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ON THE DUALITY OF RADICAL
AND SEMI-SIMPLE OBJECTS IN CATEGORIES

By
F. SZASZ and R. WIEGANDT (Budapest)

§1.

A general theory of radicals and semi-simple objects in categories were studied
in the papers of Liv3ic [6], SULGEIFER [9], [10], RJABUHIN [7] and DICKSON [4], respecti-
vely.* In this note we lay stress on the duality between the concept of radical-ideals
and that of semi-simple normal factorobjects. For this aim radical classes and semi-
simple classes are defined axiomatically. In the categories of rings and groups,
respectively, a radical class R defines a semi-simple class R* which consists of all
objects having zero R-radical. Moreover, a semi-simple class determines a radical
class which consists of all objects having zero semi-simple images. Under certain
(rather natural) conditions, we shall prove that a semi-simple class determines a
radical class, however, we could not prove that to a radical class there belongs a
semi-simple class (defined in the previous manner). The proof of the analogous
statement for rings (cf. ANDERSON—DIVINSKY—SULINSKI [2]) makes strongly use
of the operations defined on the ring. One could conjecture that generally a radical
class does not determine a semi-simple class, further, that radical classes and semi-
simple classes are dual, however, not equivalent classes (for the considered category
is not selfdual).

Supposing a one-to-one correspondence between radical and semi-simple
classes, we prove an intersection representation of radical ideals which were defined
as a union of certain ideals. At last, applying Theorem 1 and 1* of [11] we obtain
structure theorems for objects belonging to a hereditary radical class and semi-
simple class, respectively.

§2.

In this paper we adopt the notions and notations of the preceding paper [11],
and we assume that the considered categories satisfy all of the axioms (C,)—(C,,)-
In addition, we need also categories in which every epimorphism is a normal one.
For such categories the so-called Isomorphism Theorems are valid. To formulate
them we remark that in such a category for any map «:a — b and for any ideal
(m, p) of b there exists a complete counterimage (d, 6) of (m, p) by o; the complete

* Added in proof (5 September 1968). In August 1968 there appeared RIJABUHIN’S paper
““Radicals in categories (Russian), Mat. Issl. (Kishinev), 2 (1967), pp. 107—165" where, among
others, similar investigations are made to those of § 3.

Acta Mathematica Academiae Scientiarum Hungaricae 21, 1970



176 F.SZASZ AND R. WIEGANDT

counterimage (d, 6) means such an ideal of a for which

st =
N

a="%b

is a commutative diagram, where v is a (normal) epimorphism and (k, %) = Ker «
(cf. SULGEIFER [9] or SULINSKI [8]). A sequence a-% b2 ¢ is called exact, if the normal
image of a is just the kernel of f. By an exact diagram we understand a diagram
consisting of exact rows and columns.

FirsT IsoMORPHISM THEOREM. Let (k, %) and (m, p) be ideals of an object a and b,
respectively, and let

0—k*>a*~b—0

be an exact sequence. Denote by (d, d) the complete counterimage of (m, p) by the
epimorphism o. Then there are maps f and y such that

0 0
v '
O—-k—-d->m—-0
6o
O—-k—>a—-b—-0
S 7
O—-c—-c—-0
| '
0 0
is an exact commutative diagram.

SECOND ISOMORPHISM THEOREM. Let (k, %), (d,, 0,) and (d,, 8,) be ideals of an
object a€ C such that
(k, 7{) = (dl ] 5l)m (dZa 52)’

(a, &) = (d,9,)U(d,, 3,)
hold. If
0—>k—>d—~b—+0

0—’d2—’a—’b2—’0

are exact sequences, then the diagram

0 0 0
T
0>k —>dy—+b~0
oo g
0—dy~a—+b,~0
}
0

is exact and commutative (i.e. b, and b, are equivalent objects).

For these theorems we refer to [8], [12] or [13].
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§3.

Let us consider a class R of objects of a category C satisfying

(a) If ac R and a.:a — b is a normal epimorphism, then b€ R;

(b) For each object ac C, the union of all ideals (k, ») with k € R, belongs to R;
this union will be called the R-radical of a and will be denoted by R-rad a;

(¢) If u:a — b is a normal epimorphism with Ker a« = R-rad a, then R-rad b = (0, w)
holds.

Such a class R will be called a radical-class, the objects belonging to R are called
R-radical objects.

An R-ideal of an object a shall mean an ideal (k, ») with k€ R. According
to (b) R-rad a is the union of all R-ideals of a. Since w:a — 01is a normal epimorphism,
so (a) implies 0€ R.

The dual class of R leads to the notion of semi-simple class. Let S be a class of
objects of satisfying

(a*) If ac S and a:b — a is a normal monomorphism, then b€ S,

(b*) For each object ac C the union of all normal factorobjects (1, 1) with [€ S,
belongs to S; this union will be called the S-semi-simple image of a, and will be denoted
by S-ses a.

(c*) If a:b — ais a normal monomorphism with Coker o= S-ses a, then S-ses b=
=(w, 0) holds.

We call such a class S a semi-simple class, and the objects belonging to S are
the S-semi-simple objects. By an S-normal factorobject we understand a normal
factorobject (4, /) with /€ S.

Let R be a radical class, and consider the class R* consisting of all objects
a€ C whose R-radical is a zero object. Similarly, for a semi-simple class S, let S*
denote the class of all objects a€ C, whose S-semi-simple image is a zero object.
Obviously both of RN R* and S S* consist only from the zero objects.

THEOREM 1. Assume that in the category C the product of two normal epimor-
phism is a normal one* If' S is a semi-simple class of objects of C, then the class
S*={a€c C|S-ses a=(w, 0)} forms a radical class.

PROOF. Let a be an arbitrary element of S*, and «:a — b a (normal) epimorphism.
Suppose b¢ S*, i.e. S-ses b=(4, /) #(w, 0). Now (a4, /) is an S-normal factorobject
of a, and therefore we obtain the contradiction S-ses a#(w, 0). Hence the class
S* satisfies condition (a).

Let a be an arbitrary element of C and consider all ideals (k;, %;), i€ of a
with k; € S*. Denote the union U (k;, %;) by (k, ). We shall show k€ S*. Assume

k ¢ S*. This implies S-ses k = (4, l) #(co 0), and so Ker A=(d, 9) differs from (k, g,).
Thus for 8,=0x we have (d, 6,) < U (k;, ;) = (k, %), therefore there exists an
iel

* This condition is satisfied, for instance, if every map has a normal image.
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index j, €1 with (k;,, %;) = (d, 6). Making use of the Second Isomorphism Theo-
rem for

(I", Q) = (kja %j)m(d’ 60),

(S, 6) = (kja Zj)L)(ds 50)

we obtain an exact commutative diagram

ORECORO)

v y i
O~r->k;—+b—~+0
¥ V }
0—-d—-s—>b-—->0
V
0

According to (a) (proved already for §*), from k;c S* it follows b€ S*, so the First
Isomorphism Theorem yields the exact commutative diagram
0 -0

¥ v
0-d-s—-b-0

A
=

o

O O «— XN <«

— — >

0—~d =0
0 0

O« O «— ~ «

Since /€S holds, so by condition (a*) b€ S follows. Thus b€ SN S* is valid
and so (d, dy) = (s, 0), further (k;, »;)=(d, é,) follows which is a contradiction.
Hence the class S™* fulfills condition (b).

At last we are going to prove the validity of condition (c) for the class S*. Again,
let @ denote an arbitrary element of C and consider the union (k, ) = U (k;, %;)

icI

i€
of all ideals of a with k;€ S*. We have to prove that for Coker x = (4, /) the object
[ has no non-zero ideal (d, §) with d€ S*. In the contrary, assume that there exists
an ideal (d, 6) # (0, ) of I with d€ S*. Let (¢, y) denote the complete counterimage
of (d, 8) by A:a — I. Obviously (k, %) <(c, y) holds, and so we get ¢ ¢ S*, i.e. S-sesc=
= (o, s) #(w, 0). Consider Ker o= (r, ¢) and the ideal (k, %,) of ¢ (»,;7y=1x), more-

over, the ideals

(ka H])n(r’ Q) = (q7 ‘9)
()

(k, %) U(r, @) = (1, 7).

Let (m, u) denote the image of (7, ) by 6. Now we have the exact commutative
diagram

0 0

¥ v
O->r—>t-m—>0

T

O»r—g»cis»o
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and by (Cy) of [11] (m, p) is an ideal of s. Hence from (a*) and s¢ S it follows m € S.
On the other hand the Second Isomorphism Theorem yields that

0. 0

{ |
0-qg—>k->m—-20

{ { {
O-r—t—->m—-0

¥

0

is an exact commutative diagram. Thus making use of (a) for the (normal) epimor-
phism v, the relation k¢ S* implies m € S*. Hence we obtain m¢e S S* = 0 and
(q,9) = (k,»,). Hence () yields (k, %,) = (r, 0), so by the First Isomorphism Theorem
we get the following exact commutative diagram

0 0

| {
O-k—>r->-m->20

le {

Yo
0> s5—>5->0

¥ '

0 0

Since d¢€ S*, so condition (a) implies also s€ S*. Thus we have established
SESN S* = 0, in contradiction to the definition of 5. Thus the theorem is proved.

REMARK. If Ci denotes the category of (associative) rings, then for any radical
class R the class R* = {a € Cg|R-rad a= (0, w)} is a semi-simple class. In ANDERSON—
DiviNsky—SULINSKI [2] it is proved that for any radical class R, the class R* has
property (a*) in the category of associative rings and alternative rings, as well.

In the proof of this statement in [2], the operations defined on the ring, play
an important réle, so it seems to be rather difficult to obtain a dual statement® of
that of Theorem 1 (of course, with the assumption of Theorem 1, and without
the assumption that the product of two normal monomorphisms is a normal one).
In the first part of AMITSUR [1] it is shown that any general radical R-rad 4 of a
ring A coincides with the intersection of all ideals /; for which R-rad (A4/I;)=0.
This means that (b*) is satisfied. (c*) follows almost trivially from the definition of
R and R*.

Let us mention that the same holds also for the category C; of groups (cf.
KuURros [5)).

* Recently E.P. ARMENDARIZ and W. G. LeavitT have shown that in the category of all
rings not every class R* satisfies proparty (a*) (Proc. Amer. Math. Soc., 18 (1967), pp. 1114—1117).
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§4.

In what follows we omit the assumption that the product of two normal epi-
morphism is a normal one, but we suppose that

(Cy,) R* is a semi-simple class and S* is a radical class for any radical class R
and semi-simple class S.

THEOREM 2. If R is an arbitrary radical class then R** = R.

Proor. First, suppose a€ R. According to (b*), R*-ses a= (4, /) is a normal
factorobject with /€ R*, i.e. R-rad /=(0, w). On the other hand for the normal
epimorphism A condition (a) implies /€ R. Hence we have (0, w)=R-rad /=(/, ¢).
Thus R*-ses a=(w, 0), i.e. a€ R**.

Conversely, let a¢ R, then R-rad a=(k, ») is a proper ideal of a. Put (4,/)=
=Coker ». (k, »)<(a, ¢,) implies (4,/)>(w, 0). By (c) we have R-rad /=(w, 0)
i.e. /€ R*. Thus (b*) implies R*-ses a=(4, /) >(w, 0). Hence a4 R**.

THEOREM 2*. If S is an arbitrary semi-simple cluss, then S= S**.

By definition, the R-radical (k,, #,) of an object a¢ C is the union U (k, %)

kER
of all R-ideals of a. The following theorem gives an intersection representation
of the R-radical. To formulate this, we shall call an ideal (d, ) of an object ac C
an R*-ideal, if Coker §=(4,[) is an R*-normal factorobject (i.e. /¢ R*). Moreover,
denote the R-radical and R*-semi-simple image of a by (k,, %,) and (44, /,), respecti-
vely. By Proposition 2 of [11] we obtain that (d,, d,) =Ker 4, is the intersection
of all R*-ideals of a.

THEOREM 3. The intersection of all R*-ideals of a€ C is equivalent to R-rad a,
ie. (dy, 0¢)=(ko, #g)-

Proor. Consider Coker x,=(f, b). By condition (c¢) R-rad b6=(0, w), and so
b € R* holds. Therefore (ky, %) is an R*-ideal and this implies

(do, 50) é(k09 XO)'
According to (Cg) the map ¢, 4, has an image, so we get the commutative
diagram
ko-tom
kl/ 17(0 lv
b .
|
‘ﬂ
b

where (m, v) is the image of %, 4, and by (C,) v is a normal monomorphism, and
(B, b)=Coker #,. Since v is a normal monomorphism, so (a*) implies m € R*.
On the other hand, (C,) and k, € R and (a) imply (u, m)=(w, 0). Since (dy, §y) =
=Ker 4, and %, 4o =puv=w, so there exists a map »,:k, — d, such that », d, =x,,
and x, has to be a monomorphism. Therefore (kg , %) =(dy, 0,) is valid. Thus the
theorem is proved.
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ON THE DUALITY OF RADICAL AND SEMI-SIMPLE OBJECTS 181

Again, let a€C be an object with S-ses a=(4,,/,) and S*-rad a=(kg, ).
An S*-normal factorobject (f’, b") of a€ C will mean a normal factorobject, whose
kernel Ker B’ =(k, ») is an S*-ideal i.e. k€ S*. Denote by (f,, b,) the intersection
of all S*-normal factorobjects of a. By Proposition 2 of [11] (B4, by) = Coker x,
holds. Now the dual statement of that of Theorem 3 establishes the following

THEOREM 3*. For the intersection (f,, by) of all S*-normal factorobjects (f, by) =
=(Aq, lo) is valid.

Let us mention that in view of Proposition 2 of [I11], Theorems 3 and 3* are
equivalent statements.

We say that the semi-simple class S is hereditary if it satisfies

(d*) For any object a< S and normal epimorphism o.:a—b it follows b€ S.

Hereditary semi-simplicity is sometimes called strongly semi-simplicity (cf.
ANDRUNAKIEVIC [3]). For such a class S Theorem 1 of [11] imples immediately

THEOREM 4. Let S be a hereditary semi-simple class. Any object ac S whose
ideal-lattice L, is compactly generated, can be subdirectly embedded in a direct product
of S-semi-simple objects, moreover, any direct factor is subdirectly irreducible if and
only if condition (1) of [11] is fulfilled.

Dualizing, a radical class R is said to be hereditary, if
(d) For any object ac R and normal monomorphism o:b—a it follows b€ R.
For hereditary radicals we obtain

THEOREM 4*. Let R be a hereditary radical class. Any R-radical object a whose
ideal-lattice L, is co-compactly generated, is a transfree image of a free product of R-radi-
cal objects a;, moreover, any free factor a; is transfreely irreducible, if and only if condi-
tion (I*) of [11] is fulfilled.

( Received 17 June 1968)

MTA MATEMATIK A1 KUTATO INTEZETE,
BUDAPEST, V., REALTANODA U. 13—15
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