (C,)—(C,,) we present

THEOREM 1. If the lattice L, of all ideals of an object a€ ¥ is compactly generated,
then a can be subdirectly embedded in a direct product g= [[a(n;) by a mono-
ier

morphism 7y such a way that every ym;=o; (i€l) is a normal epimorphism.
A normal factorobject a; of this decomposition is subdirectly irreducible if and only if
the following condition holds:

(I) For any normal factorobject (y, m)# (e, a;) of a; (which is clearly a factor-
object (x,, m) of a) there exists a normal factorobject (0, d) of a such that (o;, a;) >
>(5: d) -%(Xl s m)

REeMARK. Condition (I) seems to be complicated, but in the category of groups
and rings, respectively, (1) is trivially fulfilled, for Im « is always a normal image.
However, its dual will be a rather natural condition in Theorem 1* By Propo-
sition 2 condition (I) means that for any ideal (m’, 1) (0, ) of a;, there exists
an ideal (d’, 8") =Ker a; of a such that for its image (n’, v') by «; we have (0, w) #
', V=W, ).

Proor. Let (k, %) # (0, w) be a compact element of the lattice L, of all ideals
of an object a€%. Consider the set S, ={(/;, 4;)};e; of all ideals of a for which
(k, x) N (1, ) <(k, %). Let (I;, 2) <5, 4;)< -+ <(l,, 4,) <--- an ascending chain
of ideals from Sy, and denote U( , A,) by (lo,/lo) We will show that (k, )

N1y, 29) < (k, ). Otherwise it would be (k, %) =(/y, Ao) and since (k, %) is a compact
element of L,, so for an index n, a relation (k, ») =(/,,, 4,,) would hold in contra-
diction to the assumption. Making use of Zorn’s lemma we obtain the existence
of a maximal element (I, Z) of S,.

To any compact element (k;, »;) (i€ 1) of L,, consider a maximal element (I;, 1,)
of S,,. Now we shall show n(?i, 2;)=(0, ). On the contrary, suppose (I, )=

— ﬂ ({,, 1) # (0, w). Since L, 1s compactly generated, so (I, 1) is a unlon U (kyy )

of compact elements (k,, %,) # (0, ). The maximal elements (I, Z,) of S, belongmg
to (k,. #,) occur in the intersection representation of (/, A). Thus we get (k,, #,) =
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=", ¥)=(,, %) which implies (k,, %) N(,, )= (k,, %) contradicting the choice
of (71, Zt)

Now, consider («;, @;)=Coker 4,. Since (I;,Z;) is an ideal, thzrefore by
Proposition 1 we have Ker o;=(l;, 1;,)=Ker Coker Z;, further «; is a normal epi-
morphism for all i€ 1. Hence by virtue of Proposition 5 a can be subdirectly em-
bedded in a direct product g= [[ a(x;) by a monomorphism y:a—g such that

icl

every map ym; =u; is a normal epimorphism.

Finally, assume (I) for an object g;. Since (o;, a;) =>(J, d) so by Proposition 2
for their kernels we obtain (I;, ;)=Kero;<Kerd=(d’, 9'). By the
choice of (I;, 4;) it follows (k;, »;)=(d’, ") where (k;, »;) denotes the compact
element of L, belonging to (I;, Z;). Thus for the intersection (dy, d5) of all ideals
d, &)=, Z;) we have (k;, 5;)=(dg. d9). Again, by Proposition 2 for Coker ;=
=(%y, ko) and Coker 6 =(0o, dy) We get (%o, ko)=(00,do) and (x;, a)= (64, dy).
Hereby

(%0, ko) U (o, ;) =(%0, ko) = (90, do)

and so («;, a;))=>(d,, d,) follows. On the other hand for any normal factorobject
(%, m) of a; being a factorobject (y,, m) of a the relation

1> M=, d)= (00, dy) <(2;, a;)

is valid. Therefore the union of all normal factorobjects differs from (g,,, ;) and so
a; is indeed subdirectly irreducible. If a; is subdirectly irreducible, then (I) is trivially
fulfilled.

REMARK. From Theorem 1 one can easily obtain BIRKHOFF's well-known
theorem mentioned at the beginning of this chapter.
Dualizing Theorem 1 we obtain

THEOREM 1*. If the lattice L} of all normal factorobjects of an object ac ¥ is
compactly generated, then a is a transfree image of a free product f= 2 afo;) by
i€l

an epimorphism 7 such a way that every map 0;y=o;:a;—~a (i€1) is a normal mono-
morphism. A factor a; of this decomposition is transfreely irreducible if and only if
the following condition holds:

(I*) For any ideal (m, x) #(a;, &,,) of a; (which is clearly a subobject (m, y,) of a)
there exists an ideal (d, d) of a such that (m, y,)=(d, o) <(a;. ;).

Condition (I*) means that for the ideal (a;, ;) the object a; has exactly one
maximal ideal (d, §") (and (d, d) is an ideal of a (0 =0"w;)).
To give an interpretation of Theorem 1* we introduce the following concept.

An element k of a complete lattice L is called a co-compact element, if k= N/,
() 4
implies k= ﬂl for some finite JS /. The lattice L is said to be co-compactly

generated, if L is complete and every element of L is an intersection of co-compact
elements. Hence by Proposition 2 the condition ’the lattice L] of all normal factor-
objects of a is compactly generated’ should read °the lattice L, of all ideals of a
is co-compactly generated’. For comparison we mention that the lattice of all ideals
of a ring need not be co-compactly generated and the same holds for groups too.
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§ 4. Some applications

In what follows #x will denote the category of rings. As it was mentioned
before, @y satisfies axioms (C,;)—(C,,) and condition (I), furter the lattice L, of
all ideals of a ring 4 €% is compactly generated. Moreover, in %, every map has
a normal image. This means that Theorems 1 and 1* hold for z. On the other
hand, L, has not to be co-compactly generated and condition (I*) is generally
not fulfilled. However, there are some special but usual conditions which involve
the validity of (I*) or that L, is co-compactly generated. Thus Theorem 1* yields
some theorems of unusual type for rings.

First of all we remark that instead of a free product of rings we speak about
a free sum of rings. Further, if A; (i€7) is a family of rings, then their free sum
F is defined as the ring F consisting of all formal finite sums >’ n,p, where n, is an
integer and ¢, is a product of a finite number of elements from some A;. For com-
mutative rings, as it is well-known, free sum means the tensor product.

First, we show the existence of a ring the ideals of which do not form a co-
compactly generated lattice.

EXAMPLE. Let A be a commutative principal ideal-ring with unity and without
divisors of zero. (Such a ring is e.g. the ring of rational integers.) For any ideal
J#0 of A there exists an element a€ A with (a)=1. According to REpEr [10], Satz
188 and 189 in A there exist g.c.d. and irreducible elements. Let p 1 be an irreducible

element with (@, p)=1. Now (a)D0= ﬁ(p") is valid, but obviously (a)2(p*)
k=1

for any finite k. Thus (a@)=1/ is not a co-compact element of the lattice L,
of all ideals of A. Since I was chosen arbitrarily, so L, is not co-compactly generated.

Now we give some sufficient conditions which guarantee that a lattice L
should be co-compactly generated.

PROPOSITION 6. Every element [ of a lattice L is co-compact if and only if L satisfies
the descending chain condition. In particular, the lattice L, of a ring, abelian group
and R-module A satisfying the minimum condition for ideals, subgroups and R-modules,
respectively, is co-compactly generated.

PrOOF. Assume that each element of L is co-compact, and consider a descending
chain /,2/,2/;2... in L. Since also /= 1], is co-compact, so there exists an
index n, with /, =1/, and the chain is finite. The inverse statement is trivial.

PROPOSITION 7. If the ring A is a discrete direct sum of rings A; (i € 1) with minimum
condition for ideals and each A; has either a left or a right unity, then the ideal lattice
Ly of A is co-compactly generated.

ProoF. At first we prove that any ideal B of A is a discrete direct sum
B= 2’@ B; where B; is an ideal of A; for all i€l. Let b be an arbitrary element

of B then b is a finite sum b= Z’ a; of eclements a;€ A;. Let e; be , for instance,

a left unity of 4;. Then we obtam eb=a,€ B[ A; and obviously B;=B(A4; is
an ideal of 4. Thus we have B= > @ B,. Since A4; fulfils the minimum condition

Acta Mathematica Academiae Scientiarum Hungaricae 20, 1969



300 F. SZASZ AND R. WIEGANDT

for ideals, so there is a finite number of ideals of 4 containing K;=B;+ > & A;.
i=jel
Therefore K; is a co-compact element of the lattice L,. Further we have B= f@ Bii=
icl
= (| K; which means that L, is co-compactly generated. i
iel

We remark that a ring satisfying the condition of this proposition need not
fulfil the minimum condition for ideals.

Let us list some types of rings which fulfil condition (I*).

1) Every accessible subring of the ring is an ideal. A subring S is called acces-
sible in the ring A, if there exists a finite ascending chain of subrings S=S5,<
€ S,E...£85,=4 where each S; is an ideal of S;,, (i=1,2,...,n—1). Since
any ideal of an ideal is any accessible subring, so this condition involves condition
(I*) trivially. (Cf. ANDERSON—DIVINSKY—SULINSKI [1]).

2) Every subring of the ring is an ideal (Cf. REDEI [11]).

3) The ring is completely reducible, i.e. it is a discrete direct sum of simple
rings. In such a ring every ideal is a direct summand. Since any ideal of a direct
summand is an ideal also in the ring, so it follows condition (T*) (Cf. JAcoBson [7]
Chapter IV. 1).

4) Every subring of the ring is a direct summand (cf. F. SzAsz [14]).

5) Every ideal of the ring is idempotent. Let A be, namely, such a ring and K
an ideal of the ideal / of A. By a varied form of a lemma of ANDRUNAKIEVIC [2]
(see also Divinsky [6], Lemma 61), we obtain

K = R3CI-R-1 = I(K+ KA+ AK+ AKA)IS KS K,

where K denotes the ideal of A4 generated by the subring K. Thus K is an ideal in
A too.

Important subcases of 5) are the following:

6) The ring A is regular in the sense of VON NEUMANN, i.e. for any a€ A4 there
exists an element x€ 4 with a=axa. By definition, it is clear that the ideals of
such a ring are idempotent.

7) The ring A is weakly regular, i.e. every right ideal of 4 is idempotent (Cf.
BrowN—McCoy [5]).

8) The ring A is biregular, i.e. every principal two-sided ideal of 4 can be gener-
ated by a central idempotent element (Cf. ARENS—KAPLANSKY [3], BROWN—McCoy
[5] and ANDRUNAKIEVIC [2]). If 7 is an arbitrary ideal of the ring 4 and a€/, then
there is a central idempotent element c€A such that a€(a)=(c). Hence from
c€(c)*=(a)*< I? we obtain a€ I? for every a € I. Thus the ideals of 4 are idempotent.

Theorem 1* yields immediately

THEOREM 2. Let A be a ring of one of the types 1)—8). If the ring A is either
a ring with minimum condition for ideals or a discrete direct sum of rings with left
or right unity elements and the direct components satisfy the minimum condition for
ideals, then there exist ideals A; (i € I) of A such that
(1) A; has exactly one maximal ideal which is an ideal also of A for each i€l
(i) every A; is of the same type as A,
(iii) A is a homomorphic image of a free sum 2 B; where B;= A; holds for

el
all iel
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The statement that rings having one of the properties 1)—8) satisfy condition (ii),
is almost trivial.

As another application, consider the category % of all groups. Now conditions
(C,)—(C,,) are satisfied. Condition (T*)is fulfilled, for instance, if any normal subgroup
of a normal subgroup is a normal subgroup of the group, or briefly: normality is a
transitive relation among the subgroups of a group. (Cf. D. S. RoBINSON [12]). From
Theorem 1* it follows immediately

THEOREM 3. Let Lg; denote the lattice of all normal subgroups of a group G.
If Lg is co-compactly generated, and normality of subgroups of G is a transitive
relation, then there exist normal subgroups G; (i€ 1) of G such that
(i) each G; has exactly one maximal normal subgroup,
(ii) G is @ homomorphic image of a free product [[* F; where F,= G; holds for
i€l

every i€l

Let R be a ring, and consider the category %y of all R-modules. € fulfils con-
ditions (C;)—(C,,) as well as (I) and (I*). In %, free sum means discrete direct
sum. Hence from Theorem 1* we obtain

THEOREM 4. If the lattice Ly, of submodules of an R-modul M is co-compactly
generated, then there exist submodules M; (i€ I) of M such that M is a homomorphic
image of a discrete direct sum 2 @ N; where N, is isomorphic to M; and N; has

i

exactly one maximal submodule for each i€ 1.

Since any abelian group can be regarded as a module over the integers, so the
analogous statement to that of Theorem 4 is valid for abelian groups too.

(Received 17 June 1968)
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