
Periodica Mathematgca Hungaric a Vol. 3 (3-4),  (1973), pp. 235--24L 

ON HEREDITARY RADICALS 

by 

F. SZASZ and R. WIEGAI~DT (Budapest) 

0. In this paper we shall show that  hereditary radical classes occur con- 
siderably frequently in the sense that  to any cardinality m there exist radical 
classes P, Q such that  exactly 2 m radical classes R satisfy P C R C Q, and all 
the radicals R are hereditary (Theorem 1), O n t h e  other hand example will be 
given for hereditary radical classes P G Q such that  there is no hereditary 
radical between P and Q. To any radical class R there exists a unique maximal 
hereditary radical class H R with H R ~ R, and a unique minimal hereditary 
radical class R with R C R. I t  will be investigated when an upper radical 
class will be hereditary (Theorems 4, 5 and 6). 

1. All rings considered are associative. As it is well-known, a class R of 
rings is called a radical class in the sense of Ktr~os--Al~iiTSrrR, if 

(R 1) R is homomorphically closed, 
(R 2) every ring A has an R-ideal R(A) which contains all R-ideals 

of  A, R (A) is called the R-radical of A, 
(g  3) the factorring A/R(A)  does not contain non-zero R-ideals. 
Sometimes radical classes will be briefly called radicals. A class K of 

rings is said to be heredilary, if every ideal of a K-ring is again a K-ring, 
A semisimple class S means a class of  rings having properties 

(S 1) S is hereditary, 
(S 2) if every non-zero ideal of a ring A has a non-zero homomorphic 

image in S, then A is an S-ring. 
Now we recall some well-known facts and constructions of the radical 

theory. For details we refer to DIVI~SKu [5]. 
To any hereditary class lg the class M defined as the class of all rings A 

such that  every non-zero ideal of A can be mapped homomorphically onto 
some non-zero ring of M, forms a semisimple class. I f  R is a radical class then 
the class of all rings having zero R-radical, forms a semisimple class which 
will be denoted by SR. I f  M is a hereditary class, then the class of all rings 
which cannot be mapped homomorphically onto a non-zero ~ng of M, is a 
radical class, the so called upper radical class of M and we shall denote it by UM. 
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To any homomorphically closed class N one can construct the lower 
radical LN as follows: Let N 1 ---- N, and define Nk z {every ring: every non- 
zero homomorphic image of which has a non-zero ideal in Nl for some 1 < k} 
for each k = 2, 3 , . . . .  Now let LN be N~ (cf. SVLI~SKI--ANDE~SON--DI~cINsxY 
[8]). I f  N is hereditary, then also the lower radical LN will be hereditary (of. 
A~MENI)AI~Iz--L]~AVITT [4] and WATTleS [9]). A subring B of a ring A is 
called an accessible subring if there is a chain B = A n C . . .  C A 1 = A of 
subrings, such tha t  each Ai+ ~ is an ideal in At for i = 1, . . , n .... 1. 

I f  P and Q are radical classes then [P, Q] will denote the class of all 
radicals R with P C R ~ Q. 

2. In  this section we shall show tha t  between two radical classes there 
may be relatively very many radical classes. For this sake let F be a class (but 
not a set 1) of fields, and let UF denote the upper radical determined by F, 
fur ther  consider a subset F(m) ~ F of cardinality m. 

: THEO~E~r 1. Let P ( C U F )  be a radical class. I f  Q is the lower radical 
L ( P  UF(m))belonging to P U F(m), then [P, Q] has exactly 2 ~ radical classes, 
moreoveri all radicals of [P, Q] are hereditary i f  and only i f  P is hereditary. 

P~oo~i Le t  R be a radical of [P, Q]. Consider the subset F(u) consisting 
of  all fields of F(10 which are ideals in some rings of R (1~ denotes the cardinality 
of F(m)). Let us remark tha t  if B 6 F(II) and B is an ideal of a ring A, then A 
splits always in a direct sum A ~ B G C, because B is a ring with uni ty 
element. Hence A ~ R implies also B ( R. Thus P U F(rt) ~ R holds which 
implies L(P U FOr)) C R. 

I f  A is an R-ring not belonging to P, then the ring A 1 ~ A/P(A) is not 
zero and it has zero P-raAical, b ~  R(A~) ----- A1 holds. Since Q is a lower radical, 
so it is the union Q = N~ where N 1 = P U F(~t) and N~ is defined as in Section 
1. Hence Q(A1)----A 1 and so by Lemma 1 o f  [8] there exists an ~ccessible 
subring A n # ~ 0  of A 1 such tha t  A,~ belongs to N ~ = P U F ( u ) .  I f  A , 6 P ,  
then by Theorem 1 of A~DE~SON--DIw~sxY--SunI~SKI [1] the P-radical, 
P(A~,_I) is an ideal ()f A._~ and 0 s~ A~ C~_P(A~_I) holds. Hence also A~_s, -.-, A1 
have non-zero P-radicals which contradicts the choice of A 1. Thus A 1 
h a s a n  accessible subring An E F(m). Hence A~ is a field, and according to 
A~D~V~AXIEV~5 lemma for the ideal A*~ generated by A.  in A 1, we have 
A n - ~  A~___ A *~ ~ A~. Consequently An is an ideal of A 1 which impli6s 
A~ 6 F(u). Hence, clearly R ~___ L(P U F(~)) follows. 

S i n c e  F(va) has exactly 2 m different subsets F(u), ~ ~ n~, so the first 
s tatemeni  :of Theorem 1 is proved. The second statement follows immediately 
from the fact  tha t  a lower radical LN is hereditary if N is hereditary (el. 
A ~ E ~ ) ~ z - - L E X W ~ T  [4], Lemma 3 or W~TE~S [9], Corollary 4). 

As a n  immediate consequence Theorem 1 yields 

In  ~he sense of the Zermolo--Fraenkel set theory. 
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�9 COROLLARY 1. I f  P C UF and the subclass G of F is not a set, then for 
Q = L(P U G) the radicals of [P, Q]form a class but not a set. I f P  is hereditary, 
then also the radicals of [P, Q] are hereditary. 

3. Here we are going to prove the existence of a unique maximal hered- 
i ta ry  radical contained in a radical class R and we shall characterize it. 

TI~EOl~E~[ 2. I f  R is an arbitrary radical class, then there exists a unique 
maximal hereditary radical ttR C_ R, moreover, H a is the union of all hereditary 
radicals H C R. 

PROOF. I f  II a is the union of all hereditary radicals contained in R, then 
H a is a homomorphically closed hereditary class. Thus the lower radical LH a 
is hereditary and it satisfies t t  a C_ LH a C H a. Hence tIR = LtI  a is valid. 

T ~ E o ~  3. I f  R is an arbitrary radical cla~s, then the maximal hereditary 
radical H a consists of all rings each non-zero accessible subring of which has no 
non-zero homomorphie image in the semisimple class SR. 

P~ooF. As it is well-known, R is just the upper radical USR of the semi- 
simple class SR. Let. A denote the class of all rings each non-zero accessible 
subring of which has no non-zero homomorphic image in the class SR. We 
have to show A = H R. The class A is obviously homomorphically closed and 
hereditary, so the lower radical LA is again hereditary, further A C LA C___ 
__C U S R =  R holds. Thus A C___ LA ___C H a follows. On the other hand, con- 
sider a ring A E Ha. A cannot be mapped homomorphically onto any non- 
zero ring of SR C_ Sits, further, since H~ is hereditary, so every accessible 
subring of A belongs to Ha, and i t  cannot be mapped homomorphically onto 
a non-zero ring of SR. This means A ( A. tha t  )s H a C: A. 

4. In Theorem 1 we have seen examples for classes [P, Q] of radicals 
consisting of hereditary radicals. Generally, a class [P, Q] of radicals may 
consist of non-hereditary radicals, except of P and Q. 

EXAMPLE 1. Let  P = {0} be the Zero radical class, and Q the lower 
radical determined by the zero ring Z(p) over a cyclic group of prime order p. 
I f  H ~ P is a hereditary radical of [P, Q], then every ring A E H belongs to 
Q, and so A has an accessible subring isomorphic to Z(p). Since t t  is hereditary, 
so it follows Z(p) C_ tI, and Q = LZ(p) C_ H. On the other hand it is easy to  
see tha t  the lower radical Z(p ~) determined by the zero-ring Z(p ~) over the 
quasicyclic group C(p ' ) ,  consists exactly of rings which are (discrete) direct 
sums of rings isomorphic to Z(p~). Since LZ(p ~) =~ Q so it is not hereditary. 
Hence [P, Q] does not contain hereditary radicals differing from P and Q, but 
it contains the non hereditary radical LZ(p~). (Hereditary subradicals of the 
lower Baer-radical were treated in [3].) 
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I f  P C Q are arbitrary radicals, then in [P, Q ] we can define two opera. 
tions. The intersection N Ri of a family {Ri}ic I of radicals from [P, Q] is 

i E 1  ' 

again a radical, and it belongs to [P, Q]. I f  R 1, R 2 E [P, Q], then the sum 
R 1 + R~ can be defined as the lower radical L(R 1 U R2). (Another represen- 
tations of R 1 -~ R 2 are given in LEAVITT [6], where it is cMled the join radical.) 
I f  Q is hereditary, then to any R E [P, Q] the hereditary closure R means the 
intersection of all hereditary radicals of [P, Q]. Obviously R is the lower 
radical determined by the rings of R and their ideals. I t  is also obvious tha t  the 

hereditary closure operation in [P, Q] is topological, in the sense tha t  R 1 -~ R., = 

= R 1 - ~  R 2. 

Combining these censiderations with Theorem 2, it follows 

CO~OLL~Y 2. I f  the radical R is non-hereditary, then there are hereditary 
radicals P and Q (P =~ Q) such that [P, Q] does not contain hereditary radicals 
except of P and Q, further R E [P, Q]- 

Choose, namely P = H R and Q = R. 

5. Hereditary radicals appear usually by lower radical constructions. 
A~ME~DA~IZ [2] and RJABUtIIN [7] have characterized the semisimple classes 
having hereditary upper radicals. Here we make further investigations about 
the hereditariness of upper radicals. 

TEEO]~EM 4. Let M be a hereditary class. The upper radical UM is hereditary 
i f  and only i f  UM consists exactly of all rings, each non-zero accessible subring 
of which has no non-zero homomorphic image in the class M. 

PROOF. By Theorem 3 the radical UM is hereditary if and only if UM 
consists of ~11 rings each accessible subring of which has no non-zero homo- 
morphic image in the semisimple class SUM = M. Hence if A E UM, then 
obviously no accessible subring of A can be m~pped homomorphically on a 
ring of M C__ M, and if A ([ UM, then there is an accessible subring B of A, 
which has a non-zero homomorphic image B 1 in M, moreover, B 1 can be 
mapped homomorphically onto a non-zero ring of M. 

In the following two theorems we present sufficient conditions for the 
hereditariness of upper radical classes. In what follows, let M denote always a 
hereditary class of rings, and consider the following conditions: 

(i) M is homomorphically closed. 
(ii) I f  L is an ideal of an ideal I of a ring A such tha t  I lL E M, then L is 

an ideal of A. 
(iii) I f  I is a non-zero ideal of a ring A and I E M ,  then there 

exists a proper ideal/V of A such tha t  I @ N = A. 
(iv) I f  I is an ideal of A with I E M, and I 0 denotes the annihilator of 1 

in A, then A / I  o E M follows. 
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Let  us recall  t h a t  the  (two-sided) annihi la tor  of  I is def ined as I 0 ~- 

=: {xE A l x I  = Ix---- 0}. 
According to condit ions (i)--(iv),  observe t h a t  for instance every  class 

of  simple rings with un i ty  e lement ,  sat isfy all these conditions.  

T~EO~EM 5. I f  the hereditary class M fulfils conditions (i), (it) and (iii), 
then the upper radical class UM is hereditary. 

PROOF. Suppose t i m  is not  hered i ta ry ,  and  let A E UM be a ring having 
a non-zero ideal I (~ UM. Now I can be mapped  homomorphica l ly  on a non-zero 
ring o f  M, i.e. there  exists an ideal L of  I such t h a t  0 -~ 1/L E M. By  condit ion 
(it) L is an ideal of  A. Hence  I /L is an M-ideal of  A/L, and so by  (iii) there  
exists an ideal N/L of  A/L such t ha t  A/L = I/L + NIL, and  N/L ~ A/L. 
Thi~ implies I + N ---- A and  L C I ,  N,  so it follows 

0 ~ A / N  : (I + N) /N ~ I / ( I  0 N ) ,  

and  I / ( I N N )  is a homomorphic  image of  I /L E M. Hence  by  (i) we have  
A / N  ~=~ I / ( I  M N) E M, cont radic t ing  the  assumption A E UM. 

THEOREM 6. I f  the hereditary class M fulfils conditions (it) and (iv), then 
the upper radical class UM is hereditary. 

PnOOF. I f  UM is not  hered i ta ry ,  t hen  there  exists a ring A 6 ~ having 
an ideal 0 ~= I q UM. By  Theorem 1 of  ANDE~SO~C--DIVINS~Y--SuLI~SKI [1], 
the  UM-radical  UM(I) of  I is an ideal of  A, and  A '  -~ A/UM(I) belongs to  UM 
b u t  it  has an ideal 0 =/- I" ~ I/UM(I) belonging to  SUM ~ M. Since any  non- 
zero ideal of  I '  can be m~pped homomorphica l ly  onto  a non-zero ring of  M, 
therefore  there  is ~n i d e a l L '  o f / '  such t h a t  I'/L" E M. Bu t  I'/L" is a homomorph ic  
image of  I ,  so there  is an ideal L of  I wi th  I/L ~--- I'/L" E M. Hence  condi t ion 
(it) implies t h a t  L is an ideal of  A. Consider A" ----- A/L and I" ~ IlL. For  the  
annih i la tor  Ig o f  I"  in A" condit ions (iv) implies 0 ~= A / I  ~ A/L/I/L------- 

A"/L" E M, cont radic t ing  the  assumpt ion  A E UM. 

~oncerning The.orem 6 we can prove  t h a t  in some cases the  rings of  the  
semis!mple class M are subdirec t  sums of  M-rings. For  this aim we need the  
concept  of  idealquot ients .  As usual, the  two-sided idealquot ient  L : I of  the  
ideal I .(7s A is def ined as the  set 

L ' I ~- (xE A [x l  CC_L, I x C _ L }  . 

Obviously,  if  ~lso L is an ideal of  A, t hen  L : I is ~n ideal of  A. Consider the  
following condit ion 

(v) I f  L and  I are ideals of  the  ring A such t h a t  I /LCM,  t hen  
�9 (L : I )  N I ---- L is valid. 
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Let us remark tha t  if M is a class of simple rings with uni ty element, 
then also condition (v) is fulfilled. 

T~Eolr 7. I f  the hereditary class M satisfies conditions (ii), (iv) and (v) 
then every ring of the semisimple class M is a subdireet sum of M-rings. 

PROOF. Consider a ring A E M. Since A has a non-zero homomorphie 
image in M, so there exists an ideal M o f  A with 0 r AIM E M. Let (M~} be 
the set of all ideals of A such that  A/M~ E M. Taking I = N M~, it is suf- 

ficient to verify I = 0. Suppose I ~ 0. Since M is a hereditary class, so A E M 
implies I E M. Consequently there exists an ideal L of I with 0 ~ IlL E M. 
Hence by condition (ii) L is an ideal of A, moreover, the annihilator of IlL in 
A is just (L : I)/L. Hereby condition (iv) implies 

A/(L : I) ~ A /L  / (L : I)/LE M . 

Thus (L : I) E {M~} follows and so I C (L : I) helds. By (v) we obtain 

I C_(L :I) N i = L C ~ _ I  

which contradicts the choice of L. 
Observe tha t  condition (i) is not necessary to the hereditariness of the 

upper radical. Consider namely the  class of all primitive rings in the sense of 
J~co~so~. As it is well-known, this class contains primitive rings having non- 
zero nilpotent homomorphic images, and so this class is not homomorphically 
closed. On the other hand, the upper radical belonging to this class coincides 
with the JAcoBsoN-radical class which is hereditary. 

Finally, in the next example we shall show tha t  all the conditions (ii), 
(iii) and (iv) are not necessary for the hereditariness of an upper radical class. 

EXA~PLE 2. Let R be the class of all rings in which the non-zero ideals 
are idempotent. (The voN NEU~NN regular rings belong for instance to R.) As 
it is well-known, R forms a radical class, moreover it is hereditary. The radical 
class R can be regarded as the upper radical of its semisimple class SR. We 
show tha t  none of conditions (ii), (iii) and (iv) is fulfilled by the hereditary 
class SR. Consider namely the algebra A over the rational number field, 
generated by the basis elements a~ and a~ with the multiplication-rules a~ ai ----- 

2 0. Obviously the subalgebra A 2 -= {a2} is a aia 1 ---- ai, (i ~ l, 2), and a2 
minimal ideal of A, further, it is nilpotent, hence it belongs to the class SR. 
Condition (ii) is not satisfied, because for any proper additive subgroup B of 
A2 the faetorring A2/B is again a zeroring, and so A2/B E SR holds, but B is 
not an ideal of A, and (ii) is not fulfilled. Since A has only one proper ideal, 
namely A 2, so there does not exist a proper ideal N of A such tha t  A 2 @ N = A. 
tIence (iii) is not satisfied. At last, observe tha t  the annihilator of A 2 is itself, 
but A/A 2 is isomorphic to the rational number field, and so it belongs to R 
and not to SR. Thus also condition (iv) is not valid for SR. 
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