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In this note, by a ring we always mean an associative ring, For g
nonzero subring S of a ring 4 the left idealizer L(S) of S is the greatest
subring of 4 which contains S as a left ideal, i. c. such that L(S).8c 8
holds. If S is a left ideal of 4, then, by definition, one has L(S) = 4.
The right idealizer R(S) of a subring S of 4 can be defined right-lefs
dually. Furthermore the intersection JJ, (8) = L(S) n R(S) is called the
idealizer of the subring S of the ring A, Obviously J(S) = 4 holds if and
only if 8 is a twosided ideal of 4.

For the fundamental notions of the theory of rings we refer to
N. H. McCoy [7]. Furthermore, we recall that a general radical pro-
perty in the sense of Amitsur and Kurosh (see N, DIVINSKY [2]) is here-
ditary, if any twosided idegl of a radical ring is again a radieal ring;
moreover it is supernilpotent, (see ANDRUNAKIEVITCH [1]) if it is here-
ditary and every nilpotent ring is a radical ring. The ring 4 is called
twosided 7-nilpotent, if every sequence of right products Pn=0,.4y...q,
and left products Py = @n-Gyy « .. ag.ay of ring elements a; €4 for g
large index n coincides with zero. Furthermore 4 is g twosided sub-
commutative ring if ad = Aq holds fop every a € 4,

It should be remarked that the idealizer of g subring has been
discussed before, for Instance by P. A, FREIDMAN [8] and L. I'ucas [4].
Moreover, some special cases, where any subring $ is a twosided ideal
of the ring 4, 1, e, J ()= holds for all 3, were discussed by L. REpgr
[8], [9] and the author [12]. Rings satisfying the milder condition, that
every subring 8 of 4 is a right ideal of 4, 1. e. R(S) = 4 holds for all S,
were discussed by the author [11], [13].

The purpose of this note is to communicate some further statements
on the idealizer of a subring of a ring,
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Theorem 1. The idealizer J(S) of every nonzero subring S of a ring A
coincides with S itself if and only if either A is a zero-ring of prime number
order, or it is a commutative, absolute algebraic field of prime characteristic.

Proof. Since the conditions mentioned in the theorem are almost
trivially sufficient, we shall prove only that these conditions are also
necessary.

In what follows, let 4 be any ring, in which for every nonzero sub-
ring S the equation J(S) = S holds. Then, obviously, every nonzero
subring S of 4 must be a simple ring. For every prime number p the
subring pS = [ps; s € 8] is a twosided ideal of S; consequently pS = 0
or pS = 8. But if pS = & for a nonzero subring S and for all p, then the
additive subgroup S* is divisible. Being a simple ring S cannot contain
a quasicyclic zero subring C(p®), therefore in the case pS =8 =0
for every p, the additive group S™ must be torsionfree, but this is again
a contradiction, because the additive group of the ring {a} generated
by a single element « of infinite additive order is not divisible.

Consequently one has pAd = 0 for some prime number p.

Assume first that 4 contains a nonzero nilpotent subring N. Then
N% =0, because for N2 == 0 it follows at once that N g J(N?) = N?,
and consequently the contradiction N? = N. Now J(S) = S for every
nonzero subring S of 4 implies that 4 can contain at most one nonzero
subring {a} generated by @ with a® = 0. For every clement z € 4,
(aza)® = aw.a®.xa = 0. Consequently axza € {a}, ax € J({a}) = {a}.
Similarly we get za € {a}, whence at once one has e J({«}) = {a},
that is 4 = {«}. Thercfore, if 4 contains a nonzero nilpotent subring,
then A itself is a zero-ring of prime number order.

Assume secondly, that 4 does not contain any nonzero nilpotent
subring. Since {a} is a commutative simple ring for every « € 4, a = 0,
it is now a field. Furthermore « € {a*} + a®{a} and pd =0 imply
that {a} is a finite field. Consequently, by N. JacoBsox [5, Theorem
10. 1. 1], 4 is a commutative, absolute algebraic field.

This completes the proof.

Corollary 2. If every nonzero subring S of a ring A coincides with its
wealizer J(S), then every monzero subring S also coincides with its left
tdealizer L(S) and with its right idealizer R(S).

Theorem 3. Let R be a general radical property, for which all nilpotent
rings are radical rings. Furthermore let 8 be a subring of the ring A, which
s mawimal among all R-radical subrings of A. Then J(J(S)) = J(S).
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Proof. The R-radical of the ring J(S) coincides with S. Since
J(8).J(J(8)) = J(S), it follows that J(S).J(J(S)) 8 c 8. J(J(S)) S
being contained in J(S) by definition, J(JI(S)) + S/S obviously is a
right annihilator of J(S )/S, and therefore our assumption on the radical R
mmediately implies J(J(S)).8 ¢ 8. Similarly it can be shown that
S.J(J(S)) c S, consequently S is a twosided ideal in the subring J(J(S))
of 4. By definition of J (S) we have J(J(S)) c J (8) € J(J(S)) and this
completes the proof.

Remarl 4. Obviously Theorem 3 corresponds to a statement in the
theory of groups, by which the normalizer N(N(8)) of the normalizer
N(S) of a IT-Sylow subgroup 8§ of a group @ coincides with N(8S). (See
A. G. KurosH [6, page 344].)

Remark 5. The radical property R in Theorem 3 need not be here-
ditary, and thus it need not be supernilpotent. But by Zorn’s lemma
there exists a maximal R-radical subring S of the ring 4, if R is taken

nil or locally nilpotent. The nil and locally nilpotent radicals obviously
are supernilpotent.

Theorem 6. If a pro per subring S of a ring A is twosided T-mlpotent,
then J(S) is properly larger than &.

Proof. Assume that J(S) = S, and we shall deduce g contradiction.
Since S == 4, there exists an element €4 with ¢ 8 = J(S). There-
fore there exist elements S1, 8, €S such that 28, ¢ 8 or s,z ¢ S holds.
Assume for instance that wo have ws; ¢ S = J(S). Then there exist
elements s, s; € S such that 28185 ¢ S or s,as, ¢ S holds. Continuing this
procedure we find sequences &, 5, 8y ... and &, 8,5, ... such that
for instance &, ... #a5, ... 5 ¢S. But this contradicts the assumed 7-
nilpotence of the subring S of A. Therefore J (8) == 8, indeed.

Remark 7. Two important particular cases of T-nilpotent subrings S:

1. 8§ is a nilsubring with minimum condition on the principal
right ideals (see F. Szisz [14]), and

2. 8 is nilpotent.

Theorem 8. 4 ring A is a division ring if and only if A satisfies the
following thiee conditions:
L. 4 has no divisors of zero;
2. 4 contains a chain of subrings
0=8c8c...c8, =4
where Sy is a twosided subcommutative subring, and S, € J(8S,) holds for
t=0,1,2...,n—1;

h*
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8. This chain cannot be refined.

Proof. S, contains no proper ideals, and by the twosided subcom-
mutativity and validity of the cancelling rule, S, is obviously a division
ring with the unit element e¢. Now for any « €S, cJ(S;) one has
ze=s¢8; and ex=s €8, But ze=se, ex=es;, and the
cancelling rules imply z=s =38 €S and S,=S, By induction
on % we can also show 4 = 8, = §,, which together with the trivial
converse statement concludes the proof.
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