ON THE DUALITY OF RADICAL AND SEMI-SIMPLE OBJECTS IN CATEGORIES

By F. SZÁSZ and R. WIEGANDT (Budapest)

§ 1.

A general theory of radicals and semi-simple objects in categories were studied in the papers of Livšic [6], Sulgeifer [9], [10], RJABUHIN [7] and DICKSON [4], respectively.* In this note we lay stress on the duality between the concept of radical-ideals and that of semi-simple normal factorobjects. For this aim radical classes and semisimple classes are defined axiomatically. In the categories of rings and groups, respectively, a radical class R defines a semi-simple class R^* which consists of all objects having zero R-radical. Moreover, a semi-simple class determines a radical class which consists of all objects having zero semi-simple images. Under certain (rather natural) conditions, we shall prove that a semi-simple class determines a radical class, however, we could not prove that to a radical class there belongs a semi-simple class (defined in the previous manner). The proof of the analogous statement for rings (cf. Anderson-Divinsky-Suliński [2]) makes strongly use of the operations defined on the ring. One could conjecture that generally a radical class does not determine a semi-simple class, further, that radical classes and semisimple classes are dual, however, not equivalent classes (for the considered category is not selfdual).

Supposing a one-to-one correspondence between radical and semi-simple classes, we prove an intersection representation of radical ideals which were defined as a union of certain ideals. At last, applying Theorem 1 and 1* of [11] we obtain structure theorems for objects belonging to a hereditary radical class and semi-simple class, respectively.

§ 2.

In this paper we adopt the notions and notations of the preceding paper [11], and we assume that the considered categories satisfy all of the axioms (C_1) — (C_{10}) . In addition, we need also categories in which every epimorphism is a normal one. For such categories the so-called Isomorphism Theorems are valid. To formulate them we remark that in such a category for any map $\alpha: a \to b$ and for any ideal (m, μ) of b there exists a complete counterimage (d, δ) of (m, μ) by α ; the complete

^{*} Added in proof (5 September 1968). In August 1968 there appeared RJABUHIN's paper "Radicals in categories (Russian), Mat. Issl. (Kishinev), 2 (1967), pp. 107—165" where, among others, similar investigations are made to those of § 3.

counterimage (d, δ) means such an ideal of a for which

$$k \longrightarrow d \xrightarrow{v} m$$

$$\downarrow \delta \qquad \downarrow \mu$$

$$a \xrightarrow{\alpha} b$$

is a commutative diagram, where v is a (normal) epimorphism and $(k, \varkappa) = \text{Ker } \alpha$ (cf. Šulgeifer [9] or Suliński [8]). A sequence $a \stackrel{\alpha}{\to} b \stackrel{\beta}{\to} c$ is called exact, if the normal image of α is just the kernel of β . By an exact diagram we understand a diagram consisting of exact rows and columns.

FIRST ISOMORPHISM THEOREM. Let (k, \varkappa) and (m, μ) be ideals of an object a and b, respectively, and let

$$0 \longrightarrow k \xrightarrow{\times} a \xrightarrow{\alpha} b \longrightarrow 0$$

be an exact sequence. Denote by (d, δ) the complete counterimage of (m, μ) by the epimorphism α . Then there are maps β and γ such that

$$0 \quad 0$$

$$0 \rightarrow k \rightarrow d \rightarrow m \rightarrow 0$$

$$0 \rightarrow k \rightarrow a \rightarrow b \rightarrow 0$$

$$0 \rightarrow c \rightarrow c \rightarrow 0$$

$$\downarrow^{\gamma} \quad \downarrow^{\beta} \quad 0$$

$$0 \rightarrow c \rightarrow c \rightarrow 0$$

$$\downarrow^{\psi} \quad \downarrow^{\psi} \quad$$

is an exact commutative diagram.

SECOND ISOMORPHISM THEOREM. Let (k, \varkappa) , (d_1, δ_1) and (d_2, δ_2) be ideals of an object $a \in C$ such that

$$(k, \varkappa) = (d_1, \delta_1) \cap (d_2, \delta_2),$$

$$(a, \varepsilon_a) = (d_1, \delta_1) \cup (d_2, \delta_2)$$

$$0 \to k \to d_1 \to b_1 \to 0$$

 $0 \rightarrow d_2 \rightarrow a \rightarrow b_2 \rightarrow 0$

hold. If

are exact sequences, then the diagram

$$0 \quad 0 \quad 0$$

$$0 \rightarrow k \rightarrow d_1 \rightarrow b_1 \rightarrow 0$$

$$0 \rightarrow d_2 \rightarrow a \rightarrow b_2 \rightarrow 0$$

is exact and commutative (i.e. b_1 and b_2 are equivalent objects).

For these theorems we refer to [8], [12] or [13].

Acta Mathematica Academiae Scientiarum Hungaricae 21, 1970

§ 3.

Let us consider a class R of objects of a category C satisfying

- (a) If $a \in R$ and $\alpha: a \to b$ is a normal epimorphism, then $b \in R$;
- (b) For each object $a \in C$, the union of all ideals (k, \varkappa) with $k \in R$, belongs to R; this union will be called the R-radical of a and will be denoted by R-rad a;
- (c) If $\alpha: a \to b$ is a normal epimorphism with Ker $\alpha = R$ -rad a, then R-rad $b = (0, \omega)$ holds.

Such a class R will be called a radical-class, the objects belonging to R are called R-radical objects.

An *R-ideal* of an object *a* shall mean an ideal (k, \varkappa) with $k \in R$. According to (b) *R*-rad *a* is the union of all *R*-ideals of *a*. Since $\omega : a \to 0$ is a normal epimorphism, so (a) implies $0 \in R$.

The dual class of R leads to the notion of semi-simple class. Let S be a class of objects of satisfying

- (a*) If $a \in S$ and $\alpha:b \to a$ is a normal monomorphism, then $b \in S$;
- (b*) For each object $a \in C$ the union of all normal factorobjects (λ, l) with $l \in S$, belongs to S; this union will be called the S-semi-simple image of a, and will be denoted by S-ses a.
- (c*) If $\alpha:b \to a$ is a normal monomorphism with Coker $\alpha = S$ -ses a, then S-ses $b = (\omega, 0)$ holds.

We call such a class S a semi-simple class, and the objects belonging to S are the S-semi-simple objects. By an S-normal factorobject we understand a normal factorobject (λ, l) with $l \in S$.

Let R be a radical class, and consider the class R^* consisting of all objects $a \in C$ whose R-radical is a zero object. Similarly, for a semi-simple class S, let S^* denote the class of all objects $a \in C$, whose S-semi-simple image is a zero object. Obviously both of $R \cap R^*$ and $S \cap S^*$ consist only from the zero objects.

THEOREM 1. Assume that in the category C the product of two normal epimorphism is a normal one.* If S is a semi-simple class of objects of C, then the class $S^* = \{a \in C \mid S\text{-ses } a = (\omega, 0)\}$ forms a radical class.

PROOF. Let a be an arbitrary element of S^* , and $\alpha: a \to b$ a (normal) epimorphism. Suppose $b \notin S^*$, i.e. S-ses $b = (\lambda, l) \neq (\omega, 0)$. Now $(\alpha \lambda, l)$ is an S-normal factorobject of a, and therefore we obtain the contradiction S-ses $a \neq (\omega, 0)$. Hence the class S^* satisfies condition (a).

Let a be an arbitrary element of C and consider all ideals (k_i, \varkappa_i) , $i \in I$ of a with $k_i \in S^*$. Denote the union $\bigcup_{i \in I} (k_i, \varkappa_i)$ by (k, \varkappa) . We shall show $k \in S^*$. Assume $k \notin S^*$. This implies S-ses $k = (\lambda, l) \neq (\omega, 0)$, and so $\ker \lambda = (d, \delta)$ differs from (k, ε_k) . Thus for $\delta_0 = \delta \varkappa$ we have $(d, \delta_0) < \bigcup_{i \in I} (k_i, \varkappa_i) = (k, \varkappa)$, therefore there exists an

^{*} This condition is satisfied, for instance, if every map has a normal image.

index $j_0 \in I$ with $(k_{j_0}, \kappa_{j_0}) \not\equiv (d, \delta)$. Making use of the Second Isomorphism Theorem for

$$(r, \varrho) = (k_j, \varkappa_j) \cap (d, \delta_0),$$

$$(s, \sigma) = (k_j, \varkappa_j) \cup (d, \delta_0)$$

we obtain an exact commutative diagram

$$0 \quad 0 \quad 0$$

$$0 \rightarrow r \rightarrow k_{j} \rightarrow b \rightarrow 0$$

$$0 \rightarrow d \rightarrow s \rightarrow b \rightarrow 0$$

$$0$$

According to (a) (proved already for S^*), from $k_j \in S^*$ it follows $b \in S^*$, so the First Isomorphism Theorem yields the exact commutative diagram

Since $l \in S$ holds, so by condition (a^*) $b \in S$ follows. Thus $b \in S \cap S^*$ is valid and so $(d, \delta_0) = (s, \sigma)$, further $(k_j, \varkappa_j) \leq (d, \delta_0)$ follows which is a contradiction. Hence the class S^* fulfills condition (b).

At last we are going to prove the validity of condition (c) for the class S^* . Again, let a denote an arbitrary element of C and consider the union $(k, \varkappa) = \bigcup_i (k_i, \varkappa_i)$

of all ideals of a with $k_i \in S^*$. We have to prove that for Coker $\varkappa = (\lambda, l)$ the object l has no non-zero ideal (d, δ) with $d \in S^*$. In the contrary, assume that there exists an ideal $(d, \delta) \neq (0, \omega)$ of l with $d \in S^*$. Let (c, γ) denote the complete counterimage of (d, δ) by $\lambda: a \to l$. Obviously $(k, \varkappa) < (c, \gamma)$ holds, and so we get $c \notin S^*$, i.e. S-ses $c = (\sigma, s) \neq (\omega, 0)$. Consider Ker $\sigma = (r, \varrho)$ and the ideal (k, \varkappa_1) of c $(\varkappa_1 \gamma = \varkappa)$, moreover, the ideals

$$(*) \qquad (k, \varkappa_1) \cap (r, \varrho) = (q, \vartheta) (k, \varkappa_1) \cup (r, \varrho) = (t, \tau).$$

Let (m, μ) denote the image of (t, τ) by σ . Now we have the exact commutative diagram

$$0 \quad 0$$

$$0 \rightarrow r \rightarrow t \rightarrow m \rightarrow 0$$

$$\downarrow^{\tau} \quad \downarrow^{\mu}$$

$$0 \rightarrow r \stackrel{\varrho}{\rightarrow} c \stackrel{\sigma}{\rightarrow} s \rightarrow 0$$

and by (C_9) of [11] (m, μ) is an ideal of s. Hence from (a^*) and $s \in S$ it follows $m \in S$. On the other hand the Second Isomorphism Theorem yields that

$$0 \quad 0$$

$$0 \rightarrow q \rightarrow k \rightarrow m \rightarrow 0$$

$$0 \rightarrow r \rightarrow t \rightarrow m \rightarrow 0$$

$$0$$

is an exact commutative diagram. Thus making use of (a) for the (normal) epimorphism v, the relation $k \in S^*$ implies $m \in S^*$. Hence we obtain $m \in S \cap S^* = 0$ and $(q, \vartheta) = (k, \varkappa_1)$. Hence (*) yields $(k, \varkappa_1) \leq (r, \varrho)$, so by the First Isomorphism Theorem we get the following exact commutative diagram

$$0 \quad 0$$

$$\downarrow \qquad \downarrow$$

$$0 \rightarrow k \rightarrow r \rightarrow m \rightarrow 0$$

$$\downarrow e \qquad \downarrow$$

$$0 \rightarrow k \stackrel{\times_1}{\rightarrow} c \rightarrow d \rightarrow 0$$

$$\downarrow \sigma \qquad \downarrow$$

$$0 \rightarrow s \rightarrow s \rightarrow 0$$

$$\downarrow \qquad \downarrow$$

$$0 \qquad 0$$

Since $d \in S^*$, so condition (a) implies also $s \in S^*$. Thus we have established $s \in S \cap S^* = 0$, in contradiction to the definition of s. Thus the theorem is proved.

REMARK. If C_R denotes the category of (associative) rings, then for any radical class R the class $R^* = \{a \in C_R | R\text{-rad } a = (0, \omega)\}$ is a semi-simple class. In Anderson—Divinsky—Suliński [2] it is proved that for any radical class R, the class R^* has property (a^*) in the category of associative rings and alternative rings, as well.

In the proof of this statement in [2], the operations defined on the ring, play an important rôle, so it seems to be rather difficult to obtain a dual statement* of that of Theorem 1 (of course, with the assumption of Theorem 1, and without the assumption that the product of two normal monomorphisms is a normal one). In the first part of AMITSUR [1] it is shown that any general radical R-rad A of a ring A coincides with the intersection of all ideals I_i for which R-rad $(A/I_i) = 0$. This means that (b^*) is satisfied. (c^*) follows almost trivially from the definition of R and R^* .

Let us mention that the same holds also for the category C_G of groups (cf. Kuroš [5]).

^{*} Recently E. P. Armendariz and W. G. Leavitt have shown that in the category of all rings not every class R* satisfies property (a*) (Proc. Amer. Math. Soc., 18 (1967), pp. 1114—1117).

In what follows we omit the assumption that the product of two normal epimorphism is a normal one, but we suppose that

 (C_{11}) R^* is a semi-simple class and S^* is a radical class for any radical class R and semi-simple class S.

THEOREM 2. If R is an arbitrary radical class then $R^{**} = R$.

PROOF. First, suppose $a \in R$. According to (b^*) , R^* -ses $a = (\lambda, l)$ is a normal factorobject with $l \in R^*$, i.e. R-rad $l = (0, \omega)$. On the other hand for the normal epimorphism λ condition (a) implies $l \in R$. Hence we have $(0, \omega) = R$ -rad $l = (l_1 \ \epsilon_l)$. Thus R^* -ses $a = (\omega, 0)$, i.e. $a \in R^{**}$.

Conversely, let $a \notin R$, then R-rad $a = (k, \varkappa)$ is a proper ideal of a. Put $(\lambda, l) =$ $= \text{Coker } \varkappa$. $(k, \varkappa) < (a, \varepsilon_a)$ implies $(\lambda, l) > (\omega, 0)$. By (c) we have R-rad $l = (\omega, 0)$ i.e. $l \in R^*$. Thus (b*) implies R^* -ses $a \ge (\lambda, l) > (\omega, 0)$. Hence $a \notin R^{**}$.

THEOREM 2*. If S is an arbitrary semi-simple class, then $S = S^{**}$.

By definition, the *R*-radical (k_0, \varkappa_0) of an object $a \in C$ is the union $\bigcup_{k \in R} (k, \varkappa)$ of all *R*-ideals of *a*. The following theorem gives an intersection representation of the *R*-radical. To formulate this, we shall call an ideal (d, δ) of an object $a \in C$ an R^* -ideal, if Coker $\delta = (\lambda, l)$ is an R^* -normal factorobject (i.e. $l \in R^*$). Moreover, denote the *R*-radical and R^* -semi-simple image of a by (k_0, \varkappa_0) and (λ_0, l_0) , respectively. By Proposition 2 of [11] we obtain that $(d_0, \delta_0) = \operatorname{Ker} \lambda_0$ is the intersection of all R^* -ideals of a.

THEOREM 3. The intersection of all R^* -ideals of $a \in C$ is equivalent to R-rad a, i.e. $(d_0, \delta_0) = (k_0, \varkappa_0)$.

PROOF. Consider Coker $\kappa_0 = (\beta, b)$. By condition (c) R-rad $b = (0, \omega)$, and so $b \in R^*$ holds. Therefore (k_0, κ_0) is an R^* -ideal and this implies

$$(d_0,\delta_0)\leq (k_0,\varkappa_0).$$

According to (C_8) the map $\varkappa_0 \lambda_0$ has an image, so we get the commutative diagram

$$k_{0} \xrightarrow{\mu} m$$

$$\downarrow k_{0} \downarrow v$$

$$\downarrow k_{0} \downarrow v$$

$$\downarrow k_{0} \downarrow k_{0}$$

where (m, v) is the image of $\kappa_0 \lambda_0$ and by (C_9) v is a normal monomorphism, and $(\beta, b) = \operatorname{Coker} \kappa_0$. Since v is a normal monomorphism, so (a^*) implies $m \in R^*$. On the other hand, (C_9) and $k_0 \in R$ and (a) imply $(\mu, m) = (\omega, 0)$. Since $(d_0, \delta_0) = \operatorname{Ker} \lambda_0$ and $\kappa_0 \lambda_0 = \mu v = \omega$, so there exists a map $\kappa_2 : k_0 \to d_0$ such that $\kappa_2 \lambda_0 = \kappa_0$, and $\kappa_2 \lambda_0 = \kappa_0$ has to be a monomorphism. Therefore $(k_0, \kappa_0) \leq (d_0, \delta_0)$ is valid. Thus the theorem is proved.

Again, let $a \in C$ be an object with S-ses $a = (\lambda_0, l_0)$ and S^* -rad $a = (k_0, \kappa_0)$. An S^* -normal factorobject (β', b') of $a \in C$ will mean a normal factorobject, whose kernel Ker $\beta' = (k, \kappa)$ is an S^* -ideal i.e. $k \in S^*$. Denote by (β_0, b_0) the intersection of all S^* -normal factorobjects of a. By Proposition 2 of [11] $(\beta_0, b_0) = \operatorname{Coker} \kappa_0$ holds. Now the dual statement of that of Theorem 3 establishes the following

THEOREM 3*. For the intersection (β_0, b_0) of all S*-normal factorobjects $(\beta_0, b_0) = (\lambda_0, l_0)$ is valid.

Let us mention that in view of Proposition 2 of [11], Theorems 3 and 3* are equivalent statements.

We say that the semi-simple class S is hereditary if it satisfies

(d*) For any object $a \in S$ and normal epimorphism $\alpha: a \to b$ it follows $b \in S$.

Hereditary semi-simplicity is sometimes called strongly semi-simplicity (cf. Andrunakievič [3]). For such a class S Theorem 1 of [11] imples immediately

Theorem 4. Let S be a hereditary semi-simple class. Any object $a \in S$ whose ideal-lattice L_a is compactly generated, can be subdirectly embedded in a direct product of S-semi-simple objects, moreover, any direct factor is subdirectly irreducible if and only if condition (I) of [11] is fulfilled.

Dualizing, a radical class R is said to be hereditary, if

(d) For any object $a \in R$ and normal monomorphism $\alpha: b \to a$ it follows $b \in R$. For hereditary radicals we obtain

Theorem 4*. Let R be a hereditary radical class. Any R-radical object a whose ideal-lattice L_a is co-compactly generated, is a transfree image of a free product of R-radical objects a_i , moreover, any free factor a_i is transfreely irreducible, if and only if condition (I^*) of [11] is fulfilled.

(Received 17 June 1968)

MTA MATEMATIKAI KUTATÓ INTÉZETE, BUDAPEST, V., REÁLTANODA U. 13—15

References

[1] S. A. AMITSUR, A general theory of radicals, II, Am. J. Math., 76 (1954), pp. 100-125.

[2] T. Anderson—N. Divinsky—A. Suliński, Hereditary radicals in associative and alternative rings, Can. J. Math., 17 (1965), pp. 594—603.

[3] V. A. Andrunakievič, Radicals of associative rings (Russian), *Mat. Sbornik*, **44** (1958), pp. 179—212.

[4] S. E. DICKSON, A torsion theory for abelian categories, Trans. Amer. Math. Soc., 121 (1966), pp. 223—235.

[5] A. G. Kuroš, Radicals in the theory of groups (Russian), Sib. Mat. Ž., 3 (1962), pp. 912—931.
[6] A. H. Livšic, Category-theoretical fundamentals of duality of radical and semi-simplicity (Russian), Sib. Mat. Ž., 5 (1964), pp. 319—336.

[7] Ju. M. RJABUHIN, Radicals in categories (Russian), Bull. Akad. Stiince RSS Mold., 6 (1964), pp. 58—74.

[8] A. SULIŃSKI, The Brown-McCoy radical in categories, Fund. Math., 59 (1966), pp. 23—41.
[9] E. G. ŠULGEIFER, To the general theory of radicals in categories (Russian), Mat. Sbornik, 51 (1960), pp. 487—500.

- [10] E. G. Šulgeifer, Functorial characterization of radicals in categories (Russian), Sib. Mat. Z.,
- 7 (1966), pp. 1412—1421.

 [11] F. Szász—R. Wiegandt, On the dualization of subdirect embeddings, Acta Math. Acad. Hung.,
 20 (1969), pp. 289—302.

 [12] R. Wiegandt, Radical and semi-simplicity in categories, Acta Math. Acad. Sci. Hung., 19
- (1968), pp. 345—364.
- [13] R. WIEGANDT, On compact objects in categories, Publ. Math. Debrecen, 15 (1968), pp. 267—