RINGS, WHICH ARE RADICAL MODULES

Ferenc A. Szász

Reprinted from Mathematica Japonicae Vol. 16, No. 2, 1971

RINGS, WHICH ARE RADICAL MODULES

Ferenc A. Szász*

(Received October 16, 1971)

Let A be an associative ring (with or without twosided unity element). Furthermore, let M be an A-right module. The Frattini submodule $\mathfrak{O}(M)$ of M is the intersection of all maximal A-submodules of M, and $\mathfrak{O}(M) = M$, if M does not have maximal submodules. An A-right module M is said to be trivial, if MA = 0 holds. Moreover, M is called a perfect A-right module, if we have MA = M. Instances of perfect modules are the unitary modules M over rings A with two-sided unity element; then $m \cdot 1 = m$ holds for $1 \in A$ and for every $m \in M$.

Following A. Kertész [4], an A-submodule S of M is said to be homoperfect, if M/S is a perfect A-right module. In [4] the subset

$$K(M) = [m; m \in M, mA \subseteq \emptyset(M)]$$

of the A-right module is introduced, and in [4] is proved, that K(M) coincides with the intersection of all homoperfect maximal submodules of M. Then $K(M)/\emptyset(M)$ is a trivial A-module. Author [5] has called K(M) the Kertész radical of the module M.

Let us consider the ring A, as an A-right module A. Then the A-sub-modules of A are the right ideals of A. The Jacobson radical F(A) of the ring A is, by N. Jacobson [3], the intersection of all modular maximal right ideals, which are obviously homoperfect submodules of the A-module A, whence one has $K_r(A) \subseteq F(A)$ for the Kertész radical $K_r(A)$ of the A-right module A. Theorem 22.15.3 of E. Hille [2, page 486] asserts

$$A \cdot F(A) \subseteq \emptyset_r(A) \subseteq F(A)$$
,

which implies, that both of $\Phi_r(A)$ and

$$K_r(A) = [a; a \in A, aA \subseteq \emptyset_r(A)]$$

are twosided ideals of A.

Author [5], [6] has proved:

(1) For a cardinality m there exist at least one ring consisting of m elements such that $K_r(A) \neq F(A)$ if and only if m is not a square-free finite

^{*} Mathematical Institute of Hungarian Academy of Sciences, Budapest, Hungary.

number;

- (2) $K_r(A)$ is not a radical in the sense of Amitsur and Kurosh (see N. Divinsky [1]). We have namely rings A having a nonzero ideal B such that $K_r(A) = 0$, but $K_r(B) = B \neq 0$;
- (3) K(M) is suitable for characterizing the Jacobson semisimple right Artin rings in the class of the rings with twosided unity element and with minimum condition on principal right ideals. cf. [6].

Theorem.* $K_r(A) = A$ holds if and only if A is a Jacobson radical ring, i.e., F(A) = A.

Proof. Assume $K_r(A) = A$. Then $K_r(A) \subseteq F(A)$ yields F(A) = A. Thereforo $K_r(A) = A$ implies F(A) = A.

Conversely, assume F(A) = A. If $\varphi_r(A) = A$, then $\varphi_r(A) \subseteq K_r(A) \subseteq F(A)$ gives $K_r(A) = A$. If $\mathfrak{O}_r(A) \neq A$, then A has a proper maximal right ideals R. We shall show, that the existence of an element $x \in A$ and of a maximal right ideal R with $xA \subseteq R$ will yield $x \in R$, however $xA \subseteq R$ trivially implies $x \in \mathbb{R}$, and from this contradiction we will verify $xA \subseteq \phi_r(A)$ for every $x \in A$; that is $K_r(A) = A$ will be proved. Namely, by the condition $xA \subseteq R$ and the maximality of R we have A=xA+R, whence there exist elements $a \in A$ and $r \in R$ with x = xa + r. By F(A) = A there exists an element $b \in A$ with a+b-ab=0, whence by r=x-xa we have

$$x = x - x \cdot (a + b - ab)$$

= $(x - xa) - (x - xa)b = r - rb \in R$.

Consequently, also F(A) = A implies $K_r(A) = A$.

This completes the proof.

Remark. Prof. A. Kertész and Dr. A. Widiger have proved $K_r(N) = N$ for nil rings N.

References

N. Divinsky, Rings and Radicals. London (1965).

E. Hille, Functional Analysis and Semigroups, Providence (1948).

[2] E. Hille, Functional Analysis and Semigroups, Providence (1964).
[3] N. Jacobson, Structure of Rings, Providence (1964).
[4] A. Kertész, Vizsgálatok az operátor-modulusok elmél A. Kertész, Vizsgálatok az operátor-modulusok elméletében, III. (Investigations in the theory of the operator modules, III; in Hungarian), Magyar Tudományos Akadémia Matematikai és Fizikai Osztályának Közleményei 9 (1959) 105-120.

[5] F. Szász, Az operátor-modulusok Kertész-féle radikáljáról (On the Kertész radical of the operator modules; in Hungarian), Magyar Tudományos Akad. Mat. Fiz. Ost. Közl. 10 (1960) 35 - 38.

[6] F. Szász, Notes on modules, III, Proc. Japan Acad. 46:4 (1970) 354-357.

^{*} This result solves a problem raised by Prof. A. Kertész and by Dr. R. Wiegandt.