On the Idealizer of a Subring

By

Ferenc A. Szász, Budapest

(Received April 20, 1970)

In this note, by a ring we always mean an associative ring. For a nonzero subring S of a ring A the left idealizer L(S) of S is the greatest subring of A which contains S as a left ideal, i. e. such that $L(S) \cdot S \subseteq S$ holds. If S is a left ideal of A, then, by definition, one has L(S) = A. The right idealizer R(S) of a subring S of A can be defined right-left dually. Furthermore the intersection $J(S) = L(S) \cap R(S)$ is called the idealizer of the subring S of the ring A. Obviously J(S) = A holds if and only if S is a two-sided ideal of A.

For the fundamental notions of the theory of rings we refer to N. H. McCoy [7]. Furthermore, we recall that a general radical property in the sense of Amitsur and Kurosh (see N. DIVINSKY [2]) is hereditary, if any twosided ideal of a radical ring is again a radical ring; moreover it is supernilpotent (see Andrunakievitch [1]) if it is hereditary and every nilpotent ring is a radical ring. The ring A is called twosided T-nilpotent, if every sequence of right products $p_n = a_1.a_2...a_n$ and left products $p'_n = a_n.a_{n-1}...a_2.a_1$ of ring elements $a_i \in A$ for a large index n coincides with zero. Furthermore A is a twosided subcommutative ring if aA = Aa holds for every $a \in A$.

It should be remarked that the idealizer of a subring has been discussed before, for instance by P. A. FREIDMAN [3] and L. FUCHS [4]. Moreover, some special cases, where any subring S is a twosided ideal of the ring A, i. e. J(S) = A holds for all S, were discussed by L. RÉDEI [8], [9] and the author [12]. Rings satisfying the milder condition, that every subring S of A is a right ideal of A, i. e. R(S) = A holds for all S, were discussed by the author [11], [13].

The purpose of this note is to communicate some further statements on the idealizer of a subring of a ring.

5

Monatshefte für Mathematik, Bd. 75/1

Theorem 1. The idealizer J(S) of every nonzero subring S of a ring A coincides with S itself if and only if either A is a zero-ring of prime number order, or it is a commutative, absolute algebraic field of prime characteristic.

Proof. Since the conditions mentioned in the theorem are almost trivially sufficient, we shall prove only that these conditions are also necessary.

In what follows, let A be any ring, in which for every nonzero subring S the equation J(S) = S holds. Then, obviously, every nonzero subring S of A must be a simple ring. For every prime number p the subring $pS = [ps; s \in S]$ is a two-sided ideal of S; consequently pS = 0 or pS = S. But if pS = S for a nonzero subring S and for all p, then the additive subgroup S^+ is divisible. Being a simple ring S cannot contain a quasicyclic zero subring $C(p^{\infty})$, therefore in the case $pS = S \neq 0$ for every p, the additive group S^+ must be torsionfree, but this is again a contradiction, because the additive group of the ring $\{x\}$ generated by a single element x of infinite additive order is not divisible.

Consequently one has pA = 0 for some prime number p.

Assume first that A contains a nonzero nilpotent subring N. Then $N^2=0$, because for $N^2\neq 0$ it follows at once that $N\subseteq J(N^2)=N^2$, and consequently the contradiction $N^2=N$. Now J(S)=S for every nonzero subring S of A implies that A can contain at most one nonzero subring $\{a\}$ generated by a with $a^2=0$. For every element $x\in A$, $(axa)^2=ax.a^2.xa=0$. Consequently $axa\in \{a\}, ax\in J(\{a\})=\{a\}$. Similarly we get $xa\in \{a\}$, whence at once one has $x\in J(\{a\})=\{a\}$, that is $A=\{a\}$. Therefore, if A contains a nonzero nilpotent subring, then A itself is a zero-ring of prime number order.

Assume secondly, that A does not contain any nonzero nilpotent subring. Since $\{a\}$ is a commutative simple ring for every $a \in A$, $a \neq 0$, it is now a field. Furthermore $a \in \{a^2\} + a^2 \{a\}$ and pA = 0 imply that $\{a\}$ is a finite field. Consequently, by N. JACOBSON [5, Theorem 10. 1. 1], A is a commutative, absolute algebraic field.

This completes the proof.

Corollary 2. If every nonzero subring S of a ring A coincides with its idealizer J(S), then every nonzero subring S also coincides with its left idealizer L(S) and with its right idealizer R(S).

Theorem 3. Let **R** be a general radical property, for which all nilpotent rings are radical rings. Furthermore let S be a subring of the ring A, which is maximal among all **R**-radical subrings of A. Then J(J(S)) = J(S).

Proof. The R-radical $J(S).J(J(S)) \subseteq J(S)$, it is being contained in J(S) right annihilator of J(S)/S, immediately implies $J(J(S).J(J(S)) \subseteq S$, consequent of A. By definition of J(S) completes the proof.

Remark 4. Obviously 'theory of groups, by which N(S) of a II-Sylow subgraph A. G. Kurosh [6, page 34]

Remark 5. The radical ditary, and thus it need there exists a maximal R-nil or locally nilpotent. The are supernilpotent.

Theorem 6. If a prope then J(S) is properly large.

Proof. Assume that J(S) Since $S \neq A$, there exists fore there exist elements Assume for instance that elements $s_2, s'_2 \in S$ such the procedure we find sequent for instance $\bar{s}'_m \dots \bar{s}'_1 x \bar{s}_1$. nilpotence of the subring

Remark 7. Two import 1. S is a nilsubring right ideals (see F. SZÁSZ

2. S is nilpotent.

Theorem 8. A ring A following three conditions:

- 1. A has no divisors of
- 2. A contains a chain (

0 = where S_1 is a two-sided sub-

 $i = 0, 1, 2, \ldots, n-1;$

o subring S of a ring A o-ring of prime number of prime characteristic.

e theorem are almost se conditions are also

for every nonzero subriously, every nonzero y prime number p the ; consequently pS = 0and for all p, then the ring S cannot contain the case $pS = S \neq 0$ nfree, but this is again ie ring $\{x\}$ generated not divisible.

e number p.

tent subring N. Then that $N \subseteq J(N^2) = N^2$, W J(S) = S for every n at most one nonzero every element $x \in A$, $\{a\}, ax \in J(\{a\}) = \{a\}.$ has $x \in J(\{a\}) = \{a\},\$ ero nilpotent subring,

my nonzero nilpotent or every $a \in A$, $a \neq 0$, $\}$ and pA = 0 imply ACOBSON [5, Theorem field.

ng A coincides with its coincides with its left

, for which all nilpotent ng of the ring A, which Then J(J(S)) = J(S).

Proof. The R-radical of the ring J(S) coincides with S. Since $J(S).J(J(S)) \subseteq J(S)$, it follows that $J(S).J(J(S)) S \subseteq S$. J(J(S)) Sbeing contained in J(S) by definition, J(J(S)) + S/S obviously is a right annihilator of J(S)/S, and therefore our assumption on the radical R immediately implies $J(J(S)).S \subseteq S$. Similarly it can be shown that $S.J(J(S)) \subseteq S$, consequently S is a two-sided ideal in the subring J(J(S))of A. By definition of J(S) we have $J(J(S)) \subseteq J(S) \subseteq J(J(S))$ and this completes the proof.

Remark 4. Obviously Theorem 3 corresponds to a statement in the theory of groups, by which the normalizer N(N(S)) of the normalizer N(S) of a Π -Sylow subgroup S of a group G coincides with N(S). (See A. G. Kurosh [6, page 344].)

Remark 5. The radical property R in Theorem 3 need not be hereditary, and thus it need not be supernilpotent. But by Zorn's lemma there exists a maximal R-radical subring S of the ring A, if R is taken nil or locally nilpotent. The nil and locally nilpotent radicals obviously are supernilpotent.

Theorem 6. If a proper subring S of a ring A is twosided T-nilpotent, then J(S) is properly larger than S.

Proof. Assume that J(S) = S, and we shall deduce a contradiction. Since $S \neq A$, there exists an element $x \in A$ with $x \notin S = J(S)$. Therefore there exist elements $s_1, s_1 \in S$ such that $xs_1 \notin S$ or $s_1 x \notin S$ holds. Assume for instance that we have $xs_1 \notin S = J(S)$. Then there exist elements $s_2,\,s_2^{'}\in S$ such that $xs_1s_2\notin S$ or $s_2^{'}xs_1\notin S$ holds. Continuing this procedure we find sequences $\bar{s}_1, \bar{s}_2, \bar{s}_3, \ldots$ and $\bar{s}_1', \bar{s}_2', \bar{s}_3', \ldots$ such that for instance $\bar{s}'_m \ldots \bar{s}'_1 x \bar{s}_1 \ldots \bar{s}_n \notin S$. But this contradicts the assumed Tnilpotence of the subring S of A. Therefore $J(S) \neq S$, indeed.

Remark 7. Two important particular cases of T-nilpotent subrings S: 1. S is a nilsubring with minimum condition on the principal right ideals (see F. SZÁSZ [14]), and

2. S is nilpotent.

Theorem 8. A ring A is a division ring if and only if A satisfies the following three conditions:

- 1. A has no divisors of zero;
- 2. A contains a chain of subrings

$$0 = S_0 \subset S_1 \subset \ldots \subset S_n = A$$

where S_1 is a two sided subcommutative subring, and $S_{i+1} \subseteq J(S_i)$ holds for $i = 0, 1, 2, \ldots, n-1;$

3. This chain cannot be refined.

Proof. S_1 contains no proper ideals, and by the twosided subcommutativity and validity of the cancelling rule, S_1 is obviously a division ring with the unit element e. Now for any $x \in S_2 \subseteq J(S_1)$ one has $xe = s_1 \in S_1$ and $ex = s_1' \in S_1$. But $xe = s_1e$, $ex = es_1'$, and the cancelling rules imply $x = s_1 = s_1' \in S$ and $S_2 = S_1$. By induction on n we can also show $A = S_n = S_1$, which together with the trivial converse statement concludes the proof.

References

[1] Andrunakievitch, V. A.: Radicals of associative rings, I. Mat. Sbornik 44, 179-212 (1958); II. Mat. Sbornik 55, 329-346 (1961) (Russian).

[2] DIVINSKY, N.: Rings and Radicals, London (1965).

- [3] FREIDMAN, P. A.: Rings with idealizer condition. Izv. Vysš. Učebn. Zaved. Matemat., Kazan 3, 225—232 (1958) (Russian).
- [4] FUCHS, L.: A note on the idealizer of a subring. Publ. Math. Debrecen 1, 160—161 (1950).
 - [5] JACOBSON, N.: Structure of Rings (2. edition), Providence (1964).
 - [6] KUROSH, A. G.: Theory of Groups (3. edition) Moscow (1967).

[7] McCoy, N. H.: The Theory of Rings, New York (1964).

- [8] RÉDEI, L.: Die Vollidealringe. Monatshefte für Math. 56, 89-95 (1952).
 [9] RÉDEI, L.: Vollidealringe im weiteren Sinn, I. Acta Math. Acad. Sci. Hungar. 3, 243-268 (1952).
- [10] Shevrin, L. N.: Semigroups such that every subsemigroup coincides with its idealizer. Mat. Zapiski Sverdlovsk 3: 1, 85—87 (1961) (Russian).
- [11] Szász, F.: Über die homomorphen Bilder des Ringes der ganzen Zahlen und über eine verwandte Ringfamilie. Monatshefte für Math. 61, 37—41 (1957).
- [12] Szász, F.: On rings such that every subring is a direct summand of the ring. Mat. sbornik 40, 269-272 (1956) (Russian).
- [13] Szász, F.: Die Ringe, deren endlich erzeugbare echte Unterringe Haupt-
- rechtsideale sind. Acta Math. Acad. Sci. Hungar. 13, 115—132 (1962).

 [14] Szász, F.: Über Ringe mit Minimalbedingung für Hauptrechtsideale, I.

 Publ. Math. Debresen 7, 54, 64 (1960). H. Acta Math. Acad. Sci. Hungar. 12
- Publ. Math. Debrecen 7, 54-64 (1960); II. Acta Math. Acad. Sci. Hungar. 12, 417-439 (1961); III. Acta Math. Acad. Sci. Hungar. 14, 447-461 (1963).
 [15] Szász, F.: Die Abelschen Gruppen, deren volle Endomorphismenringe
- [15] Szász, F.: Die Abelschen Gruppen, deren volle Endomorphismenringe die Minimalbedingung für Hauptrechtsideale erfüllen. Monatshefte für Math. 65, 150—153 (1961).

Author's address:
Dr. F. A. Szász
Magyar Tudományos Akadémia
Matematikai Kutató Intézete
Reáltanoda u. 13-15
Budapest V
Ungarn