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80. Notes on Modules. 1

By Ferene A. Sz4isz
(Comm. by Kinjiré Kunvar, M. 7. ., April 18, 1970)

Sharpening a result of Kertész [3], who showed the semisimplicity
(in the sense of Jacobson) of the total endomorphism ring E(M) of a
completely reducible module 3 over an arbitrary associative ring A,
we prove in our paper the Neumann regularity of this ring E(M).
The result also generalizes a theorem of Johnson-Kiokemeister [2],
and is an English version of our earlier result [4], written in Hunga-
rian.

Theorem. Assume that M is a completely reducible module over
an arbitrary ring A, and EM) is the total ring of endomorphisms of
M. Then E(M) is regular in the sense of Newmann.

Proof. Let M be homogeneous. Supposing that the elements of
A are right operators, and the elements of E(M) left operators for the
module M, for any fixed element 7 € E(}) there exists an A-submodule
K of M satisfying:

(1) M=yMBK
being M completely reducible. Denote L, the kernel of the endomor-
phism j in M, that is

Ly={m;meM, ym=0)}
Then L, is an A-submodule of M, and there exists another A-submodule
N of M with
(2) M=L®N
Being also N completely reducible, we have

N=3 ®Bn,} {ax e [)
with simple A-modules {n.}. By (2) our module can be generated by
the set of all elements yn, (v 1),

Assume that we have a linear connection
(3) TR0+ o7, 8,=0  (g,¢ A)
then for the element

e R (T SR S
obviously yn*-=0 and n*=L_holds, which vields by (2) also n*-—0,
The direct sum > &{n,} can be built, therefore n*- 0 implies »n,,a,
== 0 =0 and thus also ynaa,= .- =yn,a,=0. Consequently,
the set of all yn, is a basis of M, Furthermore, let the set of all
k{3 e l") be a basis for k, then by (1) one has
M= q%‘_fj@{;‘ ”“}@1;;-:» Dk}
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Evidently, every element of E(}) can be determined by his effect on
the basis elements yn, and K; of M(we ', Sel”). Because M is now
by assumption homogeneous, there exists an element d € E(M) with
(4) dlyn,)=n,, ok,=0ael’,5¢I")

Define #=ydy—7. Then by (4) one has 9n,=0 and JIN =0, further-
more by yL,=0 and (2) also 9M=0. Hence ¥=0 and j=ydy which
means the regularity Neumann for K(3) in the homogeneous case.

If M is not homogeneous, then M is a discrete direct sum of its
homogeneous components H,, and E(M) is the complete direct sum of
the rings E(H,). But any E'(H,) is regular by the above, and thus also
their complete direct sum is regular in the sense of Neumann.

This completes the proof of Theorem.
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81. Notes on Modules. II

By Ferenc A. Szisz

(Comm. by Kinjirs Kunver, m. 1. A., April 13, 1970)

Generalizing a well known important result (cf. Jacobson [1], Chap-
ter IV, p. 93) for vector spaces, in our paper all twosided ideals of the
total endomorphism ring E(M) of a homogeneous completely reducible
module M over an arbitrary ring A are determined. Our result is an
English version of the earlier paper of the author [2].

Theorem. Let E(M) be the total endomorphism ring of « homoge-
neous completely reducible vight A-module M over an arbitrary ring
A. Then for every nonzero twosided ideal § of E(M) there exists an
tnfinite cardinality M such that 9 coincides with the set of all endo-
morphisms y of M with rang rM<

Proof. We assume that rang M =\R, over A, being E(M) a simple
total matrix ring over a division ring for the particular case

rang M <\R,.

1. Firstly we assert that if Y is a twosided ideal of (M) with
7:€ 4 and
(1) rang 7, M srang y,M
for an arbitrary 71 € E(M), then 7, ¢ 9

Namely, for i=1 and i =2 let N; be the kernel of the endomorphism
7¢in M. Then there exists a completely reducible submodule K, of M
with M=N,@®K,. Then (1) implies
(2) rang K <rang K,

It K,-:E@{_Ec,,j}, then by (2) and by the fact that M/ is homogeneous,

there exists an endomorphism 6, ¢ E(M) such that holds
(3 ﬁlkm:k“; and ag,N,=0
(L 2]

Here a; denotes an uniquely determined index «, from [, and for
@, 3; one has obviously Bl (o, el ; @, 3 € Iy, being 1", the set of
indices of fixed basis elements of K.). C onsequently, the restriction
of 9, on 4,K, has an inverse element ot

From an assumed linear connection

"

(4) : }‘:‘r]l!“u ;=0 (e, e A)
F=1 13 °
follows j,k* =0 for the element

"
k¥=3% ok, e K,
=1 "

Therefore i* e N,NK,, and k*—0. There exists an inverse element
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07! of the restriction of 4, on ,K,, so one has
n
(5) 6;1!ﬂ*:>_:klajcfj:0

J=1(1)
which yields %, a,=0 for every j=1,2, ..., n, forming S {k} a direct
i1y °

sum. Therefore, the elements 7.4k, are linearly independent over A4
1

(wel). By the fact that M is hoinogeneous, there exists an element
g, € F(M) satisfying

(6) 070, k) =7k,

1y 1)
Analysing the difference 7o=0,7,0,— 7, we conclude, 7o=0, that is
(7) 11=0:7.0:¢ 4,

which completes the proof of Assertion 1.

2. Secondly, it can be shown that for rang M =, and for every
nonzero twosided ideal § of E(M), the endomorphisms 7 with condi-
tion rang yM <3}, are contained in ¢, and all these endomorphisms 7
form a twosided ideal F of E(M).

Namely, for the direct composition M =XB{m Na ') we define
the endomorphisms ¢, € EF(M) by

&M, == 0usMs.
(8) gma=0o.maela.5el,ac )
where o,; denotes Kronecker's delta symbol. Clearly rang ¢ M=—1
and thus by Assertion 1, holds ¢, ¢ 4 for every 3. Consequently
(9) Op+8st v te ey
which verifies the existence of endomorphisms y ¢ 4 with rang rM=n
for every n.

From this follows already every statement of Assertion 2.

3. Thirdly, we prove that there exists for every nonzero ideal
4 of E(M) an infinite cardinality 9, such that 4 consists of every
endomorphism y ¢ E(M) satisfying rang rM <M

Let W be namely the least (infinite) cardinality satisfying rang
M <M for every y ¢ 4. Clearly there exists such a cardinality, By
Assertion 2, one has FC 4 and thus M=

If rang M<M, then by definition of M there exists an element
7 € 4 with the condition rang ;M =rang M and by Assertion 1 also

Assuming that §==E(M) and §=0, in case M =Y, one has §--F
by Assertion 2.

Furthermore, in case M >}, and M<rang M the condition rang
1M <IN and definition of M imply the existence of an endomorphism
Je 4, with
(10) rang M =rang M
whence by Assertion 1 follows 7 ¢ 4.

These Assertions 1, 2 and 3 complete the proof of the Theorem.
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82, Notes on Modules. III

By Ferenc A. SzAsz

(Comm. by Kinjiré KuNuer, . 3. A, April 18, 1970)

In this paper we discuss the Kertész’ radical for modules, and
among other we show that this radical fails to be a ring radieal in
the sense of Amitsur and Kurosh., We refer yet concerning this topic
to our earlier papers [6], [7T].

Following Kertész [3], for an arbitrary ring A and for any right
A-module M, we consider the set
(1) KAM)={X,XeM, XACOD(M)}
where ¢(}) denotes the Frattini A-submodule of 3. (That is, @(M) is
the intersection of all maximal submodules of M, and &(M)=M for
modules M having no maximal A-submodules.) Obviously, K(M) is an
A-submodule of M. Calling an A-submodule N of M homoperfect, if
(2) MA+N=M
holds, then (1) implies by Kertész [3], that K(M) coincides with the
intersection of all homoperfect maximal A-submodules of M

Example. For a prime number p let A be the ring generated by
the 3 3 matrices over the field of p elements:

0 0 0'1 1 0 O
(3) x=[0 0 OJ, -y:{o 1 0}
1 0 0 01 0

Then A is a noncommutative ring with p* elements and with the
multiplication:
& Y
(4) x 0 &
/] 0 ¥
By a routine caleulation it can be verified that the principal right
ideal (y), of A is a homoperfect maximal right ideal, but (j). is neither
modular, nor quasimodular in 4.
Furthermore, for the Kertész radical K,(A) of the A-right module
A, one has by
(5) (@), N),=0
obviously K,(4)=0, being also (x), homoperfect and maximal in A.
The Jacobson radical F'(4) of A now coincides with (x),=K,(A), denot-
ing K,(A) the left-right dual of K.(A4)
Therefore, this ring A has the property, that
(6) 0=K.(A)+K,(A)=F4)
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Remark 1. For an antiisomorphic image 4’ of the ring A of the
above example evidently holds
(7) 0=K,(A)+K (A)=F(A’

Theorem 1. For an arbitrary cardinality M there exists a ring
A with M different elements and with conditions 0=K,(4)+:K,(4A)
=F(A) if and only if M is not a quadratfree finite number.

Proof. If M is a quadratfree finite number, and A has exactly
M different elements, then A is a ringdirect sum of rings of prime
order. These components are commutative rings, therefore also 4 is
commutative, consequently K J{A)=F(A4).

But in the case, when M is finite and not quadratfree, then
WM=pppz. . pom with @; =22 at least for an {, with different prime
numbers p,. Assume that i—1 and p,=p. Let our ring B be the
ringdirect sum of the ring A from the above example, of («,—2) copies
of fields of order p and of a; copies of fields of order p; for every
P;%p. Then one has obviously |B|=M and 0=K.(B)+K,(B)=F(B).

Thirdly, if M is an infinite cardinality, then let C be the ringdirect
sum of the ring 4 from the example and of a field with I elements,
This field can be taken, as a field extension of the rational number
field with the transcendence grad M. Then evidently |C|=M and
(8) 0=K.(C)+K,(C)=F(C),
which completes the proof of Theorem 1.

Remark 2. The above ring C, constructed for an infinite 9 as a
right C-module C, is completely reducible, without nonzero left anni-
hilators, but with the nonzero right annihilator (2),=F(C). A right
completely reducible ring 4 has no nonzero right annihilators if and
only if C is semisimple in the sense of Jacobson, and C satisfies the
minimum condition for prineipal right ideals. (Cf. F. Szész [7].)

Remark 3. By the present author [8] was proved the existence
of a right having a quasimodular maximal, but not modular right
ideal. Calling an ideal Q of a ring A quasiprimitive, if there exists
& quasimodular maximal right ideal R of A satisfying Q={w: med,
ArC R}, the equivalence of primitive and quasiprimitive ideals can be
verified (ef. Steinfeld [5], and in a sharper form F. Szész [9]). But,
for a maximal right ideal of a ring ‘‘homoperfect”, ‘“‘quasimodular”
and “modular” are three different concepts,

Theorem 2. The twosided ideals K, and K, (Kertész radicals)
satisfy AK,Cd,CK,CF and K ACO,CK,CF for any rving A, further-
more K, and K, are not radicals in the sense of Amitsur and Kurosh.

Proof. By the definition (1) it is suflicient to verify only the last
statements (cf. yet F. Szdsz [8]).

Assume that K, is a radical in the sense of Amitsur and Kurosh.
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Then by Theorem 47 of Divinsky’s book [1], any twosided ideal of a
semisimple ring is also semisimple. But the ring A of the earlier
example of the present paper satisfies K,(4)=0 with K,(F(4))=F(4)
=0 for the Jacobson radical of A.

This completes the proof of Theorem 2.

Theorem 3. For any ving A the following conditions are
equivalent :

a) A is a semistimple Artin ving,

b) A is a ring with twosided unity satisfying the minimum
condition on principal right ideals and yet with the condition that
K(M)-A=0 for the Kertész K(M) radical of every right A-module M
holds.

Proof. a) implies b). By assumption a) follows, that is also a
ring with twosided unity and with minimum condition on principal
right ideals. Furthermore, any A-right module M can be decomposed
into a form
(9) M=M®M,
where @ is a module direct sum, M,A=0 and M, is an unitary A-
module. This can be proved by Peirce decompositions. Moreover M,
is a completely reducible A-right module, which implies K(M J=0 and
K(M)=M, whence

K(M). - A=0

Conversely, also b) implies a). Let A be a ring having twosided
unity, satisfying the minimum condition on principal right ideals and
with K(M)-A=0 for every right A-module M. Then K,(A4) coincides
with the Jacobson radical ' of A, and FA =0 implies by 1 ¢ 4 evidently
F(A)=0. Therefore, the right A-module A is completely reducible by
the author’s paper [7]. Consequently A is by 1c A a semisimple
Artin ring.

This completes the proof of Theorem 3.
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