87

SOME GENERALIZATIONS OF STRONGLY REGULAR RINGS I

Ferenc Szász

Reprinted from MATHEMATICA JAPONICAE Vol. 17, No. 2, 1972

SHORT ELEMENTARY PROOF OF A RINGTHEORETICAL RESULT

Ferenc Szász*

(Received September 21, 1971)

Ring means in this note an associative ring (cf. [1]). The subring, generated by a subset S of the ring A, will be denoted by $\{S\}$. Furthermore, |S| means the cardinality of a set S, and p denotes a prime number.

Following L. Rédei [2], a ring A is called one-step nonregular, if A has divisors of zero, but every proper subring of A is without divisors of zero. The paper [2] determines all one-step nonregular rings, which here will be shortly called P-rings, in a little complicated way. Later, O. Steinfeld [3] has communicated a shorter proof for the theorem of [2]. Various characterizations of the P-rings are given by R. Wiegandt [6]. The P-rings are also P_1 -rings (i.e. they satisfy aA = aAa for any $a \in A$) in the sense of author's paper [5].

The aim of this note is to give a short elementary proof for L. Rédei's result:

Theoren (cf. [2]). A ring A is a P-ring if and only if either $A^2=0$ such that |A|=p, or A is a direct sum $B \oplus C$ of some fields B and C such that |B|=|C|=p.

Proof. Assume that A is a P-ring. Then there are nonzero elements a_1 and a_2 of A such that $a_1 \cdot a_2 = 0$ and $A = \{a_1, a_2\}$. If $a_2 \cdot a_1 \neq 0$, then $(a_2 \cdot a_1)^2 = 0$ yields $A = \{a_2 \cdot a_1\}$, $A^2 = 0$ and |A| = p. In the case $a_2 \cdot a_1 = 0$ we treat $\mathcal{I} = \{a_1\} \cap \{a_2\}$. If $\mathcal{I} \neq 0$, then by $\mathcal{I}^2 = 0$ one has $\mathcal{I} = A$, and again $A^2 = 0$ with |A| = p. If $\mathcal{I} = 0$ (and $a_1 \cdot a_2 = a_2 \cdot a_1 = 0$) then the direct sum $D = \{a_1\} \oplus \{a_2\}$ can be constructed. We have D = A. Furthermore, $S_1 = \{a_1\} \oplus T_2$ and $S_2 = T_1 \oplus \{a_2\}$ coincide by $a_1 \cdot T_2 = T_1 \cdot a_2 = 0$ with A, for any nonzero subring T_i of $\{a_i\}$ (i=1,2). Hence $\{a_i\}$ (i=1,2) cannot contain nontrivial subrings. By $a_i^2 \neq 0$ and by (the shortly and elementarily proved) Lemma 1 of [4] any $\{a_i\}$ is a field such that $|\{a_i\}| = p$. Conversely, all rings mentioned in the theorem are P-rings, indeed.

^{*} Mathematical Institute of Hungarian Academy of Sciences, Budapest, Hungary.

References

- [1] N. Jacobson, Structure of Rings, Providence (1964).
 [2] L. Rédei, Die einstufig nichtregulären Ringe, Acta Sci. Math. Szeged, 20 (1959) 238-244.
 [3] O. Steinfeld, Die einstufig nichtregulären bzw. nicht primen Ringe, Acta Sci. Math. Szeged **22** (1961) 82-84.
- [4] F. Szász, Note on rings in which every proper left ideal is cyclic, Fundamenta Math. 44 (1957) 330-332.
- [5] F. Szász, Some generalizations of strongly regular rings I, Mathematica Japonicae (1972).
 [6] R. Wiegandt, Bemerkung über die einstufig nichtregulären Ringe, Acta Sci. Math. Szeged 21 (1960) 350-352.