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ON HEREDITARY RADICALS

by
F. SZASZ and R. WIEGANDT (Budapest)

0. In this paper we shall show that hereditary radical classes oecur con-
siderably frequently in the sense that to any cardinality m there exist radical
classes P, Q such that exactly 2™ radical classes R satisfy P C R C Q, and all
the radicals R are hereditary (Theorem 1). On the other hand example will be
given for hereditary radical classes P C Q such that there is no hereditary
radical between P and Q. To any radical class R there exists a unique maximal
hereditary radical class Hy with Hg C R, and a unique minimal hereditary
radical class R with R C R. It will be investigated when an upper radical
class will be hereditary (Theorems 4, 5 and 6).

1. All rings considered are associative. As it is well-known, a class R of
rings is called a radical class in the sense of KuROS— AMITSUR, if

(R 1) R is homomorphically closed,

(R 2) every ring .4 has an R-ideal R(4) which contains all R-ideals
of 4, R(A4) is called the R-radical of 4,

(R 3) the factorring 4/R(4) does not contam non-zero R-ideals.

Sometimes radical classes will be briefly called radicals. A class K of
rings is said to be hereditary, if every ideal of a K-ring is again a K-ring.
A semisimple class S means a class of rings having properties

(S 1) S is hereditary,

(S 2) if every non-zero ideal of a ring 4 has a non-zero homomorphic
image in S, then 4 is an S-ring.

Now we recall some well-known facts and constructions of the radical
theory. For details we refer to DivinNsky [5].

To any hereditary class M the class M defined as the class of all rings A4
such that every non-zero ideal of 4 can be mapped homomorphically onto
some non-zero ring of M, forms a semisimple class. If R is a radical class then
the class of all rings having zero R-radical, forms a semisimple elass which
will be denoted by SR. If M is a hereditary class, then the class of all rings
which cannot be mapped homomorphically onto a non-zero ring of M, is a
radical class, the so called upper radical class of M and we shall denote it by UM.
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To any homomorphically closed class N one can construct the lower
radical LN as follows: Let N, = N, and define N, = {every ring: every non-
zero homomorphic image of which has a non-zero ideal in N; for some [ < k}
foreach £ =2,38,....Nowlet LN be N, (cf. SULINSKI— ANDERSON — DIVINSKY
[87). If N is hereditary, then also the lower radical LN will be hereditary (ef.
ArMENDARIZ—LEAvVITT [4] and WarTERS [9]). A subring B of a ring 4 is
called an accessible subring if there is a chain B=4,C ... C 4, =4 of
subrings, such that each 4; ., is an ideal in 4, fori=1,...,n — 1.

If P and Q are radical classes then [P, Q] will denote the class of all
radicals R with PC R C Q.

2. In this section we shall show that between two radical classes there
may be relatively very many radical classes. For this sake let F be a class (but
not a set!) of fields, and let UF denote the upper radical determined by F,
‘fﬁrthér consider a subset F(m) C F of cardinality m.

TaroreEM 1. Lef P(CUF) be a radical class. If Q is the lower radical
L(P UF(m)) belonging to P UF(m), then [P, Q) has exactly 2™ radical classes,
moreover; all radicals of [P, Q] are hereditary if and only if P is hereditary.

PROQf‘. Let R be a radical of [P, Q1. Consider the subset F(n) consisting
of all fields of F(n) which are ideals in some rings of R (1 denotes the cardinality
of F(m)). Let us remark that if B € F(n) and B is an ideal of a ring 4, then 4
splits always in a direct sum 4 = B @ C, because B is a ring with unity
element. Hence A ¢ R implies also B¢ R. Thus PUF(1) C R holds which
implies L(P UF(n)) C R.

If 4 is an R-ring not belonging to P, then the ring 4, = A[P(4) is not
‘zero and it has zero P-radical, but R(4,) = 4, holds. Since Q is a lower radical,
so it is the union Q¢ = N, where N; = P U F(1) and N, is defined as in Section
1. Hence Q(4,) = 4, and so by Lemma 1 of [8] there exists an accessible
subring A, 5« 0 of A, such that A4, belongs to N;=PUF(n). If 4,¢P,
then by Theorem 1 of ANDERSON—DivINSKY —SULINSEI [1] the P-radical,
P(A4,_,)isanideal of A,_, and 0% A, TP(4, _,) holds. Hencealso 4, 3, ..., 4;
have non-zero P-radicals which contradicts the choice of 4,. Thus 4,
has an accessible subring 4, € F(m). Hence 4, is a field, and according to
ANDRUNAKIEVIC lemma for the ideal A} generated by A4, in A4;, we have
A, = A} C A% C A,. Consequently 4, is an ideal of 4; which impliés
A, € F(n). Hence, clearly R C L(P UF(n)) follows.

Since F(m) has exactly 2™ different subsets F(n), n << m, so the first
statement ‘of Theorem 1 is proved. The second statement follows immediately
from the fact that a lower radical LN is hereditary if N is hereditary (of.
ARMENDARIZ—LEAvVITT [4], Lemma 3 or WarTeRs [9], Corollary 4).

Asan immediate consequence Theorem 1 yields

¢ Tn ‘the sense of the Zermelo— Fraenkel set theory.
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-Cororrary 1. If P C UF and the subclass G of F is not a set, then for
Q = L(P U G) the radicals of [P, Q] form a class but not a set. If P is hereditary,
then also the radicals of [P, Q] are hereditary.

3. Here we are going to prove the existence of a unique maximal hered-
itary radical contained in a radical class R and we shall characterize it.

TrEOREM 2. If R is an arbitrary radical class, then there exists a unigque
maximal hereditary radical Hg C R, moreover, Hy, is the union of all hereditary
radicals H C R.

Proor. If Hy, is the union of all hereditary radicals contained in R, then
Hj, is a homomorphically closed hereditary class. Thus the lower radical LHg
is hereditary and it satisfies Hy C LH, C Hy. Hence Hy — LH; is valid.

Tarorem 3. If R is an arbilrary radical class, then the maximal hereditary
radical Hy consists of all rings each non-zero accessible subring of which has no
non-zero homomorphic image in the semisimple class SR.

ProOF. As it is well-known, R is just the upper radical USR of the semi-
simple class SR. Let A denote the class of all rings each non-zero accessible
subring of which has no non-zero homomorphic image in the class SR. We
have to show A = Hg. The class A is obviously homomorphically closed and
hereditary, so the lower radical LA is again hereditary, further A C LA C
C USR = R holds. Thus A C LA C H; follows. On the other hand, con-
sider a ring 4 € Hg. 4 cannot be mapped homomorphically onto any non-
zero ring of SR C SHy, further, since Hy is hereditary, so every accessible
subring of A4 belongs to Hg, and it cannot be mapped homomorphically onto
a non-zero ring of SR. This means 4 € A, that is Hy C A.

4, In Theorem 1 we have seeh examples for classes [P, Q] of radicals
consisting of hereditary radicals. Generally, a class [P, Q] of radicals may
consist of non-hereditary radicals, except of P and Q.

Examrir 1. Let P = {0} be the zero radical class, and Q the lower
radical determined by the zero ring Z(p) over a cyclic group of prime order p.
If H >« P is a hereditary radical of [P, Q], then every ring A € H belongs to
Q, and so 4 has an accessible subring isomorphic to Z(p). Since H is hereditary,
so it follows Z(p) € H, and Q = LZ(p) C H. On the other hand it is easy to
see that the lower radical Z(p~) determined by the zero-ring Z(p~) over the
quasicyclic group C(p~), consists exactly of rings which are (discrete) direct
sums of rings isomorphic to Z(p=). Since LZ(p~) 5= Q so it is not hereditary.
Hence [P, Q] does not contain hereditary radicals differing from P and Q, but
it contains the non hereditary radical LZ(p~). (Hereditary subradicals of the
lower Baer-radical were treated in [3].)
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If P C Q are arbitrary radicals, then in [P, Q] we can define two opera-

tions. The intersection N R; of a family {R;}, ., of radicals from [P, Q] is
el *

again a radical, and it belongs to [P, Q]. If R, R, € [P, Q], then the sum
R, + R, can be defined as the lower radical L(R; UR,). (Another represen-
tations of R, -+ R, are given in LEAVITT [6], where it is called the join radical.)
If Q is hereditary, then to any R € [P, Q] the hereditary closure R means the
intersection of all hereditary radicals of [P, Q]. Obviously R is the lower
radical determined by the rings of R and their ideals. It is also obvious that the

hereditary closure operation in [P, Q] is topological, in the sense that iil + R, =
=R, + R,.
Combining these considerations with Theorem 2, it follows

CoroLLARY 2. If the radical R is non-heredifary, then there are hereditary
radicals P and Q (P == Q) such that [P, Q] does not contain hereditary radicals
except of P and Q, further R ¢ [P, Q].

Choose, namely P = Hy and Q = R.

5. Hereditary radicals appear usually by lower radical constructions.
ARMENDARIZ [2] and RyapUuHIN [7] have characterized the semisimple classes
having hereditary upper radicals. Here we make further investigations about
the hereditariness of upper radicals.

TurEOREM 4. Let M be a hereditary class. The upper radical UM is hereditary
if and only if UM consists exactly of all rings, each mon-zeroaccessible subring
of which has no non-zero homomorphic image in the class M. ‘

Proor. By Theorem 3 the radical UM is hereditary if and only if UM
consists of all rings each accessible subring of which has no non-zero homo-
morphic image in the semisimple class SUM = M. Hence if 4 ¢ UM, then
obviously no accessible subring of 4 can be mapped homomorphically on a
ring of M C M, and if 4 ¢ UM, then there is an accessible subring B of 4,
which has a non-zero homomorphic image B, in M, moreover, B, can be
mapped homomorphically onto a non-zero ring of M.

In the following two theorems we present sufficient conditions for the
hereditariness of upper radical classes. In what follows, let M denote always a
hereditary class of rings, and consider the following conditions:

(i) M is homomorphically closed.

(ii) If L is an ideal of an ideal I of a ring A4 such that I/, ¢ M, then L is
an ideal of 4. '

(iii) If I is a non-zero ideal of a ring A4 and I¢M, then there
exists a proper ideal N of 4 such that I + N = 4.

(iv) If I is an ideal of 4 with I € M, and [, denotes the annihilator of 1

in 4, then 4/I,€M follows.
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Let us recall that the (two-sided) annihilator of I is defined as [, =
= {x€d|al = Iz = 0}.

According to conditions (i)—(iv), observe that for instance every class
of simple rings with unity element, satisfy all these conditions.

THEOREM 5. If the heréditary class M fulfils conditions (i), (ii) and (i),
then the upper radical class UM is hereditary.

Proor. Suppose UM is not hereditary, and let 4 € UM be a ring having
a non-zero ideal I § UM. Now I can be mapped homomorphically on a non-zero
ring of M, i.e. there exists an ideal I of I such that 0 = I/L ¢ M. By condition
(il L is an ideal of 4. Hence I/L is an M-ideal of 4/L, and so by (iii) there
exists an ideal N/L of A/L such that A/L = I/L + N|L, and N|L = A[L.
This implies I + N = 4 and L. C I, N, so it follows

05 AJN = (I + N)/N e IJINN),

and I/(IMNN) is a homomorphic image of I/L¢€ M. Hence by (i) we have
AIN =< I[(INN)¢M, contradicting the assumption A4 ¢ UM.

THEOREM 6. [f the hereditary class M fulfils conditions (ii} and (iv), then
the upper radical class UM is hereditary.

Proor. If UM is not hereditary, then there exists a ring 4 ¢ UM having
an ideal 0 == I § UM. By Theorem 1 of ANDERSON —DI1VINSKY —SULINSKI [1],
the UM-radical UM(J) of I is an ideal of 4, and 4’ = A/UM(J) belongs to UM
but it has an ideal 0 5« I’ = I/UM(I) belonging to SUM = M. Since any non-
zero ideal of I’ can be mapped homomorphically onto a non-zero ring of M,
therefore there is an ideal L of I’ such that I’/L’ ¢ M. But I’/L’ is a homomorphic
image of I, so there is an ideal L of I with I/L =~ I’/L’ ¢ M. Hence condition
(i) implies that L is an ideal of 4. Consider 4” = A/L and I” = I|L. For the
annihilator I of I” in A” conditions (iv) implies 0 5= A/I ~ A|L[I|L =
= A"[L” ¢ M, contradicting the assumption 4 € UM.

Concerning Theorem 6 we can prove that in some cases the rings of the
semisimple class M are subdirect sums of M-rings. For this aim we need the

concept of idealquotients. As usual, the two-sided idealquotient L : I of the
ideal I C_ A4 is defined as the set

L:T={xcd|2lCLIzCL}.

Obviously, if also L is an ideal of 4, then L : I is an ideal of 4. Consider the
following condition

(v) If L and I are ideals of the ring A4 such that I/L¢M, then
(L:I)NI =L is valid.
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Let us remark that if M is a class of simple rings with unity element,
then also condition (v) is fulfilled.

THEOREM 7. If the hereditary class M satisfies conditions (ii), (iv) and (v)
then every ring of the semisimple class M is a subdirect sum of M-rings.

Proor. Consider a ring 4 ¢ M. Since A has a non-zero homomorphié
image in M, so there exists an ideal M of 4 with 0 == A/M ¢ M. Let {#,} be
the set of all ideals of 4 such that A/M,€ M. Taking I = 0 M,, it is suf-

ficient to verify I = 0. Suppose I 5« 0. Since M is a hereditary class, so 4 ¢ M
implies I € M. Consequently there exists an ideal L of I with 0 5= I/L € M.
Hence by condition (ii) L is an ideal of 4, moreover, the annihilator of I/L in
A is just (L : I)/L. Hereby condition (iv) implies

CANL:D e AL (L:D/LEM,
Thus (L : I) € {M,} follows and so I C (L : I) helds. By (v) we obtain
IC(L:INI=LCI

which contradicts the choice of L.

Observe that condition (i) is not necessary to the hereditariness of the
upper radical. Consider namely the class of all primitive rings in the sense of
JACOBSON. As it is well-known, this class contains primitive rings having non-
zero nilpotent homomorphic images, and so this class is not homomorphically
closed. On the other hand, the upper radical belonging to this class coincides

‘with the Jacosson-radical class which is hereditary. '

Finally, in the next example we shall show that all the conditions (ii),

(iii) and (iv) are not necessary for the hereditariness of an upper radical class.

ExamPLE 2. Let R be the class of all rings in which the non-zero ideals
are idempotent. (The vox NEUMANN regular rings belong for instance to R.) As
it is well-known, R forms a radical class, moreover it is hereditary. The radical
class R can be regarded as the upper radical of its semisimple class SR. We
show that none of conditions (ii), (iii) and (iv) is fulfilled by the hereditary
class SR. Consider namely the algebra A4 over the rational number field,
generated by the basis elements a, and a, with the multiplication-rules a;@; =
= ag;a, = a;, (i = 1, 2), and a; = 0. Obviously the subalgebra Ay, = {ay} is a
minimal ideal of A4, further, it is nilpotent, hence it belongs to the class SR.
Condition (i) is not satisfied, because for any proper additive subgroup B of
A, the factorring 4,/B is again a zeroring, and so 4,/B € SR holds, but B is
not an ideal of A, and (ii) is not fulfilled. Since A has only one proper ideal,
namely A,, so there does not exist a proper ideal N of 4 such that 4, +- N = 4.
Hence (iii) is not satisfied. At last, observe that the annihilator of 4, is itself,
but A[A, is isomorphic to the rational number field, and so it belongs to R
and not to SR. Thus also condition (iv) is not valid for SR.
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