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Throughout this paper by a ring we mean a not necessarily commutative but
associative ring and by the radical of the ring we mean the Jacobson radical [6].
Following J. vOoN NEUMANN [14] we shall say that the ring 4 is regular if for every
element a of A there exists an element x in 4 such that axa=a. Il is well known
that the class of regular rings plays a very important role in the abstract algebra,
in the theory of Banach algebras (cf. C.E. RICkaART [17]) and in the continuous
geometry [15]. An interesting result is that the ring of all linear transformations
of a vector space over a division ring is a regular ring. Some ideal-theoretical charac-
terizations of regular rings were obtained by L. KovAcs [8] and J. Lum [12]. The
regularity criterion of KovAcs reads as follows. An associative ring A4 is regular
if and only if the relation
@)) RNL =RL

holds for every left ideal L and for every right ideal R of 4,

Following E. HiLLE [5] a ting A is called a fwo-sided ring if every one-sided
(left or right) ideal of A4 is a two-sided ideal of A. Clearly every division ring is a
two-sided ring, and so is every commutative ring. It is easy to see that there exists
a two-sided ring which is neither commutative nor a division ring. Two-sided rings,
called duo rings, were investigated by E. H. FELLER [3] and G. THIERRIN [22]. Thierrin
proved, using the classical method of N. H, McCoy [13], that every two-sided ring
can be represented as a subdirect sum of subdirectly irreducible two-sided rings.

A. ForsyTHE and N. H. McCoy [4] proved the assertion that a nonzero regular
ring A is a subdirect sum of division rings if and only if the ring 4 does not contain
nonzero nilpotent elements. Their proof uses among others the following lemmas: (1)
If a nonzero idempotent element e of a subdirectly irreducible ring A lies in the
center of 4, then eis the identity element of 4. (2) If a nonzero subdirectly irreducible
regular ring does not contain nonzero nilpotent elements, then it is a division ring,

A ring A is called strongly regular (see R.F. ARens and I. KAPLANSKY [2])
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if to every clement a of A there exists at least one element x of 4 such that a=a?x.
It can be seen that every strongly regular rings is regular (see T. KaNDS [7]), and
in a strongly regular ring @ ==a?x if and only if a=xa?,

In a paper of the second author [18] it was proved that a ring with minimum
condition on principal right icdcals is a discrete dircct sum of division rings if and
only il the ring has no nonzero nilpotent elements. It is clear that this class of rings
contains only regular iwo-sided rings.

The frst named author has recently obtained ideal-theoretical characterizations
of two-sided regular rings which are analogous to his characterizations of semi-
lattices of groups [9], [10], [11]. His eatlier criteria are also contained in the following
result.

Theorem. For an associative ring A the following conditions are mutually
equivalent:

(@) A is a two-sided regular ring.

() LNR = LR for every left ideal L and for every right ideal R of A.

(TII) The intersection of any two left ideals is equal to their product and the
same holds for right ideals too.

aQV) LNI=LI and RNI = IR for every left ideal L, for every right ideal
R and, for every two-sided ideal I of A.

V) A is regular and a subdirect sum of division rings.

(V) A is a regular ring with no nonzero nilpotent elements.

(VI) A is strongly regular.

(VIII) The intersection of any two left ideals coincides with their product.

(IX) The intersection of any two right ideals coincides with their product.

(X) LNI = LI holds for every left ideal L and for every two-sided ideal I of A.

(XI) RNI = IR holds for every right ideal R and for every two-sided ideal I of A.

Proof. ()=(I). Let 4 be a two-sided regular rings. Then A satisfies the relation
) LNR =RL

for every left ideal L and for every right ideal R of A by the regularity criterion
of KovAcs. In case of two-sided rings this is equivalent to condition (II).

(ID=(). Let 4 be an associative ring having the property (II). In the case
of R=A the condition (II) implies

©) ANL = LA,
that is, every left ideal L of A is also a right ideal of 4. Similarly in case L=4

relation (II) implies
@) - ANR = AR,
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thus the right ideal R of A is a two-sided ideal of A. Therefore 4 is a two-sided
ring. Finally (II) implies relation (2) which is equivalent to the regularity of A4.
(D<«(1II). The proof is similar to the above proof of the equivalence (I)<>(II).
(D=(V). The proof is analogous to that of (I)=(I),
AV)=(). Let 4 be a ring with property (IV). In case I=4 we have

® ANL = LA.

This means that any left ideal L of A4 is also a right ideal of A. Consequently the
intersection of any two left ideals is equal to their product by (IV). Similarly it can be
proved that every right ideal is a two-sided ideal of 4 and, the intersection of any
two right ideals coincides with their product. Therefore (IV) implies (III), and we
have already proved the implication (IIT)=-(I), thus (IV) implies (I).

@M=(V). Let 4 be an arbitrary regular {wo-sided ring. By the regularity of
A the Jacobson radical J of A coincides with the ideal (0). Suppose that J>(0).
Then every nonzero principal right ideal of A contains a nonzero idempotent element
e and the quasi-regularity condition

©) etx—ex =0
multiplied on the left by e yields
M e=0,

which is a contradiction to the supposition e>0. Therefore we have J=(0). Hence
the intersection of all modular maximal right ideals I, of 4 equals the ideal (0),
that is

(3) OL:@.

Since 4 is a two-sided ring, every right ideal I, is two-sided, hence the factor
ring A/I, has no nontrivial right ideals, By the modularity of I, the factor ring A/I,
is a division ring and, the relation (8) implies the condition (V).

(V)=(VI). The proof is almost trivial, and we omit it.

(VD=(VII). Let A4 be an arbitrary regular ring with no nonzero nilpotent
elements. By the mentioned paper of ForsyrHe and McCoy every idempotent
element of 4 belongs to the center of 4. Suppose that a=axa for ac A4, x€A.
Then the idempotent element e=ax commutes with the element a €A, therefore
a=a?x. Similarly the idempotent element f=xa also commutes with a consequently
a=xa?%, that is, 4 is strongly regular.

(VID=(). Let 4 be an arbitrary strongly regular ring. Then the relation
a€a’A for every ac A implies the fact that 4 has no nonzero nilpotent elements
because in case ¢"=0 one can conclude

&) aca?A < (@), Sa* a*?AS (@), SadC ...,
whence a=0.
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We must yet prove that 4 is a two-sided ring. To this purposc it is enough
to show that cvery principal right ideal of 4 is a {wo-sided ideal. By the regularity
of A4 cvery principal right idcal of 4 can be generated by an idempoicnt element
e of A. Let now a be an arbitrary element of the principal right ideal (e) generated
by e. Then we have e?==¢ and a=eca which imply

(10) (ar—a)? = 0.

Since A4 has no nonzero nilpotent element, we have ae=a and hence a€(e); which
implies the inclusion (e),%(e),. The converse inclusion (e),&(e), can be proved
similarly ; consequently (e),=(e),, which means that A is indced a two-sided regular
ring. Therefore condition (I) holds.

(VID)(IX). This result was proved by V. A. ANDRUNAKIEVIC [1].

(VIID)«(IX). By a left-right duality and by the mentioned resuli of ANDRUNA-~
KEvIC it is sufficient to prove that the condition a€ Aa? for every element ¢ €A
is equivalent to one of a€ Aa® for every element a of A. It was proved in the part
(VID)=(I) that in the case a€a®4 (VacA) the ring 4 has no nonzero nilpotent
elements and, hence every idempotent element lies in the center of 4 by FORSYTHE
and McCoy. Therefore a=a%x implies a=axa and a=xa?. The proof of the
converse slatement is similar.

(D =(X). The proof is similar {o that of (I)=(I).

(X)=(I). First in case =4 condition (X) implies that every left ideal L of
4 is a two-sided ideal. Therefore assertion (X) implies (VIIT), which is equivalent
to (D).

(D)=(XI). The proof is the same as in the case (I)=(II).

(XI)=(). The proof is similar to that of (X)=(I).

The proof of our Theorem is complete.

-

Remark 1. If the condition

11 NR+1L) & R+N1,

holds for every right (and left) ideal R and for any system of two-sided ideals I,
of a ring 4 and A is a subdirect sum of division rings, then it can be proved by
another method that A4 is a two-sided ring. Namely let us suppose that

(12) ra]la = (0)

holds for the two-sided ideals I, of 4, where the factor rings 4/I, are division rings.
Then the images of the arbitrary right ideal R of 4 are two-sided ideals in the rings
A(I,. Furthermore the complete inverse images R+1I, of R are two-sided ideals
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in A by the first isomorphism theorem (see e.g. L. REDEI [16]). Then the condition (11)
together with (12) implies

(13) NR+1L) S R

But conversely we trivially have

(14) R < NR+1),

whence )

(15) R=N®+L).
o

Here the intersection ()(R+1,) is a two-sided ideal of 4, and thus R is also a two-
%
sided ideal. Therefore 4 is a two-sided regular ring. Condition (11) seems to be

very similar to the modularity condition of a lattice (see G. Sz4sz [21]).

Remark 2. We mention a nontrivial example for a two-sided regular ring
which is neither a commutative nor a division ring. Let 4 be the direct sum of two
non-commutative division rings. Then 4 has obviously the wished properties.

Bibliography

[1] B. A. Aanpynakmesny, O CTPOro PerylspHBIX Konbuax, H3e. Axad. Hayx Mosdascioit CCP,
11 (1963), 75—1717.

[2] R. F. Arens and I. KApLANSKY, Topological representation of algebras, Trans., Amer. Math.
Soc,, 63 (1948), 457—481.

[3]1 E. H. FeLLER, Properties of primary noncommutative rings, Trans. Amer. Math. Soc., 89

(1958), 79—91.
[4] A. Forsytae and N. H, McCoy, On the commutativity of certain rings, Bull. Amer. Math.
Soc., 52 (1946), 523-—526.
[51 E. HILLE, Functional analysis and semi-groups (New York, 1948).
[6] N. JAcosson, Structure of rings (Providence, 1956).
[71 T. KANDO, Strong regularity of arbitrary rings, Nagoya Math. J., 4 (1952), 51—53.
[8] L. KovAcs, A note on regular rings, Publ. Math. Debrecen, 4 (1955—56), 465—468.
[9] S. Lajos, On regular duo rings, Proc. Japan Acad., 45 (1969), 157—158.
[10] S. Lavos, Characterization of regular duo rings, to appear.
[11] S. LAsos, On semilattices of groups, Proc. Japan Acad., 45 (1969), to appear.
[12] J. Lun, A characterization of regular rings, Proc. Japan Acad., 39 (1963), 741-—742,
[13] N. H. McCoy, Subdirectly irreducible commutative rings, Duke Math. J., 12 (1945), 381—387.
[14] J. v. NEUMANN, On regular rings, Proc. Nat. Acad. Sci. U.S.A., 22 (1936), 707—713.
[15] J. v. NEUMANN, Contintious geometry (Princeton, 1937).
[16] L. Répx1, Algebra, I (Budapest, 1967).
[17] C. E. RICKART, General theory of Banach algebras (Princeton, Toronto, London, New York.

1960).

All rights reserved @ Bolyai Institute, University of Szeged



228 S. Lajos—I*, Szdsz: Two-sided rogular rings

[18] B, SzAsz, Ubor Ringe mit Minimalbedingung fitr Hauptrechtsideale. I, Publ, Math. Debrecen,
7 (1960), 54-—64.

[19] B, Sz4sz, Uber Ringe mit Minimalbedingung [tr Fauptrechtsideale. II, Acta Math, Acad. Sci.
Hung., 12 (1961), 417—439,

[20] B. SzAsz, Uber Ringe mit Minimalbedingung fiir Flauptrechisideale. ITI, Acta Math. Acad, Sci.
Hung., 14 (1963), 447—461.

[21]1 G. SzAsz, Introduction to lattice theory (Budapest, 1963).

{22] G. TerriN, On duo rings, Canad, Math. Bull., 3 (1960), 167—172.

(Received May 15, 1969)

All rights reserved @ Bolyai Institute, University of Szeged



