ON STRONG SEMISIMPLICITIES

 OF SEMIGROUPS WITH ZEROby
F. SZÁSZ (Budapest)

The fundamental notions of semigroups can be found in the books of A. H. Clifford and G. B. Preston [4] and of E. S. LJapin [6]. In what follows, D. Rews' [8] factor semigroups will play an important role. For semigroups various concrete radicals were discussed by J. Bosák [2], A. H. Clifford [3], H. J. Hoehnee [5], J. Luh [7], St. Schwarz [9], H. Seidel [10], L. N. Shevrin [11] and the author [13]. The possibility to investigate general radicals of semigroups with zero has been shown e.g. by author [15], [16] and R. Wiegandi [17].

Following author's [15], a class \mathscr{R} of semigroups \mathcal{S}. with zero is called a radical class if the following conditions are satisfied:
(i) Every homomorphic image of a semigroup from \mathfrak{R} belongs to \mathfrak{R}.
(ii) Every semigroup S contains an ideal $R(S)$ belonging to $\not \mathscr{R}$ such that $R(S)$ contains every other ideal belonging to \mathfrak{R}, of S.
(iii) We have $R(S \mid R(S))=0$ for the ideal $R(S)$ defined in condition (ii). (Here and in what follows S / T denotes ReEs' factor semigroups.)

This $R(S)$ is said to be the \mathfrak{R}-radical of S. If $R(S)=S$ holds, then S is called an \mathscr{R}-radical semigroup. If $R(S)=0$ holds, then S is \mathscr{R}-semisimple. An \mathscr{R}-semisimple semigroup is said to be strongly \mathscr{R}-semisimple, if every homomorphic image of S is \mathscr{R}-semisimple. The groups with zero obviously are strongly \mathscr{R}-semisimple for every general radical \mathscr{R}. By author's paper [15] for every ideal I of S and for every radical \mathscr{R} the subsemigroup $R(I)$ is an ideal of S.

It is the purpose of this paper to prove that for every radical R, for which every \mathscr{R}-semisimple semigroup also is strongly \mathscr{R}-semisimple the mapping $\varphi: I+R(I)$, is a join-endomorphism of the lattice of all twosided ideals I of the semigroup. The similar ringtheoretical result was previously discussed by author [14]. The dualization of this semigroup-theoretical result, which also generalizes some results of Robert Shulka [12], was investigated by author [16], and the similar ringtheoretical result by S. A. Amitsur [1].

First we verify two preliminary propositions.

Proposition 1. The mapping $\varphi: I \rightarrow R(I)$ is monotone, i.e. $I_{1} \subseteq I_{q}$ implies $R\left(I_{1}\right) \subseteq R\left(I_{2}\right)$ for the ideals I_{1} and I_{2}.

Proof. Assume $I_{1} \subseteq I_{2}$. Then trivially $R\left(I_{1}\right) \subseteq I_{2}$ holds. Let us consider the first isomorphism theorem (see D. Rees [8]):

$$
\begin{equation*}
\left(R\left(I_{1}\right) \cup R\left(I_{2}\right)\right) / R\left(I_{2}\right) \cong R\left(I_{1}\right) /\left(R\left(I_{1}\right) \cap R\left(I_{2}\right)\right) \tag{1}
\end{equation*}
$$

On the left hand side of (1) we have a twosided ideal of the \mathscr{R}-semisimple Rees factor semigroup $I_{2} / R\left(I_{2}\right)$ and therefore, by author's paper [15], this ideal is again \mathscr{R}-semisimple. But on the right hand side of (1) one has a homomorphic: image of the \mathscr{R}-radical semigroup $R\left(I_{1}\right)$. Thus, by condition (i) on the right, hand side of (1) stays an \mathfrak{R}-radical semigroup. These facts imply

$$
R\left(I_{1}\right) /\left(R\left(I_{1}\right) \cap R\left(I_{2}\right)\right)=0
$$

consequently $R\left(I_{1}\right)=R\left(I_{1}\right) \cap R\left(I_{2}\right) \subseteq R\left(I_{2}\right)$ which means the desired monot-ony of $\varphi: I \rightarrow R(I)$.

Proposition 2. If I and S / I are $\not \mathscr{R}$-semisimple, then S itself is \mathscr{R}-semisimple.

The proof is, using the first isomorphism theorem and the definition of \mathfrak{R}-semisimplicity, almost trivial.

Remark 3. Hitherto we need not have used our assumption that every \mathscr{R}-semisimple semigroup is strongly \mathscr{R}-semisimple.

In what follows we use the modularity of the lattice of all ideals of a semigroup. In fact, this lattice is distributive, since it is a sublattice of the Boolean algebra of all subsets of S. On the other side the proof of Theorem 4 is similar to author's [14] proof, taking set theoretical unions instead of sums.

Theorem 4. Let R be a radical such that every \mathscr{R}-semisimple semigroup is strongly \mathfrak{R}-semisimple and I an arbitrary (twosided) ideal of the semigroup S. Then the mapping

$$
\varphi: I \rightarrow R(I)
$$

is a join-endomorphism of the lattice of all (twosided) ideals of S, i.e. we always. have

$$
\begin{equation*}
\varphi\left(I_{1} \cup I_{2}\right)=R\left(I_{1} \cup I_{2}\right)=R\left(I_{1}\right) \cup R\left(I_{2}\right)=\varphi\left(I_{1}\right) \cup \varphi\left(I_{2}\right) \tag{2}
\end{equation*}
$$

Proof. It is easier to prove, that the right side of (2) is contained on the left hand side of (2), since $I_{j} \subseteq I_{1} \cup I_{2}$ for $j=1$ and 2 by Proposition 1 implies, $R\left(I_{j}\right) \subseteq R\left(I_{1} \cup I_{2}\right)$ and therefore

$$
R\left(I_{1}\right) \cup R\left(I_{2}\right) \subseteq R\left(I_{1} \cup I_{2}\right)
$$

indeed. The opposite inclusion will be verified in more steps, namely we shall show that both of $\left(I_{1} \cup I_{2}\right) /\left(R\left(I_{1}\right) \cup I_{2}\right)$, and $\left(R\left(I_{1}\right) \cup I_{2}\right) /\left(R\left(I_{1}\right) \cup R\left(I_{2}\right)\right)$ are \mathfrak{R}-semisimple Rees factor semigroups.

By $I_{1} \supseteq R\left(I_{1}\right)$ and by the modularity of the lattice of all ideals of S one has

$$
\begin{equation*}
I_{1} \cap\left(R\left(I_{1}\right) \cup I_{2}\right)=R\left(I_{1}\right) \cup\left(I_{1} \cap I_{2}\right) . \tag{3}
\end{equation*}
$$

Therefore $I_{1} /\left(I_{1} \cap\left(R\left(I_{1}\right) \cup I_{2}\right)\right)$ is isomorphic to a homomorphic image of the strongly \mathscr{R}-semisimple semigroup $I_{1} / R\left(I_{1}\right)$ which implies the \mathscr{d}_{R}-semisimplicity of $I_{1}\left(I_{1} \cap\left(R\left(I_{1}\right) \cup I_{2}\right)\right)$, too. Now by $R\left(I_{1}\right) \subseteq I_{1}$ and by (3) the first isomorphism theorem yields

$$
\left.\left(I_{1} \cup I_{2}\right) /\left(R\left(I_{1}\right) \cup I_{2}\right)\right) \cong I_{1}\left(I_{1} \cap\left(R\left(I_{1}\right) \cup I_{2}\right)\right)
$$

thus also $\left(I_{1} \cup I_{2}\right) /\left(R\left(I_{1}\right) \cup I_{2}\right)$ is \mathscr{R}-semisimple, as it has been pointed out previously.

Similarly $R\left(I_{2}\right) \subseteq I_{2}$ and the modularity of the lattice of all twosided ideals of S imply

$$
\begin{equation*}
I_{2} \cap\left(R\left(I_{1}\right) \cup R\left(I_{2}\right)\right)=R\left(I_{2}\right) \cup\left(I_{2} \cap R\left(I_{1}\right)\right) \tag{4}
\end{equation*}
$$

Thus $I_{2}\left(I_{2} \cap\left(R\left(I_{1}\right) \cup R\left(I_{2}\right)\right)\right)$ is $\not \subset$-semisimple, since by (4) it is a homomorphic image of the strongly \mathscr{R}-semisimple Rees factor semigroup $I_{2} / R\left(I_{2}\right)$:

By the first isomorphism theorem and by $R\left(I_{2}\right) \subseteq I_{2}$ we have

$$
\begin{equation*}
\left(R\left(I_{1}\right) \cup I_{2}\right) /\left(R\left(I_{1}\right) \cup R\left(I_{2}\right)\right) \simeq I_{2} /\left(I_{2} \cap\left(R\left(I_{1}\right) \cup R\left(I_{2}\right)\right)\right) \tag{5}
\end{equation*}
$$

thus the left hand side of (5) is \mathscr{R}-semisimple.
Now, by Proposition 2 and by the second isomorphism theorem (see D. Rees [8]) it follows that $\left(I_{1} \cup I_{2}\right) /\left(R\left(I_{1}\right) \cup R\left(I_{2}\right)\right)$ is \mathscr{R}-semisimple. But the \mathfrak{R}-semisimplicity of $\left(I_{1} \cup I_{2}\right) /\left(R\left(I_{1}\right) \cup R\left(I_{2}\right)\right)$ and the first isomorphism theorem imply also the (nontrivial) inclusion:

$$
R\left(I_{1} \cup I_{2}\right) \subseteq R\left(I_{1}\right) \cup R\left(I_{2}\right)
$$

which yields at once also $R\left(I_{1} \cup I_{2}\right)=R\left(I_{1}\right) \cup R\left(I_{2}\right)$, indeed.
This completes the proof of Theorem 4.

REFERENCES

[1] S. A. Amitsur, A general theory of radicals I, Amer. J. Math. 74 (1952), 774-786;
II, Amer. J. Math. 76 (1954), 100-125; III, Amer. J. Math. 76 (1954), 126-136.
[2] J. Bosák, On radicals of semigroups, Mat. COasopis Sloven. Akad. Vied. 12 (1962), 230-234 (in Russian).
[3] A. H. Clifford, Semigroups without nilpotent ideals, Amer. J. Math. 71 (1949), 46-58.
[4] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups I, II, Providence, 1961 and 1967.
[5] H. J. Hobhnee, Structure of semigroups, Canad. J. Math. 18 (1966), 449-491.
[6] E. S. Ljapin, Sernigroups, Moscow, 1960 (in Russian).
[7] J. LuH, On the concepts of radical of semigroup having kernel, Portugal. Math. 19 (1960), 189-198.
[8] D. Rees, On semigroups, Proc. Cambridge Philos. Soc. 36 (1940), 387-400.
[9] St. Schwarz, Zur Theorie der Hallogruppen, Sb. Prac Přirodovéd. Fak. Slov. Univ. Bratislava 6 (1943), 1-64 (in Slovakian).
[10] H. Seidel, Über das Radikal einer Halbgruppe, Math. Nacirr. 29 (1965), 255-263.
[11] L. N. Shevrin, On general theory of semigroups, Mat. Sb. 53 (1961), 367-386 (in Russian).
[12] R. Shulka, On nilpotent elements, ideals and radicals of semigroups, Mat. Časopis Sloven. Akad. Vied. 13 (1963), 209-222 (in Russian).
[13] F. SzAsz, Radikalbegriffe für Halbgruppen mit Nullelement, die dem Jacobsonschen ringtheoretischen Radikal ähnlich sind, Math. Nachr. 34 (1967), 157-161.
[14] F. Szász, Ein radikaltheoretischer Vereinigungsendomorphismus des Idealverbandes der Ringe, Ann. Univ. Sci. Budapest. Hötvös Sect. Math. 12 (1969), 73-75.
[15] F. Szász, On radicals of semigroups with zero I, Proc. Japan Acad. 46 (1970), 595-598.
[16] F. SzÁsz, On hereditary radicals of semigroups with zero, Proc. Japan Acad.
[17] R. Wifgandt, On the structure of lower radical semigroups, Czechoslovak Math. J. 22 (1972), 1-6.

```
MTA MATEMATIKAL KUTATÓ INTEZETE
\(\mathrm{H}-1053\) BUDAPEST
REÁLTANODA U. 18-15.
HUNGARY
```

