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§ 1. Introduction

In the algebra there are several k inds o f structure theorem s which can  be for
mulated w ithout operations, using only homological tools. For instance, the well- 
known fact that any universal algebra can be subdirectly embedded in a direct 
product o f subdirectly irreducible algebras, can be form ulated in a pure category- 
theoretical manner. N ow  the question arises what its dual statement asserts. Our 
purpose is to give such a  category w hich satisfies certain selfdual conditions, and 
making use of these, to  prove structure theorems and the ir dual statements. The 
structure theorems themselves are, o f course, well-known statements for algebraic 
stuctures. However, their duals yield som e theorems o f unusual type. A bout the 
possibility o f the dualization there occurs some trouble. T he most of the difficulties 
is at finding selfdual conditions being necessary to prove the theorems. So we must 
not make use of the condition ’every epim orphism  is a norm al one’ which is fulfilled 
for groups, since its dual is false. Further the lattice o f all congruence- 
relations o f any universal algebra is a so-called com pactly generated lattice. This 
fact plays a very im portant role in the p ro o f of the theorem  according to  subdirect 
embeddings o f universal algebras, nevertheless compactly generating is n o t a selfdual 
notion.

Applying the theorems proved fo r certain categories, we establish some par
ticular theorems for rings, groups, m odules, respectively.

In § 2 we give a  detailed enum eration of the usual notions and assertions of 
the theory o f categories with respect to  the importance o f  the dual notions and 
assertions, moreover, we form  a system o f  selfdual conditions which will be satisfied 
by the category we are dealing with. § 3 is devoted to the investigation o f  subdirect 
embeddings, subdirect irred ucibility and to  the dualization o f  those. In § 4 we applicate 
the results developed before for rings, groups, module" and  abelian groups. Most 
o f the applications are concerned with rings.

§ 2. Prelim inaries

Let be a category. The objects an d  maps of H will be denoted by sm all Latin 
and small Greek letters, respectively. By definition (€ satisfies the following con
ditions:

(C ,) I f  a.:a-+b and ß:b-*c are maps, then there is a uniquely defined map 
aß:a-+c, which is called the product of the maps a and ß;

(C2) I f  or.a^b, ß:b -*c, y.c-*d are maps, then (aß)y = a(ßy) holds.
(C3) For each object a(((d there is a map ea:a-»a, called the identity map of 

a such that for each <x:b-*-a and ß\a-+c we have aea = a, eaß = ß.
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The dual category of the category <€, denoted by (6*, consists o f  the same objects 
as c6, and a* :h—a is a map o f if  and only if  cr.a—b is a m ap o f Clearly 
(%*)*  =  (é, and if  a  statement P is true for category (d, then there is a  dual statement 
P* which will be true for 41*. In  w hat follows we shall assume th a t the category 
4  satisfies some additional assum ptions. These requirements will be selfdual which 
means that both o f 4  and TS* satisfy them. So any statement P which can be proved 
for c6, will be true for 4* too. Hence statement P* is true for (4*)* = c6.

Let H(a, b) denote the class o f  all maps o f (6 which map a in to  b. An object 
о <141 is said to  be a  zero object i f  fo r  any object a o f  41 both o f the classes H(a, о) 
and  H{o, a) contain  only one m ap.

We assume th a t
(C4) 4  possesses zero objects.
Obviously also 'if* contains zero  objects. W e shall say th a t (6 is a category 

with zero maps, i f  fo r any ordered pair of objects a, b there is a m ap ыаЬ :a-*b 
such that for any a. :c-*a, ß:b-*d we have ouoah = a>cb and coabß = co^. I f  #  possesses 
zero objects, then 4  is a category w ith  zero maps (cf. K * —O^ — -I v ^ I » ^— � * 9 5 / I 0 / ——  

( ^ 29 / N 8O  [8 ]). I f  there is no d o u b t between which objects the zero map operates,, 
th en  that zero m ap will be shortly denoted by со.

A map a :a-*-c will be called a 
monomorphism, i f  fo r any maps g:b-*a, 
a :b ^a from got = act it follows g = o.

A  m ap <x:c-*a w ill be called an 
epimorphism, if for any  maps o:a -*b, 
c'.a^b from  aq = acr it follows g =  ov

The notion o f epimorphism  is dual to tha t o f  monom orphism  in the sense 
th a t a is a m onom orphism  of 4  i f  an d  only if a* is an epimorphism o f 4*.

The product o f two m o n o 
morphism (if it exists) is again a m o n o 
morphism. If y.ß is a m onom orphism , 
then a is also a m onom orphism .

The product o f tw o epimorphisms- 
(if it exists) is again an  epimorphism. 
I f  ßa is an epim orphism , then a !8  
also an epimorphism.

The statements are well-known (cf. K * —O^ —-I v ^ I » ^— �* 9 5 / I 0 / —— ( ^ 29 / N 8O  [8 ], 
o r M I » 3 6/ 9 9  [9]). N ow  we are go ing to  give the definitions o f some usual notions 
together with their duals.

Let ßl :b1-+a and ß2:b2-+a be 
monomorphism s. W e shall say th a t 
fb2, ßf) = (Ьх, ßf), i f  there exists a m ap  
е  (which has to be a  m onom orphism ) 
such that £>/?, =  ß2 ■ I f  bo th  o f  
(b2, ß2) ^ ( b l , ß 1) and (bu  ßt ) ^ 
— (b2, ß2) hold then the pairs (bt , ßt ) 
an d  (b2, ß2) are said to be equivalent. 
I f  (b2, /?2) ё ( 6 , , ßf) but they are no t 
equivalent, then we shall w rite 
(b2, /?2)<(Z>i, ßf). The equivalence 
classes of the relation thus defined will 
be called the subobjects of a. F o r

Let ß^-.a^-bx and  ß2:a—b2 be 
epimorphisms. We shall say that 
(ßn b f ) ^ {ß l , bj) if  there exists a map 
е  (which has to be an  epimorphism) 
such th a t /?г Q =  ß2. I f  bo th  of (ß2, b2) ^  
— (ßt> ^ i)  and (ßt , bt) s ( f 2,b2) hold, 
then the pairs (ßt , bf) and (ß2, b2) 
are said to  be equivalent. I f  (ß2, b2) S  
S ( j? i , bf) but they are no t equivalent,, 
then we shall write (ß2, bf l^ iß^,  bt). 
The equivalence classes o f the relation 
thus defined will be called the factor- 
objects o f  a. For convenience the
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convenience the equivalence class rep
resented by the pair (b, ß) will also 
be denoted by (b, ß).

A com mutative diagram

equivalence class represented by the 
pair (ß, b) will also be denoted by

(ß, b).
A com mutative diagram

4

i
d2- Ö2

öl

is called a pullback for (5X and  d2, if 

for any object c and com mutative 

diagram

У1
a l

4 Ö2 h
--*■  a

a-

di
c
к

is called a pushout for <5j and  S2, 
if  for any object c 6 and com m utative 

diagram

there exists a  unique m ap y:c-+k such 

tha t the diagram

is again commutative.

A subobject (k, x) o f  an object 

is said to  be a kernel o f  the map 

or.a^b, if

k - - 0

* i
a -

1

■ 4

there exists a unique map у :k — c 

such that

is again com mutative.

A factorobject (x, k) o f an  object 

is said to  be a cokernel o f  the 

m ap a \b-*a if

1 1'
0 ----- -к

is a pullback diagram. H ere the map 

x has to  be a  m onom orphism . Equi

valently, the subobject (к , x) is the 

kernel o f oc i f  (i) xa = co; (ii) for each 

y:c-+a satisfying ya, = co, there is a 

unique m ap y':c->-k such th a t y'x =  y. 
I f  (к, x) is a kernel o f a, then we 

shall write K er a =  (k, x), o r only 

K er a = k. The map x is called a  normal 

m onom orphism  and the subobject (к, x) 

is a normal subobject or an  ideal o f a.

is a pusout diagram . Here the m ap 

x has to be an  epimorphism. Equi

valently, the factorobject (x, k) is the 

cokernel o f a if  (i) a x = a>; (ii) fo r 

each y:a—c satisfying ay = со, there is 

a unique m ap y':k-+c such tha t 

xy' = y. If  (x, к) is a cokernel o f a, 

then we shall w rite Coker a  =  (x, к) 

o r only Coker a  =  k. The m ap  x is 

called a normal epimorphism an d  the 

factorobject (x, к) is a normal factor- 

object of a.
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These definitions correspond to those o f M т T C ; ± _ _  [9] and S ; _ т Я F ! т  [13]. 
In  6 ; 8 К F — 8 т ? F т T F — S ; _ G ± т F ± 8 — T F A _ ± Я ! К  [8 ] ideals and  normal subobjects 
(and so their duals) are not the  same notions, b u t under conditions supposed below 

they coincide.

In the category  of groups every epim orphism  is a norm al one, but not every 

m onom orphism  is a norm al one  (i.e. not every subgroup is a  normal subgroup). 

The product o f  two norm al m onom orphism s need n o t be a normal one. 

Moreover, if  a  is a m onom orphism , then K er a  =  (o, со), b u t the converse state 

ment does n o t hold.

If aß is a  norm al m onom orphism  and ß is a m onom orphism , then a is a norm al 

m onom orphism . (Cf. [8] § 8.3). The dual sta tem ent also holds for normal epi- 

morphisms.

We assume th a t

(C5) Every map has a kernel and a cokernel.

P 8 К с К F т T т К Я  D . Ker C oker K er a = Ker a .

P 8 К К F . L et a : a —Z> be a m ap, and pu t K er a = (k, x) and  Coker y. — (A, /). 
W e have to p rove K er k = (k, x). (i) Since (A, /) =  Coker x, so by definition x l  = a> 

holds, (ii) Let y:c—a be a m ap  w ith yX = m. By definition o f  Coker % there is a 

unique map y':c-+k such th a t y'x = y. Thus from  y). = m we get the existence o f  

a  unique map y' satisfying y'x = y. Hence K er A =  (k, x) is valid.

Dualizing we get

P 8 К с К F т T т К Я  D * . Coker K er Coker a =  C oker a .

We suppose th a t

(C6) The class of all subobjects and factorobjects of any object a is a set, and it 
forms a complete lattice La and L* with respect to the relation S  defined for 
subobjects and factorobjects, respectively.

(C7) For each object affié the set of all normal subobjects and normal factor- 
objects, forms a complete sublattice o f La and L*, respectively.

The intersection fj and un ion  U in the lattices La and L* o f the ideals and norm al 
factorobjects o f  the objects a can  be defined in the following way.

The intersection (k, x) o f  two 
ideals (d{, 5Х), (d2, <52) is an  ideal 
such that

The intersection (x, k) o f two 
norm al factorobjects (S1,dj), (S2, d2) 
is a  norm al factorobject such tha t

is a pullback diagram . is a pushout diagram.
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The union (/, A) o f two ideals (dl , dj), (d2, df) means an ideal for which

>- n

is a com mutative diagram, and for any m onom orphism  y :c —a and diagram

there is a monom orphism  2 ': /—c such that A'y = A, and the diagram  becomes 
commutative.

The union o f two norm al factorobjects is defined in the dual way.
These definitions o f the unions correspond to the relation defined on La 

and L*, respectively. However, in M í » 3 6 / 9 9  [9] the unions are defined in a somewhat 
different manner.

P—ä : ä ^ í » í ä =  2 . The lattice La of the ideals o f an object a is dually isomorphic 
to the lattice L* of the normal factorobjects o f a in the following sense. Any ideal 
(k, x) o f La is a kernel K er a. o f a map a. The correspondence Ker a — Coker Ker a =  
=  (2 ,/) is one-to-one, further the relation (kx, x f ) S ( k 2, x2) holds i f  and only i f  

( 2 j , 11)ш(Х2, If) is valid for their cokernels in L*.

P —ä ä 0 . Proposition 1 implies tha t Ker a —Coker Ker a is a one-to-one cor
respondence.

Assume (kt , x 1) ^ ( k 2, x 2)(LLa, and put Coker х; =  (Д;, /;), /= 1 ,2 .  By
definition

Лг,— a

<■ > ! b
0 — I,

is a pushout diagram. Since (kl , x f ) S {k2, xf), so there is a m ap x ':k t --k2 such 
tha t x'x2= x l . Thus

* r -  
0 ----- - / 2

is a com mutative diagram, and since (1) is a pushout, therefore there is a m ap 
X':lx —/2 such that Л1Л' = Х2. This means (Ax, f )  ̂ (A2, l2).
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D ualizing, (A1, f ) ^ ( A 2, l2) implies (к1г x f ) S ( k 2, x2). Thus proposition 2 
is proved. O ne can form ulate this statem ent as follows:

(k1, x 1) f ) (k2, x 2) = (c, у),

(k1, x 2)U(k2, x 2) = (d,S)
are valid i f  and only if

0*i, li) U ( i 2 , >i) = Coker y,

(Á j, If) П (A2, If) =  Coker <5
are valid.

Let oc.a-+b be a m ap. I f  p:a-*m 
is an epimorphism  and v:m-*b a m ono
morphism w ith pv = x, then the sub
objects (m, v) of b will be called an 
image o f a  (w ith the epim orphism  p), 
(m, v) is said to be a normal image, 
if p is a norm al epimorphism.

Let (к, x) be a subobject of the 
object a and  let or.a^-b be an epi
morphism. I f  (m, v) is an image of 
xx, then (m, v) will be called an 
image of (k, x) by the epimorphism a.

Let а :й —а be a map. I f  p:m-*a 
is a monom orphism  and v:b->m is an 
epimorphism  with vp = a, then the 
factorobject (v, m) of b will be called 
a coimage o f x (with the monomorphism  
p), (v,m) is said to be a normal coimage, 
if p is a norm al monomorphism.

Let (x, k) be a factorobject of 
the object a and let a : / ) ^ a b e a  m ono
morphism. I f  (v, m) is a coimage of 
ak, then (v, m) will be called a coimage 
of (x, к) by the monomorphism a.

A norm al image (and norm al coimage) is uniquely determined, but image (and 
coimage) is n o t (cf. K * —ä ^ — L í v ^ í » ^— S* 9 5 / í 0 / —— T ^ 2 9 / = 8 ä  [8]). I f  (m, v) is an ima
ge of b such tha t for every image (m', v'), o f b (m, v) s  (in', v'), then (m, v) will 
be denoted by Im a. Coim  a will denote the dual notion.

In the category o f groups or rings, fo r any m ap a both  of Im a and Coim a 
does exist, moreover, Im  a is always a norm al image, bu t Coim a need not be а 
normal coimage.

Let us assume that

(Cg) For any map ot there exist Im a  and Coim a (they need not be normal).
(C9) An im ageof an ideal by a normal epimorphism is always a normal ideal, and a 

coimage o f a normal factorobject by a normal monomorphism is always a normal 
factorobject.

Obviously all axioms (C j)—(C8) are satisfied in the category o f groups or 
rings. This category satisfies clearly the first condition o f axiom (C9). Also the second 
condition is fulfilled. Consider the coimage (v, M) o f a  norm al factorobject (x, К) 
by a m onom orphism  a :B~*A. Now the group (or ring) A  is a factorgroup AjC 
and В is a subgroup o f A. By the Second Isom orphism  Theorem B/B(jC  is iso
morphic to  a  subgroup B j C  o f A/C, and if  В  is a norm al subgroup of A, then BjC  
is also a norm al one o f A/C.

P—ä : ä ^ í » í ä =  3. I f  the map x has a normal image and Ker a =  (о, a>), then a 
is a monomorphism.
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This statement is proved in K * —ä ^ —L iv sn s—S* 9 5 / í 0 / —— T ^ 29 / = 8ä  [8]
§  10,6.

Let ű; (i f l )  be a family o f objects of the category c€.

A n object g is said to be a direct 
product of the objects a{ (i f l ) ,  if 
there are maps np-g—ai ( i f l )  (called 
the projections o f g onto a j such that 
fo r each object h f  T  and for any 
system of maps a; :/i—a; ( i f l ) ,  there 
is a unique m ap (called the canonical 
map) y .h ^g  such that ул:г =  а г for 
all i f l .  g will be denoted by g =
=  П ъ(щ)-

i€ I

Assume that

A n object /  is said to be a free 
product o f the objects a; ( i f l )  if there 
are maps oi :at -*f ( i f l )  (called the 
injections of ö; in to  / )  such that for 
each object h f  T  and  for any system 
o f m aps а; :аг — /7 ( i f i )  there is a 
unique map (called the canonical m ap) 
y : f —h such that Qiy = ai for all i f l .

/  will be denoted by f  = 2  ai(Qi)-
i£I

(C, 0) Every family of objects has a direct product and a free product.

Axiom (C4) implies tha t all the projections 7r; (injections Q-j) o f  a direct product 
g = J J a i(ni) (free product f = 2 ai(0i)) are epimorphism (m onomorphisms). 

igr ( ai  )
M oreover, to every projection 7гг there is a norm al monom orphism  aiMi-'-g such 
tha t <т;7г( =  8а. and oinj = w (Í7íj)  hold, and so (ah at) is an ideal o f g (dually: to  
every injection Qt there is a normal epim orphism  т; : / —аг satisfying Q{z 
Qfi = m (i yij j). These facts are proved in [8].

P—ä: ä^ í » í ä=  4. Let (kh xj) ( it I) be a family of ideals o f an object a f T ,  and 
let y.j:a-*■ a, be epimorphisms with Ker a; =  (L; , xt) ( i f f  ). Consider the direct product 
g= f j  ajnj ,  and the canonical map y:a^-g(yni = ai, i f  I). Then K e ry  =  [)(k{,xj)

iil iil
is valid.

For the p roo f we refer to  S* 9 í = ^ 8 í  

the dual statement.

A n object a f ^  is said to be sub- 
directly embedded in the direct product 
g — ]J afnj) if  there exists a mono- 

i d
m orphism  y . a ^ g  such th a t all maps 
а ; =  yrc; : а а ; ( i f i )  are norm al epi
morphism s (cf. [13]).

Proposition 2. 1. W e om it to form ulate

An object a f ^  is said to be a 
transfree image o f  the free p roduct
f  = 2  ai(ki)> if  there exists an epi- 

ier
morphisms o\ f -*a  such that all m aps 
ßi =  QPi 'Mf — a (i f  I)  are normal m ono
morphisms.

[13],

Let us rem ark that according to this defin ition generally g can not be em bedded 
subdirectly in itself, for the projections щ need not be norm al epimorphisms. The 
dual consideration holds fo r transfree images.
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P—ä : ä ^ í » í ä =  5. An object a £ can be subdirectly embedded in the direct product 
g= JJ a f n j  if and only if there is a family o f ideals (kh xj) (i £ I) of a such that each 

iil
of them is the kernel o f the normal epimorphism apa — a, (i £ I) and f | (kb x j  =

id
=  (о, со) holds.

D ualizing we obtain

P—ä : ä ^ í » í ä =  5*. An object a£fk is a transfree image o f the free product f=  2  ai(ei)
id

if and only i f  there is a family o f normal factorobjects (j.h f)  (i £ /), of a such that 
each of them is the cokernel o f the normal monomorphism ß(: a ,-*a ( i f  I) and 
p| (Ä,-, lt) =  (cu, о) holds, 

iil
The statem ent of P roposition 5 is proved in S* 9 í = ^ 8í  [13] (Theorem 2, 3), 

assumed th a t every epim orphism  is a norm al one. Thus we give a modificated p ro o f 
o f this assertion.

Let a be subdirectly em bedded in g by  a monom orphism  y:a-*g. N ow  every 
a .  =  yni (i £ l)  is a normal epimorphism. I f  (kt , x.j —  Ker at ,  then by Proposition 4 
we get K er у = f) (kt, xj). Since у is a monom orphism , therefore f |  (kp. x j  = 

id  id
=  (о, со) is valid.

Conversely, let (kh x j  be a family o f  ideals of a such that (kh xj) =  K er oc( 
where apa-»at are normal epimorphisms and f | (kt, x j  = (о, со) holds. Then there

id
is a map у :a -+g such tha t уп, = <x; for i £ I. Applying Proposition 4, we get K er у — 
= f | (kf, xj) = (о, со). By Proposition 2 we obtain U («,> ai) =  Coker со =  (ea, a).

i£I ' '
Consider Im y = ( f f l ,v )  w ith the epim orphism  p (i.e. v is a  monom orphism  and 
у = / í ? ) .  Since a f =  / iV 7 t ;  and at (i £  I) is an epimorphism, so vn; is also an epim orphism . 
Thus (p, m) S  (ah a,) holds fo r every i £ I. Therefore we have (p, m) 5  U (ai5 aj) —

id
= (ea, a). So (p, m) is equivalent to (ea, a), and  p is a norm al epimorphism. T here
fore Proposition 3 implies th a t у is a m onom orphism, and Proposition 5 is proved.

An object a f  (6 is said  to  be 
subdirectly irreducible, if the intersection 
all o f its non-zero ideals is a non-zero 
ideal.

An object a f ű  is said to  be 
transfreely irreducible, if the in ter
section all of its non-zero normal factor- 
objects is a non-zero normal factor- 
object.

According to Proposition 2, an object a £ & is transfreely irreducible if and only 
if  the jo in o f  all its ideals (a, ea) differs from  (a, ea).

Finally, let us mention th a t the categories o f all rings and groups, respectively, 
and their dual categories fulfill axioms (C ,)— (C 10).
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§ 3. Subdirect embeddings and transfree images

I t is well-known tha t any universal algebra can be subdirectly embedded in 
a  direct product o f subdirectly irreducible universal algebras (G. B í —8 6 ä 0 0  [4]). 
In the proof there is making use of the fact that the lattice o f congruence-relations 
o f any universal algebra is compactly generated.

Let L be a complete lattice. An element k £ L  is said to  be a compact element, 
if  /cS  U h implies к ^  U f  for some finite JQI.  The lattice is called compactly 

t a  j € j
generated, if L is complete and every element o f L is a union o f (an infinite number of) 
compact elements.

In his paper [13] S* 9 » = ^ 8 í  asked whether every object o f  a category satisfying 
somewhat stronger conditions than (C ,)—(C 10), can be subdirectly embedded in 
a direct product o f subdirectly irreducible objects. Concerning this problem for 
a  category '€ satisfying axioms (С х)—(C 10) we present

T 6/ ä —/ 4  1. I f  the lattice La of all ideals of an object aC-fF is compactly generated, 
then a can be subdirectly embedded in a direct product g=  J]ajnj  by a mono

i d
morphism у such a way that every ynt = a ; ( i£ / )  is a normal epimorphism. 
A normal factorobject at o f this decomposition is subdirectly irreducible if and only i f  
the following condition holds:

(I) For any normal factorobject (j, m) (sai, a j o f at (which is clearly a factor- 
object (xi ,m) o f a) there exists a normal factorobject (5, d) o f a such that (ah a j >
>(<5, d) (̂xi,m).

R / 4 2 —8 . Condition (I) seems to be complicated, but in the category of groups 
and rings, respectively, (I) is trivially fulfilled, for Im  a is always a norm al image. 
However, its dual will be a rather natural condition in Theorem 1*. By Propo
sition 2 condition (I) means that for any ideal (m', x j  А (о, со) o f at, there exists 
an ideal ( if , S j s  Ker a ; o f a such that for its image (n', v j  by a( we have (о, со) ^  *{n\ v') ==(«', /)■

P —ä ä 0 . Let (к, x) ^  (о, со) be a com pact element of the lattice La o f all ideals 
o f an object a£4>. Consider the set Sk — {(lj, Xj)}j(J o f all ideals o f a for which
(k,x)0( l j ,  kj)<(k,x).  Let ( f ,  Xj<.(l2, A2) < ---- =(/„, Ял) <  an ascending chain
o f ideals from  Sk, and denote U  (4> K) by (/0 , 20). We will show that (к, x) Г)

n

П (/0 , / 0) <  (k, x). Otherwise it would be (k, x) =  (/0, A0) and since (k, x) is a com pact 
element o f La, so for an index n0 a relation (k, x)s(l„0, /,„0) would hold in contra
diction to the assumption. M aking use o f Z orn ’s lemma we obtain the existence 
o f a maximal element (l, X) o f Sk.

To any com pact element (kh x j  (i€ I)  o f La, consider a maximal element (/;, Xj 
o f Sk.. Now we shall show f] (/;, l j  = (o, К_ ). On the contrary, suppose ( / ' , ! ')  =  

‘ E /

=  f | (/,-, I jyi (o,  со). Since La is compactly generated, so ( f ,  Xj is a union U (k„ x j  
id  . ter

o f compact elements (k, , x j  ^  (о, m). The maximal elements (/„ Xj o f Skt belonging 
to  (k, . x j  occur in the intersection representation o f (/', Xj. Thus we get (k„ x j  s
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S  (/', A') S  (/„ 1,) which implies (kt , xt) П (/,, I ,) =  (k„ xt) contradicting the choice 
o f Q„ l t).

Now, consider (аг, aj) =  Coker Аг. Since is an ideal, therefore by
Proposition 1 we have K er a ; =  (/; , 1;) =  Ker Coker Xt, farther a, is a norm al epi- 
morphism for all /'€ /. Hence by virtue o f Proposition 5 a can be subdirectly em 
bedded in a direct p roduct g= ]J afnj) by a monom orphism  y.a-<-g such that

H I

every m ap yni =ai is a norm al epim orphism .
Finally, assume (I) fo r an object a,. Since (a;, aj)>(d, d) so by Proposition 2 

for their kernels we obta in  (7f, A;) =  Ker а г <  K er ő = (d\ 5'). By the 
choice o f ( /( ,! ;)  it follows (kh xj) = (d \ 5') where (kt , xj) denotes the com pact 
element o f La belonging to  (7;, Xj). Thus for the intersection (d'0, ö'0) o f all ideals 
(d', <5') > ( / ;, !•) we have (kh xt)^(d'0. S'0). Again, by Proposition 2 for Coker xt = 
=(x0, k 0)and  Coker <50 =  (<50, d0) we get (x0, k0) £(<50, d0) and (a„ a,)& (d0, d0). 
Hereby

(x0> k0) U (аг, «,)>(>«о, г̂0) =  (<50 , rf0)

and so (аг, aj)>(ö0, d0) follows. O n the other hand for any norm al factorobject 
(y, m) o f at being a factorobject ( y , , m) o f  a the relation

(Xi, d ) ^ ( ö o ,  </0 ) < 0 . - >  « i )

is valid. Therefore the un ion  o f all no rm al factorobjects differs from  (еа(, аг) and so 
at is indeed subdirectly irreducible. I f  a, is subdirectly irreducible, then (I) is trivially 
fulfilled.

R / 4 2 —8 . From Theorem  1 one can easily obtain B í —8 6 ä 0 0 ’ ^  well-known 
theorem mentioned at the beginning o f th is chapter.

Dualizing Theorem 1 we obtain

T 6/ ä —/ 4  1*. I f  the lattice L„ o f all normal factorobjects o f an object adjtf is 
compactly generated, then a is a transfree image of a free product f — fff afgj) by

H I
an epimorphism у such a way that every map gty = a ; :at -*■ a (i£ I) is a normal mono
morphism. A factor at o f this decomposition is transfreely irreducible if and only if 
the following condition holds:

(I*) For any ideal (m, x)A(ah ea)  o f ал (which is clearly a subobject (m, y ,) o f a) 
there exists an ideal (d, d) o f a such that (m, у ,) ^  (d, <5)<(u;, aj).

Condition (I*) means tha t for the ideal (at , aj) the object at has exactly one 
maximal ideal (d, S') (and (d, <5) is an ideal o f a {d = (Yy.i)).

To give an in terpretation o f Theorem  1* we introduce the following concept. 
A n element к of a com plete lattice L is called a co-compact element, if  k ^  П /г

H I

implies к S  f j f  for some finite JQ l. The lattice L  is said to be co-compactly
H J

generated, if  L is complete and every element o f L is an intersection o f co-com pact 
elements. Hence by Proposition 2 the condition ’the lattice L * o f all norm al factor- 
objects o f a is compactly generated’ should read "the lattice La o f all ideals o f a 
is co-compactly generated'. F o r com parison we mention that the lattice o f all ideals 
o f  a ring need not be co-com pactly generated and the same holds for groups too.
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§ 4. Some applications

In w hat follows will denote the category of rings. As it was mentioned 
before, Ш R satisfies axioms (C,)—(Сю ) and  condition (I), furter the lattice LA o f 
all ideals o f a ring A £rdR is compactly generated. Moreover, in  (6 R every m ap has 
a normal image. This means that Theorem s I and 1* hold for R. On the other 
hand, L :  has not to be co-compactly generated and condition (I*) is generally 
not fulfilled. However, there are some special but usual conditions which involve 
the validity o f (I*) or tha t LA is co-compactly generated. Thus Theorem 1* yields 
some theorems of unusual type for rings.

First o f all we rem ark tha t instead o f a free product o f rings we speak about 
a free sum o f rings. F u rther, if At ( /£ / )  is a family o f rings, then their free sum 
F is defined as the ring F  consisting o f all formal finite sums £  n /P r  where nr is an 
integer and cpr is a product o f  a finite num ber o f elements from  some At. F o r com 
mutative rings, as it is well-known, free sum means the tensor product.

First, we show the existence of a ring the ideals of which do not form  a co- 
compactly generated lattice.

E x 2 4 : 9 / . Let A be a commutative principal ideal-ring w ith unity and w ithout 
divisors o f zero. (Such a ring is e.g. the ring of rational integers.) For any ideal 
J V 0 of A there exists an element a£A  w ith (a) — I. According to R é < / í  [10], Satz 
188 and 189 in A there exist g.c.d. and irreducible elements. Let p ^  1 be an irreducible

element w ith (a, p) = 1. Now (а ) э О =  f | (Pk) is valid, bu t obviously (a)^(pk)
k = 1

for any finite k. Thus (a)=I  is no t a co-compact elem ent of the lattice LA 
o f all ideals o f A. Since I  was chosen arbitrarily, so LA is not co-compactly generated.

N ow  we give some sufficient conditions which guarantee that a lattice L 
should be co-compactly generated.

P —ä : ä ^ í » í ä =  6. Every element l o f a lattice L is co-compact if  and only if  L satisfies 
the descending chain condition. In particular, the lattice LA o f a ring, abelian group 
and R-module A satisfying the minimum condition for ideals, subgroups and R-modules, 
respectively, is co-compactly generated.

P —ä ä 0 . Assume tha t each element o f L is co-compact, and consider a descending 
chain /j 3 12 2  /3 3 . . .  in L. Since also l0= П /„ is co-compact, so there exists an 
index n0 w ith /0 =  /„0 and the chain is finite. The inverse statem ent is trivial.

P —ä : ä ^ í » í ä =  7. I f  the ring A is a discrete direct sum of rings At (i£ I) with minimum 
condition for ideals and each A, has either a left or a right unity, then the ideal lattice 
L:  o f A is co-compactly generated.

P —ä ä 0 . A t first we prove that any ideal В o f A is a discrete direct sum 
B= 2 1® Bt where Ő, is an ideal o f At for all i € I. Let b be an arbitrary element

i € Г
of B, then b is a finite sum  b= £  at ° f  elements а г£ Л г. Let e; be , for instance,

a j
a left unity of At. T hen we obtain eib = ai£BC\Ai and obviously Б; =  .бГ Ы ( is 
an ideal o f A. Thus we have В — ^ ® £ ;. Since At fulfils the minimum condition
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fo r ideals, so there is a finite num ber o f ideals of A containing Kt =  Д  +  ® A,.
i^jZI

Therefore Kt is a  co-com pact elem ent o f the lattice LA. Further we have B ~ ^ l ®Bi =
<€/

— fl Kt which means that LA is co-compactly generated. 
mi

We rem ark tha t a ring satisfying the condition of this proposition need not 
fulfil the m inim um  condition fo r ideals.

Let us list some types o f rings which fulfil condition (I*).
1) Every accessible subring o f the ring is an ideal. A subring S is called acces

sible in the ring A, if there exists a finite ascending chain o f subrings S = S l Q 
^ S 2<=--- = Sn = A where each St is an ideal o f Si+l ( /=  1, 2, ..., n — 1). Since 
any  ideal of an ideal is any accessible subring, so this condition involves condition 
(I*) trivially. (Cf. A = < / —̂ ä = —D í �í = ^ 8y —S* 9 í = ^ 8í  [1]).

2) Every subring of the ring is an ideal (Cf. Ré< / í  (11]).
3) The ring is completely reducible, i.e. it is a  discrete d irect sum of simple 

rings. In such a  ring every ideal is a direct sum mand. Since any ideal o f a direct 
summand is an ideal also in the ring, so it follows condition (I*) (Cf. J23 äÁ̂ ä=  [7] 
C hapter IV. 1).

4) Every subring of the ring is a direct summand (cf. F. Sz á ^ � [14]).
5) Every ideal of the ring is idempotent. Let A be, namely, such a ring and К  

an ideal of the ideal /  o f A. By a varied form o f a lemma o f A = < —* = 28í / v í 3  [2] 
(see also D í v í = ^ 8y  [6], Lemma 61), we obtain

К = K 3<=I-K-I = I (K+KA+AK+AKA) IQKQK,

w here К  denotes the ideal o f A generated by the subring K. Thus К  is an ideal in 
A too.

Important subcases o f 5) are the following:
6) The ring A is regular in the sense of v ä =  N / * 42= = , i.e. for any a£A there 

exists an element x£A with a = ax a. By definition, it is clear th a t the ideals o f 
such  a ring are idempotent.

7) The ring A is weakly regular, i.e. every right ideal o f A is idempotent (Cf. 
B—ä�= —M 3 Cäy  [5]).

8) The ring A is biregular, i.e. every principal two-sided ideal o f  A can be gener
a ted  by a central idem potent elem ent (Cf. A —/ = ^ —K 2: 9 2= ^ 8y  [3], B—ä�= —M 3 Cäy
[5] and A= < —* = 28í / v í 3  [2]). I f  /  is an  arbitrary ideal o f the ring  A and a £ /, then 
there is a central idempotent elem ent с £ A such that a£(a) = (c). Hence from 
c 6 (c)2 =  (a)2 £  I 2 we obtain a£ l 2 fo r every a £ /. Thus the ideals o f  A are idempotent.

Theorem 1* yields immediately

T6/ ä—/ 4  2. Let A be a ring o f one of the types 1)— 8). I f  the ring A is either 
a ring with minimum condition for ideals or a discrete direct sum o f rings with left 
or right unity elements and the direct components satisfy the minimum condition for 
ideals, then there exist ideals At (/ £ / )  of A such that

(i) AI has exactly one maximal ideal which is an ideal also o f A for each i £ I.
(ii) every A; is o f the same type as A,

(iii) A is a homomorphic image o f a free sum Bb where /J; F í A; holds for
i Z I

all i£ I.
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The statement that rings having one of the properties 1)— 8) satisfy condition (ii), 
is almost trivial.

As another application, consider the category 4 G o f all groups. N ow conditions 
(C ,)—(C ,0) are satisfied. Condition (I*) is fulfilled, for instance, if  any normal subgroup 
o f a norm al subgroup is a norm al subgroup o f  the group, or briefly: norm ality is a 
transitive relation among the subgroups o f a  group. (Cf. D. S. R ä Á í = ^ ä =  [12]). From  
Theorem 1* it follows immediately

T 6/ ä —/ 4  3. Let La denote the lattice o f all normal subgroups of a group G. 
I f  L E  is co-compactly generated, and normality of subgroups o f G is a transitive 
relation, then there exist normal subgroups Gt (/ £1) of G such that

(i) each Gt has exactly one maximal normal subgroup,
(ii) G is a homomorphic image of a free product / / *  F{ where Ft =  Gt holds for

ier
every id I.

Let R  be a ring, and consider the category 41R o f all /^-modules. 4)R fulfils con
ditions (C ,)—(C 10) as well as (I) and (I*). In  4 R free sum means discrete direct 
sum. Hence from Theorem 1* we obtain

T 6/ ä —/ 4  4 . I f  the lattice LM of submodules of an R-modul M  is co-compactly 
generated, then there exist submodules Mi (i d / )  of M such that M  is a homomorphic 
image of a discrete direct sum 2  where Nt is isomorphic to Mt and Nt has

iil
exactly one maximal submodule for each idL

Since any abelian group can be regarded as a module over the integers, so the 
analogous statement to that of Theorem 4 is valid for abelian groups too.

( Received 17 June 1968)

M TA  M A TEM A TIK A I K U TA TÓ  IN T ÉZE TE , 
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