Bi-ideals in associative rings

By S. LAJOS and F. SZASZ in Budapest

Throughout this paper, by a ring A we shall mean an arbitrary associative ring.
For the terminology we refer to N. Jacosson [5], N. H. McCoy [16] and L. REDEI
[18]. In analogy to the notion of bi-ideal in semigroups (cf. A. H. CLIFFORD and
G. B. PrestoN [3] vol. I) we shall study some properties of bi-ideals in rings.

For the arbitrary subsets X and Y of a ring A by the product XY we mean
the additive subgroup of the ring A which is generated by the set of all products
xy, where x€X, and y€ Y. By a bi-ideal B of a ring A we understand a subring B of
A satisfying the following condition:

(M BABC B.

Obviously every one-sided (left or right) ideal of 4 is a bi-ideal, and the intersection
of a left and a right ideal of A4 is also a bi-ideal, We note that the bi-ideals in semi-
groups are special cases of the (m, n)-ideals introduced by S. LAjos [7]. He remarked
that the set of all bi-ideals of a regular ring is a multiplicative semigroup [10]. Some
generalizations of biideals of rings were discussed by F. SzAsz [22]. The con-
cept of the bi-ideal of semigroups was introduced by R. A. Goop and D. R. HUGHES
[4]. Interesting particular cases of bi-ideals are the quasi-ideals of O. STEINFELD
[19]: A submodule Q of an associative ring 4 is called a quasi-ideal of A if the follow-
ing condition holds:

@ 04NA4Q < Q.

It is known that the product of any two quasi-ideals is a bi-ideal (cf. S. Lajos [8]).
It may be remarked that in case of regular rings the notions of bi-ideal and quasi-
ideal coincide (see S. Lajos [10]). It was shown by the first named author that there
exists semigroup S containing a bi-ideal B which is not a quasi-ideal of S (see. S.
Lajos [13]).

Next we formulate some general properties of bi-ideals in rings. Then we cha-
racterize two important classes of associative rings in terms of bi-ideals.
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186 S. Lajos—F, Szdsz

Proposition 1. The intersection of an arbitrary set of bi-ideals B, (A€ A) of a
ring A is again a bi-ideal of A.

Proof. Set B = ﬂ B,. Bvidently B is a subring of 4. From the inclusions
B,AB,C B, and BCBA (VAC A) it [ollows that
(3) BABES B,AB, & B, (YA€A)

and consequently we have
(C)) BABZ B.
This proves Proposition 1.

Proposition 2. The intersection of a bi-ideal B of a ring A and of a subring
S of A is always a bi-ideal of the ring S.

Proof. Let us assume that

® C = BNS. y
Since S is a subring and C< .S we conclude i
(6) CSCS SSSCS. ‘
‘On the other hand

@ CSCS BSBS BABC B,

whence CSC S BNS = C.

Proposition 3. For an arbitrary subset T of a ring A and for a bi-ideal B of
A the products BT and TB both are bi-ideals of A.

Proof. By TAS A and BABZ B we have
(8) B(TA)B S BAB < B.

Moreover, we have the follo\ving monotonity property of the product defined in the
introduction above:

9) XSY=XZSYZ
for arbitrary subsets X, ¥, Z of the ring 4. Then (8) and (9) imply the relation
(10) (BT)A(BT) S BT,

which together with (BT)BT) = (BTB)T S (BAB)TS BT means that the product
BT is a bi-ideal of the ring 4. The proof concerning the product 7'B is similar to that
of BT.

In an analogy to the case of semigroups (cf. S. Lasos [8]) we obtain the follow-
ing result.
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Proposition 4. Let B be an arbitrary bi-ideal of the ring A, and C be a bi-ideal
of the ring B such that C* =C. Then C is a bi-ideal of the ring A.

Proof. The suppositions BABS B and CBCZS C imply
(11) CAC=C*AC*S C(BAB)CSCBCZSC

which proves the statement,

Proposition 5. An arbitrary associative ring A contains no non-trivial bi-
ideal if and only if A either is a zero ring of prime order or A is a division ring.

Proof. Suppose that the ring 4 contains no non-trivial bi-ideals. Then clearly
A contains no non-trivial right ideals, and thus A satisfies the minimum condition
on right ideals. Suppose that A4 is not semi-simple in the sense of Jacosson. Then 4
is an Artinian radical ring, which is nilpotent by a well-known result due to CH.
Horkins (cf, N. JAcoBsoN [5]), and finally A4 is a zero ring of prime order in absence
of non-trivial right ideals. On the other hand, if 4 is semi-simple then it is a division
ring by the famous WEDDERBURN—ARTIN structure theorem (cf. JacoBson [5] or
REpz! [18]), which proves the “only if”” part of Proposition 5.

Conversely assume that A4 either is a zero ring of prime order or a division ring.
We shall show that 4 has no non-trivial bi-ideals. This assertion is trivially true for
a zero ring of prime order because every additive subgroup in a zero ring is a two-
sided ideal. If A is a division ring and B is a non-zero bi-ideal of A4, then 1he con-
dition
(12) BABCB

implies B = 4, because in a division ring 4 we have x4 =A = Ax for every non-zero
element x € 4, consequently

(13) BAB=B(AB)=BA=AC BC A.

Remark 1. An elementary and short proof of the fact that a ring 4 contain-
ing no non-trivial right ideals either is a zero ring of prime order or a division ring,
can be found in a paper of F. SzAsz [20].

Proposilion 6. Let T be a non-empty subset of the ring A. Then the bi-ideal of
A generated by T is of the form:

l(14) T(l,l) = IT‘I‘ TZ“!“TAT,
where I denotes the ring uf rational integers.

Proof. The verification of the statement is almost trivial and we omit it.
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Remark 2. By Proposition 1 the intersection of any set of bi-ideals of a ring
A is also a bi-ideal of 4, and thus the bi-ideal T, ;, defined above evidently coincides
with the intersection of all the bi-ideals of A4 containing T

Remark 3. By Proposition 6 we have:
(i) The principal bi-ideal (x)(y,;y generated by the single element x of 4 can be
represented as [ollows:

(15) (%) 1,1y = Ix+Ix* + xAx.
(ii) In the particular casc of an idempotent element e of the ring 4 we obtain:
(16) (©)(1,1)=eAe.
(iii) For an additive subgroup T of A one has:
(W) T,y = T+T?*+TAT.
(iv) If S is a subring of the ring 4 then
(18) Sa,1y = S+ S4S.

Proposition 7. For any associative ring A denote by A the set of all additive
subgroups of A, and A, the set of all bi-ideals of A. Then A and A are semigroups under
multiplication of subsets (defined in the introduction of this paper), and A, is a two-
sided ideal of A.

Proof. The statement of this proposition is an immediate consequence of
Proposition 3 and the definition given in the introduction for the multiplication of
subsets.

Remark 4. The multiplicative semigroup of all non-empty subsets of an
arbitrary semigroup was formerly investigated by S. Lajos [8]. He proved that the
sel of all bi-ideals of a semigroup is a two-sided ideal of the multiplicative semi-
group of all non-empty subsets of the semigroup.

Remark 5. J. CALAIS [2] gave an explicite example for a semigroup having
two quasi-ideals whose product fails to be a quasi-ideal. In this connection it may
be remarked that one of the authors, S. Lajos [10] proved that for the case of re-
gular rings as well as for regular semigroups the product of any two quasi-ideals is
again a quasi-ideal.

For the verification of the interesting fact that every left ideal of a right ideal
of an arbitrary associative ring can be represented as a right ideal of a suitable left
ideal of the ring, we shall prove the following statement in analogy to a semigroup-
theoretical result due to S. LAjos [7].
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Bi-ideals in associative rings 189

Theorem 1. For an arbitrary non-empty subset B of an associative ring the
Jollowing conditions are pairwise equivalent:

() B is a bi-ideal of A.
(II) B is a left ideal of a right ideal of A.
(IIT) B is a right ideal of a left ideal of A.

Proof. It is enough to prove that (I) is equivalent to (II), because condition
(I1) is the left-right dual of (I), therefore the proof of the equivalence of (1) and (III)
is similar to that of (T)«<(II).

To show that (I) implies (IT), suppose that the subset B is a bi-ideal of the ring
A. Let (B), be the right ideal of A generated by B. It will be verified that B is a left
ideal of the ring (B),. Indeed, the relations (B), = B+ BA and BABZ B imply

(19) (B),B = (B+BA)B S B*+BAB < B.

Conversely, to prove that condition (IT) implies (I), assume that the subset B of
A is a left ideal of a right ideal R of 4, Then the inclusions

(20) RACR, RBCB
imply
1) BABC.(RA)BSRBCB,

which together with the obvious fact that B is a subring of A yields the wished

assertion.

In what follows we will be concerned with different properties of bi-ideals
in special classes of associative rings. Among other things the characterization of
some classes of rings will be given by means of bi-ideals.

Theorem 2. For an associative ring A the following conditions are mutually
equivalent:

(I) A is regular.

(A1) LNR = RL for every left ideal L and for every right ideal R of A.
(II1)  For every pair of elements a, b of A, (a), N (D), = (a),(D),.

(IV)  For any element a of 4, (a),N\(a), = (@).(a),.

V) (@q,1)=),.(a), for any element a of A.

(VD) (@)q,1)=ada for any element a of A.

(VI) QAQ =Q for any quasi-idedal Q of A.

(VIIT) BAB =B for any bi-ideal B of A.

Proof.!) (I)<(II). This was proved by L.'KovAcs [6]. Il is evident that

1) The equivalence of conditions (I)—(VI) in case of semigroups was proved by Lajyos [9], [11].
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D =1 =1V). The implication AV)=-() was proved by F. SzAsz [21]. Thus we
have shown the equivalence of the first four conditions.

@) =(V). Assume, that 4 is a rcgular ring, Then the solvabilily of any equation
axa=gq implies

(22) (), =(ax), =axA

and

23) (a) = (ea)y = Axa

where (ax)?=ax and (xa)?=xa. Hencc

24) (a),(a), = axA-Axa Sada
and we conclude

25) (@), (@), € la+Ia*+ada = (a)q,4)-

Conversely, by condition (IV), it is obvious that

(26) (a)(1,1) S (a)r.ﬂ (@) = (@,(a);,
Thus (I) implies (V).

To prove that (V)=(I), suppose that the ring A4 satisfies condition (V). Then
we have

@7 @q,1y = @,(a),

for any element a in 4. (27) implies

(28) a€(la+aA)(la+ Aa) = Ia®+adAa+aA%a = Ia?+ ada.

In other words, there exists a rational integer m and an element b€ 4, such that
(29) a =" ma?+aba = a(ma+ ba).

For the element ¢ = ma+ ba we obtain a=ae and e%=e, whence

a = ae? = a(ma+ ba)? = a(m?a®+ maba+ mba® + baba) € aAa.

This implies (I).
It is easy to show that in case of regular rings we have

(30) (@), (a),=aAa,
therefore (I)<(VI).

()<= (VII). This has been proved by J. LuH [15].

(I)=>(VIII). This follows at once from a result of S. LAjos [10], Theorem 1, and
from the above mentioned assertion of J. LuH.

(VIII=(1). If 4 is a ring satisfying condition (VIII), then it satisfies also (VII},
which implies ().
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Therefore Theorem 2 is completely proved.

Theorem 3. The following fifteen conditions for an associative ring are pairwise
equivalent:

@ A is strongly regular.

(I) A is a two-sided %) regular ring.

(1) A is a subcommutative *) regular ring.

(V) B?=B for any bi-ideal B of A.

V)  Q2=Q for any quasi-ideal Q of A.

(VI) RL = LNR < LR for any left ideal L and for any right ideal R of A.

(VII) LNR = LR for every left ideal L and for every right ideal R of A.

(Vi) L,NL, = L, L, and Ry R, = R, R, for any left ideals L, L, and for
any right ideals R, , R, of A.

(IX) LNT = LT and RNT = TR for every left ideal L, for every right ideal
R, and for every two-sided ideal T of A.

(X) A isregular and it is a subdirect sum of division rings.

(IX) A is a regular ring with no non-zero nilpotent elements.

(XII) L;NL, = L,L, for any two left ideals of A.

(XI/H) R,NR, = R R, for any two right ideals of A.

X1V) LNT = LT for any left ideal L and for any two-sided ideal T of A.

(XV) RNT = TR for any right ideal R and for any two-sided ideal T of A.

Proof. (I)<>(Il). This was proved in [14].
(ID) = (IID). Assume that A is a two-sided regular ring. Then every onesided
(left or right) ideal of 4 is a two-sided ideal in 4, consequently we have

3D AxASxA and AxAZS Ax.

The solvability of any equation aya=a (a € A) implies acaAd and a€ Aa, for every
a€ A, therefore by (31)
(32) AxSxA and xAC Ax.

Thus we conclude that x4 =Ax for every element x in 4. This exactly is the (two-
sided) subcommutativity of the regular ring 4.

(JII) = (I). Suppose that 4 is"a (two-sided) subcommutative regular ring.
Then every principal right ideal (@), of 4 can be generated by an idempotent element
e of A, that is

33) (@), =(e),=ed, e?=e.

% An associative ring A4 is said o be a two-sided (or duo) ring if every one-sided (left or right)
ideal of A is a two-sided ideal (cf. e.g. THIERRIN [25]).

8) For the definition of subcommutative ring we refer to BARBILIAN [1]: a ring A is called
(two-sided) subcommutative if aA=Aa for any a€ A4.
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From condition (II1) and Theorem 2 we conclude
(34) A(a), = A(ed) =ed?=eAd = (a),,

whence (a), is a two-sided ideal. Consequently an arbitrary right ideal R of A4 is
also a two-sided ideal of the ring 4. Similarly it can be proved that every left ideal
L of A is also a two-sided idcal in 4. Thus we have proved that (II)<(III).

@) <=(V). This [ollows from Theorem 2 of L. KovAcs [6] and {rom authors’
Theorem in [14].

Next we show that (IV)«(V).

The implication (IV)=(V) is evident. The converse of this stalcment is a con-
sequence of the above mentioned result of L. KovAcs, and Theorem 1 of S. Lasos [10].

Finally the equivalence of the conditions (VI)—(XV) with each other and with
condition (I) was proved [14].

Thus Theorem 3 is proved.

It is known that every regular ring is semisimple in the sense of N. JACOBSON,
The following assertion characterizes the semisimple rings A in the class of rings
with property:
(%) The lattice of all right ideals of A is a chain®).

Proposition 8. For a ring A with property (%) the following conditions are
equivalent:

(M) A is semisimple.

(IL) A is regular.

(1Y) A is strongly regular.

(IV) A is direct sum of division rings.

(V) A is a division ring.

Proof. In what follows we assume that the ring A satisfies the condition ().
It is easy to see, that Proposition 8 will be proved if we demonstrate the equivalence
of (I) and (V), because every class () of rings in Proposition 8 contains the class of
rings with property (N + 1), where N=1I, II, IIL, IV.

Suppose that 4 is a ring with radical J=0. Then the intersection of the modular
maximal right ideals R; (1€ A) of A4 is (0) by N. JAcosson [5], Chapter 1. In virtue
of property (%) and of the maximality of the right ideal R, we conclude R,=0,
whence A contains no non-trivial right ideals. Therefore A is a division ring.

Proposition 8 is completely proved.

Remark 6. A subclass of the class of rings with property (%) was earlier
discussed by E. C. PosNER [17]. Moreover, L. A. SKORNJAKOV [24] has obtained some
results concerning rings with the left-right dual of property ().

%) Cf. SzAsz [23].
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Remark 7. Let 4 be the ring of all matrices of type 2 X2 over the field with
two elements. Then 4 is a ring with sixteen elements having the property that BAB= 8
holds for every bi-ideal B of 4. Moreover, let B, be the bi-ideal generated by the

element
0 1]
0 0of

Then we obviously have B2 =034 B, . Evidently 4 is regular, but not strongly regular
and A does not satisfy condition ().
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