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The present note dealing with the theoretical side of topic bears rather the character
of the number theory in its genuine ring part,

Our paper aims firstly at giving a generalization of the well-known
Chinese residue theorem for the case of noncommutative rings with divisors
of zero and without twosided unity element. Secondly, we characterize
the ring of the rationa] integers, as the most important ring with unity
element among all rings, this characterization being completely abstract
and not trivial.

In our note g ring, unity, ideal and radical means always an ag-
sociative (but eventually noncommutative) ring; a twosided unity
element, a twogided ideal and the Jacobson radical, respectively.

For the used notions we refer to D. Barbilian [2], I. Bucur [3],
N. Divinsky [4], S. Bilenberg and N, Steenrod [5], H. Hasse [6],
N. Jacobson [10], J. Kaplansky [12], J. Lambek [14], N. H. McCoy [15],
and L. Rédei [16]. '

In the first part of our paper the ideals of g ring with modular
intersection play an important réle. For rings with unity the intersection
of arbitrary ideals is obviously modular, and therefore this holds also for
the particular cage of the ring of rational integers.

The importance of modular right ideals of an arbitrary ring 4
consists in the well-known fact that the radical (F of A coincides with
the intersection of all modular maxima]l right ideals of 4, where a right
ideal R of 4 ig called modular in A, if there exists an element ec 4
Satisfying # — ewe R for every #c 4. The author [18] has proved
the existence of g ring 4 with a maximal and not modular right ideal R
such that @ C R holds for the ideal @, defined below :

Q={v;2ec4, Az C R}
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The right ideals B and ideals @ with this property were called by the
author quasimodular maximal right ideals and quasiprimitive ideals,
regpectively. The intersection of all quasimodular maximal right ideals
and the intersection of all quasiprimitive ideals both, almost trivially,
coincide with the radical (7 of the ring 4. O Steinfeld [17] and in sharper
form the author [19] have proved, that every quasiprimitive ideal must
be primitive.

Furthermore, the author [20] has proved for arbitrary infinite
cardinality %, the existence of a ring 4 having ¥, different modular
right ideals, among which the intersection of every two modular right
ideals is not modular. There exist also rings with 16 elements and with
a non-modular intersection of modular right ideals. This fact is related
by author [21] to the existence of semigroups with empty Frattini subse-
migroups and having a subset which is not a semigroup. These rings
cannot be radical rings.

Every Schreier-Everett ring extension of a radical ring by means
of a radical ring is also a radical ring, Furthermore the coincidence of
the radical of a projective limit of rings with the projective limit of the
radicals of the rings was proved by Ion D. Ion [11] and D. Zelinsky
[23]. (For the definitions see [3] and [5])

THEOREM 1. Assume m = 2 for the rational integer m, and that
I(s=1,2,...,m)is a finite set of proper ideals of a ring A with mo-

m

dular intersection I, =M I, and satisfying I, + I, =4 for every
=1

§ 5=t Then, for any system

Oyy Tgy o 00y B
of elements of A there exists an element %, € 4 with (*) o, — @, € I,
for every s(1=s=m) and for another y, satisfying (*) instead of ,
the inclusion X,— g, I, holds.

Proof. By the modularity of I, there exists an element ec A
with # — ex € I, C I, for every # € A and every s(1< s< m), thus
every I, is also modular in A.

Furthermore, by our assumptions, for the case =i one has
I, + I, = A, and therefore

(1) A =TI+ I)C I+ LC A.
t=1 =1
t5Fe t£s

But by # — e C I, for everyx € A we obtain # € ex +I,C A% + I,
consequently A = A% + I, and by repetition A = A* 4+ I, for every
exponent k., Therefore, by (1) and I, C I, one has evidently

@) A+ L, CL+TILC A=A+,
=1
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which yields

(3) A=1I+ ﬁ I, for every s(1<s<m)
4 =1
LE =]

Let the ideal [T I, be denoted by X,. Then by A = I, + K, obviously
[

=1
s
there exist elements ¢, I, and ke K, provided that

(4) e =1, + k, for every s(l < s=<m).

For any fixed element i, of I, we consider the following sums

(5) @y =X ko, and y, = xy + 1,

Then %y — y,< I, trivially holds for every s, and if, conversely, we

have #y — y, € I, for every s, then 2, — y,e I,. Furthermore, by a
routine calculation, we obtain

m
(6) wl) BT m. = Z kg'mp + (ksms =1 $J)EI;
i%s
being

Y keael,
t=1

t£m
by
heE,=[[LCALCL
= -
and
ko, —x,el,

by the assumed modularity of I, D I, and by k, = e — i,.

This completes the proof of Theorem 1.

ReEMARK 1. For commutative principal ideal rings with unity
and without divisors of zero, the Chinese residue theorem can be easily
deduced from Theorem 1 ; since every ideal is principal, and (2,) + () =4
is equivalent with (¢,, ¢,) = 1, it results that the elements i, and 4,
are relatively prime. An important particular case is that of the ring
of rational integers, and for the Chinese residue theorem in this parti-
culax case, cf. e.g. L. Rédei [16], Theorem 332 and its Corollary (p. 332
of the book).
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REMARK 2. From the point of view of a symmetry, the proof of
the former theorem is somewhat similar to the proof of the well-known,
old formula of Lagrange’s interpolation from the classical analysis and
to that ofJacobson’s density theorem for primitive rings from the abstract
ring theory. (Cf. [7], [13], respectively [4], [10]).

Problem 1. Does there exist a ring A with # 4 # =50 for an ele-

ment XeA and with a nonmodular intersection of two modular right
ideals?

Problem 2. Give a necessary and sufficient condition, that the inter-
section of every two modular right ideals of a ring be also modular!

Problem 3. Does there exist a ring with a nonmodular intersection
of two modular (twosided) ideals?

Problem 4. Investigate the analogue of Problems 2, and 3 for
semigroups having zero! (Modular right ideals for these cases were
introduced by H. J. Hoehnke [8], [9]. See [22]).

THEOREM 2. An arbitrary (associative) ring A is isomorphic to
the ring I of rational integers if and only if A satisfies the following four
conditions :

(C,) 4 is infinite;

(0y) A cannot be decomposed into the direct sum of proper twosi-
ded ideals;

(Cg) A contains a nonzero idempotent right ideal R, that is B2 =

t
(0;) every finitely generated proper subring S in A is a principal

right ideal of A.
For the proof of Theorem 2 we discuss some preliminary proposi-

tions.
ProrosrTioNn 1. For any element ¢ of a ring 4 with condition
(Cy) there exist rational integers n,el satisfying

a® = ma? + ngat + ...+ na?,

Proof is by (a), = {a} + a4 C {a} and a3 = a®.a<{a?} trivial,
where { }, ( ), denote the subring and right ideal, respectively, gene-
rated by the clements in the brackets,

ProrosiTionN 2. If the additive group A* of a ring A with con-
dition (C,) is divisible (cf. Kaplansky [12]), then A% = 0 and A* either
is isomorphic to the whole group of rational numbers, or A* &= S ®C (p*)
for different prime numbers p, denoting O(p®) the Priifer’s quasicyclic
group.

Proof. By Proposition 1 there exists a rational integer #, = 0 such
that the additive group {m,a}* of the subring {na} is a direct sum
of finite number of cyelic groups. By condition (C;) the subgroup {n,a}*
contains the divisible endomorphic image n,ad* of the group A%,
consequently #,@4 = 0, and by the divisibility n,4=A4, therefore ad = 0
and A?%==0, being a an arbitrary element of A. By condition (C,) the
group A* must be locally eyelic, which already implies our assertions.

:
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PROPOSITION 3. Assume that the ring A with conditions (Cg) and
(G,) is generated by a single element ac.4, and that its additive
group A* is torsionfree. Then A is isomorphic with the ring I of rational
integers.

Proof. By Proposition 2 the group A* cannot be divisible, therefore
there exists a natural number n(s= 0) with nd == 4. Thus {na} is a
broper subring of A = {a}, being {na} C n{a}. The trivial relation
na® = na-ac{na} implies by Proposition 1 and the torsion-freeness
of A4+, that the additive group of the subring {a? is eyclic. Consequently
there exists a rational integer d satisfying a8 = d.q2. Introducing b =
=na and 8 = {b% nb}, we have b® — ndh? and 8 = {s} with the form

8 = Jib* + jomb

where j; and j, denote suitable rational integers. Assuming, indirectly,

that {a}* is not a cyclic group, there exist rational integers I, and 1

2
satisfying

b% = L(jb* + nb?) + L(jb® + nb)e,

whence one has 1 = n? (jod 4 1)2 n = +
nd == A, Therefore, A+ must be cyclic.

PROPOSITION 4., Assume that 4 is a ring with conditions (Cy)
and (C,), having a torsionfree additive group A+*. Then 4 is isomorphie
with the ring I of the rational integers.

Proof. A* is not divisible by Proposition 2 and by condition
(Cs) ; thus, there exists an integer n=£0 with n4 #F A. Let X and y be
arbitrary elements of 4. Then the subring 8 = {na, ny} is proper in
4, and also § satisfies condition (Cy). Therefore S = {s} for a suitable
element se§ and by Proposition 3 and by the torsion-freeness, S* ig
cyclie. Consequently A+ ig g torsionfree group of rank one, By condition
(C3) we have A2 £ 0, consequently 4 ig isomorphic with g subring B
of the rational number field K,. Let b be an element of B C dige IT
b is not a rational integer, then the additive group {b}* of the subring
{b} is noncyelie, consequently A=~ BC I Koy, and by the condi-
tion (Cq) also A o~ Bev T,

The proofs of the following important Propositions are almost tri-
vial, and therefore we omit their verifications,

PROPOSITION 5. Assume that A — {a} is a nilpotent ring with
conditions (C,) and pA4 = 0 for g brime number p. Then ¢3 — (.

PROPOSITION 6. Assume that A — {a} is a non-nilpotent ring
with eonditions (C,) and PA = 0 for a prime number p- Then A3 ig g
prime field, and the number | 4] of elements of 4 is a divisor of p3,

ProrosiTION 7. Every finite ring A with condition (C,) can be
generated by two elements. :

PROPOSITION 8. If the additive group A* of a finite nilpotent
ring A with condition (Cy) is & p-group with PA*=£0 for a prime number o,
then A* is cyclic.

lorn=—1 contradicting
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PROPOSITION 9. Assume that the additive group A+ of a finite
non-nilpotent ring A with condition (C,) is a p-group and pA* =0
for a prime number p. Then either A* is cyclic, or A = {a} satisfying :

-(a — p'ea) = o — plogy
O(a) = p*, O(a® — p'-a) = p,

kel, fel

k=2, 1=fsk

ProrosITION 10. Assume that the ring A with condition (Oy)
can be generated by a single element a, and that the additive group
A+ of A is mixed. Then a can be taken such that A = {a} satisfying

a.(a® — m.l.a) = a® — m.l.a, O(a® — m.l.a) =m

with a quadrat-free rational integer m and arbitrary rational integer I.
Moreover, A = {a® — m.l.a} ® {a — a® 4 m.l.a} is a direct decomposition
into proper twosided ideals.

Proof of Theorem 2. It is clear, that the ring I of rational integers
satisfies (C,), (Cp), (C3) and (C,). Conversely, let A be an arbitrary ring with
the conditions (C,), (C,), (C;) and (C,), and we shall verify 4 =~ I.

Firstly assume that the additive group A* of 4 is a torsion group.
Then A* is, by condition (C,), a p-group, being any p-component of
A+ also an ideal of 4. Let B be the ideal of 4, generated by the set of
all elements of order p of A*. If the subring B is not finitely generated,
then there exist elements b,, by, by, bye B such that b, e {by, ..., D}
for i = 1, 2, and 3. For B* = {b, b,, by, b,} one has evidently p?|| B*|,
denoting | Y| the order of Y. By B* £ B, B* = {*} and Propositions
5 and 6 ome has |B*|| p% which yields the contradiction p*|p3.
Therefore B is finitely generated, which implies by Propositions 1, 5 and
6, that B is finite.

Congequently A+ is an Abelian p-group having a finite rank, and
by condition (C,) containing at least one C(p™). Since every element of
C(p®) is a twosided annihilator of A, by (C,) the group At contains
exactly one component C(p®) in every additive direct decomposition,
that is, 4* = ¢, + C(p~), where C, is finite p*-bounded group.
It aeC(p®) and O(a) = p***, then the subring 0 = {0y, a} I8
proper and finitely generated, therefore by Proposition 4 also 0 = {¢}
with an element ce €. Obviously, C,=~0 by condition (Cj). Further-
more, by Proposition 8 the ring ¢ cannot be nilpotent, and by Proposi-
tion 9 one has

0= {ct—p.c ®{c—c+ o),
where the first direct component is a prime field. But this yields also

A = {¢® — p'.c} ® O(p™), contradicting condition (C,). Therefore AT g
not a torsion group. '
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If A* is torsionfree, then 4 is by Proposition 4 isomorphic with
the ring I of rational integers.

Now assume that A+ is a mixed Abelian group. Obviously, 4 =
=Y, {a} and by Proposition 10 also {2} = {¢,}®{w,} where the order

acsd
O(e,) is a quadrat-free natural number, and w, is of infinite order.
Eventually also e, = 0 or w, = 0 can oceur. Furthermore, in any case,
G=e¢.1f T, = Y {e} and W, = Y, {w.} then T, is a torsion (two-
aS4 a4

sided) ideal and W, is a torsions-free right ideal with Wil =10,
Assume, that 7T,-W,=~0. Then there exist {c T, and we W, with
i-w == 0, and the subring § = {t, w} cannot be commutative. Conse-
quently 8 = A4,

There exists an idempotent ecd, e* =¢ with ew == 0, we = 0,
ew = ke, keI and O(e) is a quadrat-free natural number. Since the
maximal quadrat-free divisors of %% and % coincide, by k% = (ke)? =
= ¢(we) w = 0 one has nevertheless ke — ew — 0. Therefore 4 = T,oW,
1§ a direct decomposition into proper ideals, contradicting condition (Cy).

This completes the proof of Theorem 2.

REMARK 3. Taking one of the conditions (GC,), (C,), (C,) o (Cy),
the other three conditions do not characterize the ring I of the rational
integers, as the following four examples show :

I/(p"), C(p%) ® I(p), 2I, K,
Problem 5, Give an essentially shorter but completely elementary
proof of Theorem 2!
Problem 6. Give a proof for Theorem 2 without group theoretical
methods ! (This may be also not elementary),
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