[From Proceedings of the Japan Academy, Vol. 46, No. 6 (1970)] On Radicals of Semigroups with Zero. 1 By Ferenc A. Szász ## On Radicals of Semigroups with Zero. I By Ferenc A. Szász Budapest (Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1970) The term "semigroup" means in this note always a semigroup with zero element (see [3]). Several concrete types of radicals for semigroups were proposed (see for instance [2], [3], [5]-[9] and [11]). By a ring theoretical analogy (see [4]) also a general theory of radicals for semigroups can be developed. For any class C of semigroups a C-semigroup S means a semigroup belonging to C. If a semigroup S has a C-ideal C(S) such that C(S) contains any further C-ideal of S, then C(S) is called the C-radical of S. Semigroups S with C(S)=0 are called C-semisimple. A class R of semigroups is called radical, if the following conditions are satisfied: - 1) R is homomorphically closed not only with respect to forming of Rees factor semigroups/ - 2) in any semigroup S there exists the R-radical R(S) - 3) the Rees factor semigroup S/R(S) is R-semisimple. The aim of this note is to generalize for semigroups some ringtheoretical results of [1] and [10]. Theorem 1. For any radical class R of semigroups, and for any ideal J of a semigroup S, the R-radical R(J) of J is an ideal of S. Proof. Assuming that R(J) is not an ideal of S, there exists an element $s \in S$ satisfying either $sR(J) \not\subset R(J)$ or $R(J) s \not\subset R(J)$. If sR(J) $\not\subset R(J)$, then the union $U=sR(J)\cup R(J)$ properly contains R(J) and $U \subseteq J$ holds. By $JU = JsR(J) \cup JR(J) \subseteq R(J)$ and $UJ \subseteq U$ this union U is an ideal of J. Being J/R(J) R-semisimple, U/R(J) is not an R-semigroup. By $\varphi_1(r) = sr \cup R(J)$ $(r \in R(J))$ is given a mapping of R(J) onto U(R(J)), which by the associativity and $$\varphi_1(r_1, r_2) = sr_1r_2 \cup R(J) = R(J)$$ = $sr_1s, r_2 \cup R(J) = \varphi_1(r_1), \varphi_1(r_2)$ is a homomorphism. Being R(J) radical and U/R(J) nonradical nonzero semigroups, respectively, this contradiction shows $SR(J) \subseteq R(J)$. Similarly can be verified also $R(J)S\subseteq R(J)$. Corollary 2. With the above notations $R(J) \subseteq J \cap R(S)$ holds. Proof. R(J) is an R-ideal of S, contained in R(S). Corollary 3. Any ideal of an R-semisimple semigroup is again No. 6 R-semisimple. Let now $C=C_1$ an arbitrary, homomorphically closed class of semigroups. Assume that for the ordinal numbers $\alpha < \beta$, the classes C_{α} are already defined. Let C_{β} be the class of all semigroups every non-zero Rees factor semigroup of which contains a non-zero ideal belonging to a class C_{α} for some $\alpha < \beta$. Furthermore let LC_1 be the union of all classes C_{α} . A subsemigroup A of S is called accessible, if there exists a finite chain of subsemigroups A_1, A_2, \dots, A_{n-1} of S such that $A = A_0 \subset A_1 \subset A_2 \subset \cdots \subset A_{n-1} \subset A_n = S_1$ and A_i is an ideal of A_{i+1} for $i=0,1,2,\dots,n-1$. Such a minimal n is the index of A in S. Proposition 4. For any homomorphically closed class $C=C_1$ of semigroups, and for the above class LC_1 any non-zero LC_1 -semigroup S has a nonzero accessible subsemigroup A contained in C_1 . Proof. Being S a set, by $S \in UC_n$ there is an ordinal number α with $S \in C_n$ for some α . Assume α to be minimal. We prove the existence of a desired A by induction on α . If $\alpha=1$, then $S \in C_1$, and let A be S itself. Assume that our assertion is verified for all semigroups T from C_s with $\beta < \alpha$. If $S \in C_n$, and α is minimal, then any non-zero factor semigroup of S, and thus also S itself, contains a non-zero ideal J contained in C_s for some $\beta < \alpha$. By induction J has a non-zero accessible subsemigroup A in C_1 . But A is a non-zero accessible subsemigroup of S, contained in C_1 . Proposition 5. For any non-zero accessible subsemigroup A of a semigroup S with $A \in C_1 = C$, the ideal (A) of S generated by A_1 is contained in C_n for some finite n. Proof. Let n be the index of A in S. We proceed by induction on n. If n=1, then $(A)=A\in C_1$. Assume that our proposition is proved for all accessible subsemigroups of index < n. Let now A^* be the ideal of A_{n-1} generated by A. By induction A^* lies in C_{m-1} for some finite m, and $A^*\subseteq (A)\subseteq A_{n-1}$. Thus A^* is an ideal of (A), and by $(A)=A\cup AS\cup SA\cup SAS$ we have also $(A)=A^*\cup A^*S\cup SA^*\cup SA^*S$. We shall prove $(A) \in C_m$. Let (A)/B be any non-zero Rees factor semigroup of (A). If $A* \not\subset B$, then (A)/B with respect to forming of Rees factor semigroups has the nonzero ideal $(A* \cup B)/B \cong A*/A* \cap B$. The righthand side of this isomorphism-relation is a homomorphic image of A* from the class C_{m-1} , and thus $A*/A* \wedge B \in C_{m-1}$, being every C_a closed. Then (A)/B has a non-zero ideal in C_{m-1} . Consequently we assume $A^*\subseteq B$. If $A^*S\not\subseteq B$, then there is an element $s\in S$ such that $A^*s\not\subseteq B$. It is easy to prove that $(A^*s\cup B)/B$ is a non-zero two sided ideal of (A)/B. Furthermore $\varphi_a a = as \cup B(a \in A^*)$ maps is by and 1 a ho: (A)/i zero SA*! It ca more map (A) 1 $close \ \omega_{\scriptscriptstyle 0} \ i { m s}$ S/T tains quen class in **C** semi Thus of S and then obvi and radi hom [1] classes s every o ideal a finite n is $=C_1$ of igroup nber α ove the C_1 , and for all l, then tains a I has a acces- $A \ of \ a$ $A_1 \ is$ uction ion is A^* be 1-1 for), and SA^*S . factor ing of $A^* \cap B$. is an $(B)/B \in A^*$ orphic being maps A^* onto the factor-semigroup $(A^*s \cup B)/B$, and this mapping φ_2 is by $\varphi_2a_1a_2 = a_1a_2s \cup B \subseteq A*A*S \cup B \subseteq A*(A) \cup B \subseteq B$ and by $\varphi_2 a_1 \cdot \varphi_2 a_2 \subseteq A * SA * S \cup B \subseteq A * (A) \cup B \subseteq A * \cup B = B$ a homomorphism. Consequently $(A^*s \cup B)/B$ is a non-zero ideal of (A)/B in C_{m-1} . Similarly it can be shown that $(sA^* \cup B)/B$ is a non-zero ideal of (A)/B, contained in C_{m-1} , for some $s \in S$, if $SA^* \not\subset B$. In what follows, we assume $A^* \cup SA^* \cup A^*S \subseteq B$. By $(A) \neq B$ holds $SA^*S \not\subseteq B$, and thus there exist elements $s \in S_1 t \in S$ such that $sA^*t \not\subseteq B$. It can be verified, that $(sA^*t \cup B)/B$ is an ideal of (A)/B. Furthermore by $\varphi_3 a = sat \cup B$ $(a \in A^*)$ the semigroup A^* is homomorphically mapped onto $(sA^*t \cup B)/B$, being $\varphi_3 a_1 a_2 = B = \varphi_3 a_1 \cdot \varphi_3 a_2$. Consequently (A) lies in a class C_m for some finite m. Theorem 6. The class LC_1 , determined by any homomorphically closed class $C_1=C$ of semigroups, coincides with the class C_{ω_0} , where ω_0 is the first infinite ordinal number. Proof. Obviously $C_{\omega_0} \subseteq LC_1$ holds. Furthermore, if S is any nonzero semigroup from LC_1 , then any non-zero Rees factorsemigroup S/T of S lies in LC_1 , and S/T contains by Proposition 4 a nonzero accessible subsemigroup A, lying in C_1 . By Proposition 5 S/T contains a nonzero ideal (A)/T contained in C_m for a finite m. Consequently $LC_1=C_{\omega_0}$. Theorem 7. If C_1 is a homomorphically closed and hereditary class of semigroups (i.e. any ideal of a semigroup from C_1 lies again in C_1), containing all nilpotent semigroups, then $LC_1=C_2$ holds. Proof. If S is any semigroup from C_3 , then any non-zero factor semigroup $S^1 = S/T$ of S contains a nonzero ideal J belonging to C_2 . Thus also J contains a nonzero ideal K lying in C_1 . If (K) is the ideal of S' generated by K, then $K \subseteq (K) \subseteq J$. Being $(K)^3 \subseteq J(K \cup KS' \cup S'K \cup S'KS')J \subseteq K$ and C_1 a hereditary class, one has $(K)^3 \in C_1$ and $(K) \neq 0$. If $(K)^3 \neq 0$, then it is a nonzero C_1 -ideal of S'. In the case $(K)^3 = 0$ and $(K)^2 \neq 0$ obviously $(K)^2 \in C_1$ being $(K)^2$ nilpotent. If $(K)^2 = 0$, then also $(K) \in C_1$, and thus S' has a nonzero C_1 -ideal. Consequently $LC_1 = C_2$. It would be interesting to investigate that in what case LC_1 is a radical class for a homomorphically closed class C_1 of semigroups. (A homomorphism generally cannot be given by a Rees factor semigroup.) ## References [1] T. Anderson, N. Divinsky, and A. Sulinski: Hereditary radicals in associative and alternative rings. Canad. J. Math., 17, 594-603 (1965). - [2] J. Bosák: On radicals of semigroups. Mat. Časopis, 18, 204-212 (1968). - [3] A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups. Providence (1961, 1967). - [4] N. Divinsky: Rings and Radicals. London (1965). - [5] H. J. Hoehnke: Structure of semigroups. Canad. J. Math., 18, 449-491 - [6] J. Luh: On the concepts of radical of semigroups having kernel. Portugaliae - [7] H. Seidel: Über das Radikal einer Halbgruppe. Math. Nachrichten, 29, - [8] L. N. Sherrin: On general theory of semigroups. Mat. Sbor., 53, 367-386 - [9] R. Shulka: Note on the Ševrin radical in semigroups. Mat. Časopis, 18, - [10] A. Sulinski, R. Anderson, and N. Divinsky: Lower radical properties for associative and alternative rings. Jour. London Math. Soc., 41, 417-424 - [11] F. Szász: Radikalbegriffe für Halbgruppen mit Nullelement, die dem Jacobsonschen ringtheoretischen Radikal ähnlich sind. Math. Nachrichten, - -: An observation on the Brown-McCoy radical. Proc. Japan Acad., 37, 413-416 (1961).