4

COLLOQUIA MATHEMATICA SOCIETATIS JANOS BOLYAI
6. RINGS, MODULES AND RADICALS. KESZTHELY (HUNGARY), 1971

An almost subidempotent radical property of rings

F. A. SZASZ

All rings, considered in this paper, are associative (with or without unity ele-
ment). Unity element and ideal here always mean two sided ones. For arbitrary sub-
sets B and C of aring A, the product B - C will denote the additive subgroup,
generated by all products bc with bEB and c¢c€C of A. We denote the inter-
section of the powers A" taken for all natural n, by A“. For every element a €&
€A, the product (@), A of the principal left ideal (@), and of A, will be de-
noted by R(a).

Then one has R(a) =aA + AaA, which is obviously an ideal of A. Gener-
ally, the condition a &€ R(a) does not hold for an element @ of an arbitrary ring A.
It can be easily shown, that &« & R(a) holds if and only if the homomorphic image
H=A/R(a) of A hasa nonzero left annihilator a + R(a).

The class € of all rings (formerly called by the author in [25] F-rings),
such that every homomorphic image has no nonzero left annihilators, is suitable to
give a sequence of criteria for the existence of the unity element of a ring. For this
sequence see Sitze 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.2.1, 3.2.2,3.3.1,3.3.2,34.1 and 34.2
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Following de la Rosa [22, page 13], an ideal @ of the ring A is said to
be quasi-semi-prime, if A +-T+A<Q implies 7€ for every ideal I of A. The
semi-prime ideals, which are arbitrary intersections of prime ideals of A, are instances
for quasi-semi-prime ideals; calling an ideal P prime in A4, if BCCP implies B P
or CCP forarbitrary ideals B and C of A. Furthermore, a ring A is called in [22]
a A-ring, if all its ideals are quasi-semi-prime in 4. Let A denote the class of all \-
rings. Theorem 5.1 of de la Rosa [22] asserts, that a ring A isa A-ring if and only
if @€ AaA holds for every @ €A, whence one obviously has:

ACCS.

Consequently, every A-ring A is idempotent, but in general it is not strongly

idempotent.

A common generalization of the Eg-rings and of the \-rings are the F-regular
rings in the sense of B. Brown and N.H. McCoy [10]. These authors further gener-
alized the [ -regularity for some (noncommutative) groups with operators. For this see
B.Brown — N.H.McCoy [11]. To define the F-regularity of a ring A, assume,
that A satisfies the following conditions:

(1) There exists a mapping a - F(a) of the set of all elements a of A
into the set of all ideals of A (i.e. F(a) is here an ideal of A).

(2) IMay) = (F(a))p holds for every a& A and for every (ring-theoretical)
homomorphism ¢ of A.

Now, aring A is said to be F-regular, if a < F(a) holds for every a€ A.
The E g-rings (and the M-rings, too) are evidently F-regular for F(a)= R(a) (or
F(a) = AaA, respectively). But the Brown - McCoy @ -radical rings | 10] are also F-
regular for

Fla)=(1 -a)A + A(1 —~a)A ,
where we use the following notation, even for 1&A:
(1-a)A=|x —ax; xEA].

A radical property of rings in this paper is always understood in sense of
S.A. Amitsur [1]and A.G. Kuro§[20]. For this notion also see the good elaboration
of the theory in the book of N. Divinsky [14].
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Moreover, A is idempotent, however it is R -semisimple.

Following V.A. Andrunakievi¢ [3], aring A is called antisimple, if it can-
not be homomorphically mapped onto a subdirectly irreducible ring § having an
idempotent heart, /7, which is the nonzero intersection of all nonzero ideals of S. Ev-
ery nilpotent ring is obviously antisimple. The class of all antisimple rings forms a radical
class, which is supernilpotent. Let us mention, a famous unsolved problem: Does the
antisimple radical in every ring contain the upper nil radical of G. Koethe?

Following V.A. Andrunakievi¢ [4],aring 4 issaid to be strongly T-semi-
simple for a radical T, if every homomorphic image of A is T-semisimple. An exam-
ple for a strongly T-semisimple ring is every simple ring, which is also T-semisimple.
A. Sulifiski [23] in his fundamental paper has characterized the [strongly Brown
McCoy semisimple rings, with the aid of an] interesting system of invariants, using also
topological methods.

The author [29] has explicity given supernilpotent radicals § such that the
class of all §-semisimple rings is homomorphically closed. If € is a radical class of
rings for a radical § such that € is also a semisimple class for another radical T, then
C is called a semisimple radical class, which must obviously be also homomorphically
closed. Trivial instances for semisimple radical classes are: (1) the class of all rings
and (2) the class containing only the ring A = 10}. All nontrivial semisimple radical
classes of rings were explicitly determined by P.M . Stewart [24]. Tt is surprising, that
P.M. Stewart’s classes essentially coincide with the examples of the author [29]. A
characterization of the union of these classes, with the aid of five equivalent conditions,
has been given recently by the author [28].

Let us mention, that if the class of all T-semisimple rings is homomorphically
closed for a radical T, then the mapping:

=T,

where | is an arbitrary ideal of an alternative or associative ring A, and T(/) de-
notes the T-radical of the ring I, is a juin-endomorphism ([26]) of the lattice of all
ideals of A, that is, we always have:

ni, +1,)= i)+ nu,) .

which fails to be correct for every radical without the condition on homomorphically
closedness.
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Proof. Let us assume A ECS' Then, by [25], we have ¢ € R(a) =ad +
+ AaA forevery a€A. Furthermore, R(ap) = (R(a))p holds for every a€ A, and
for every homomorphism ¢ of the ring 4 onto another ring. Therefore A is F-reg-
ular for F(a) = R(a) in the sense of B. Brown — N.H. McCoy [10].

Let C be an arbitrary ring (for which Ce& 6'5 or C.W;?E(,‘5 holds). Let us
consider, following B. Brown - N.H. McCoy [10], the set R(C) of all elements
¢ € C such that every element d of the principal ideal (¢) of C is F-regular in
C, i.e. one has

dER(d)=dC+ dC, forevery d€E(c).

Then R(C) is an ideal, which contains every F-regular ideal of C for F(x) = R(x).
Also R(C/R(C)) =0 can be proved. Therefore C5 =R isaradical class, and R(A)
is an I -regular ideal. '

Obviously, HeE L3 holds for a homomorphic image /H of an arbitrary ring
A if and only if there exists an element ¢ € A satisfying a #R(a). Now, if B isa
nonzero R-semisimple ring then B is, by the F-regularity of R, a subdirect sum of
nonzero subdirectly irreducible R -semisimple rings S,. But this condition for S, is,
by [10], equivalent to the existence of a nonzero element A €H,, satisfying R(h) =
=0, where H, is the heart of S,. Obviously hS, +S.hS, =0 implies H, - S, =
=0, which completes the proof.

Proposition 3. Denote by ,(A) foraring A the left Frattini submodule of
the A-left module A, i.e. the intersection of all maximal left ideals of A, or D(A) =
=A, if a does not have maximal left ideals. Then tI)I(A) =J(A) holds for the
Jacobson radical J(A) of every R-radical ring A.

Proof. By E. Hille [16, Theorem 22.15.3, page 486], we have J(4)- A C
C P,(A4) C J(A4), whence (DI(A) is a two-sided ideal of A.

Furthermore, A/(IJI(A} does not have nonzero left annihilators, whence
J(A) < fb!.(,'tl) which implies J(A) = $,(A).

Remark 4. R(4)=0 and ®,(4)=0+#A =JA) hold for any ring A4 con-
sisting of p elements, with A% =0 where p is a prime number.

Proposition 5. The radical properly R is almost subidempotent, but it is not
subidempotent.
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Remark 10. In corollary 9 we have considered rings satisfying minimum con-
ditions for principal or for all ideals. In what follows, we will discuss some R -semi-
simple rings with minimum condition on right ideals, i.e. some R-semisimple right
Artinian rings.

Proposition 11. For an arbitrary right Artinian ring A the following two con-
ditions are equivalent:

() A is nilpotent;

(I1) R(A)=0 holds (ie. A is R-semisimple) and A has no nonzero left
annihilators, contained in the intersection A .

Proof. (I) implies (I). If A is nilpotent, then, by Proposition 7 R(A4) =0
holds, and A" =0 for an exponent n evidently implies A“ =0, consequently we
have condition (II).

Conversely, condition (1) implies (1). Let us assume condition (II), for the
right Artinian ring A. By E. Artin — C. Nesbitt — R.M. Thrall [6 Theorem 9.3
C, page 100], we have for A the additively direct decomposition:

A=eAtedt s tE A TN
>
posable and the right ideal N, oflA is nilpotent. Therefore N, is contained in the
nilpotent Jacobson radical N =J(4) of A, ie. N, C J(A) holds. We shall prove
e;= 0 forevery i (1<i<m), as follows, which will imply A :Nl =N=JA),
i.e. condition (1) will be derived from (II).

where the right ideals eI.A (with e; = e, for i=1,2,...,m),aredirectly indecom-

By condition (1) we have R(A) =0, and the assumption € # 0 vyields
€ FR(A).

Now. we shall use four well-known assertions, which can be easily verified, {see
e.g. R. Baer [7], N. Divinsky [13]) to finish the proof of Proposition 11

(1) 1If we have ¢€ad, hEbA and xExA forevery xEbA inan arbi-
trary ring A, and then a+ b€ (a+b)A holds.

Namely. starting from a=a * a, and h=bh - b], we define ¢= b{_bl - aI).
Then ¢ € bA holds, whence our assumption in (1) implies ¢=c* H with an ele-
ment ¢, €A, If d= ¢ tay—ua, ey, then ad=a and bd=0»b yield a+b=
=(@a+hbye(at bA.
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no left annihilator of 4. By e b4 SN =J(A) we have e b4 Ce,N+#0. Now,
A being a right Artinian ring, there exists an exponent n such that e N" #0, but
elN"” =0 holds for the Jacobson radical N of A.

Let ¢ be an arbitrary element of N” such that elr?’f 0. Let e c be de-
noted by d. Then dN C elN" - N=0 holds, but d+# 0. Since we have the inclu-
sions d=e,c= e’f“]fre Ak, for every k, condition (II) evidently implies dA4 # 0.
Now dN =0 yields le = (0, whence, by d4 # 0, one has a’e{.A # 0 for at least

one 1.

Now, we shall verify, that deiA is a minimal right ideal of A. Let us as-
sume the existence of a right ideal R of A such that 0# R C de.A holds. Then we
define the set

S=[x:xceA, dxE€R].

Obviously, S is a right ideal of A such that § € e;A holds. Assuming S#eA, the
directly indecomposable property of e;A4 yields by E. Artin — C. Nesbitt —
R.M. Thrall [6] at once S &N, whence we have dS S dN =0. If r is an arbitrary
element of R, then R Qdet.A implies rzdel.a with an element a€ A, and the
definition of § yields e,a €S, which implies r=dea€dS=0 and R=0, con-
tradicting R # 0. Consequently we have S=e.A and therefore R = de;A isamin-
imal right ideal of A.

Let [ be an element of A such that de,f#0. If g=ef, then dg € de,A
holds, so dgN<dN=0. But dg= ef_zdgEAk, for any k yields, by condi-
tion (I1), obviously dgd #0. We have the inclusion dgA =de£fA gdef.fl, which
implies, by dg4 # 0 and by the minimality of de;A the equation dgA = de A, con-

sequently dg = der.fE der.A = dgA.

For an arbitrary element h€& A, assuming dgh # 0 the inclusion dgh=
=k 3aghe A%, for every k yields, dgh €A, by condition (1) dghd +#0 and
the minimality of the ring ideal deiA in A implies dghAd = del.A, whence one has
dgh € dghA for every hEA.

Assertion (4), pointed out and proved before yields by condition (II) dg€&
ETUA)CER(A)=0 and dg =0, contradicting to dg4 # 0. Consequently, eI.A =0
holds for every i and one has A =N, = J(A), which shows the implication

(I1) = (1).
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Let j denote the maximum of all k, and [,. Furthermore, if we take e =

iy + e, +...+e , then we have

eNTl=Ntle=0

but either eN' #0 or Ne#0. If e.g. we assume eN' + 0, then there exists an e;
with e.N" #0.

Let us consider an element b €N’ such that e; b#0. Let g b be denoted
by ¢. Then one evidently has ¢= e; b= e,c=ec and ('N 0. Let T(A) be defined
left-right dually to the ideal T(A), deﬁned in the proof of Proposition 11, in assertion
(3). Then f'gﬁ holds, and condition (II') implies also 7(A4) = 0. The left-right du-
alization of assertion (4) yields, by f‘(xl) =0 and c¢=ec€EeA, that there exists an
element d €A such that one has dc & Ade. We may take d= dé, = de.

We shall verify d€N. By dc&Ade one has d & Ad = Ade;. Therefore
Adpl. is properly contained in Ae;, which is directly indecomposable, whence by
E. Artin — C. Nesbitt — R.M. Thral] [6] Ade, CN follows. This implies, that
(de} is nilpotent, whence also de; must be nl]potent. But Ade; CN and d= de;
imply d €N.

Then dc€Ne, N SN yields dce=0. But deN=0 implies ded =0
and by dec& NIt we have also edc = 0. On the other hand the inclusions dec=

Zdej(‘=d€f_ 2c€Ak, for any k, dc €AY, yield, by condition (II') evidently
Adc # 0.

Since edec=0, one has Ndc+# 0. Consequently, there exists an element
g€E€N such that gde+# 0 holds. As above, we have gded = egde = 0. If gde is not
a two-sided annihilator of 4, then Ngdec+ 0 holds.

We can continue this process until g*= e ,g]dc #0, where g"4 =0

and eg*=0. Then g*eNeN and Ng*CN/''e NV*!=0. This implies
Ag" =g*A =0 and g*EA“", which is by g* #0 a contradiction to condition
(I1). Therefore, one has e;=0 forevery i, and A =Ny =N=AA4).

Consequently, condition (II') implies (I'). This completes the proof.

Remarks 13. (1) An interesting task would be to investigate the R -radical of
a full matrix ring A, (n=>2) for an arbitrary ring A.

(2) We mention in connection with Propositions 11 and 12, that T. Svele
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