Periodica Mathematica Hungarica Vol. 5 (2), (1974), pp. 145-148.

ON STRONG SEMISIMPLICITIES OF SEMIGROUPS WITH ZERO

by

F. SZÁSZ (Budapest)

The fundamental notions of semigroups can be found in the books of A. H. CLIFFORD and G. B. PRESTON [4] and of E. S. LJAPIN [6]. In what follows, D. REES' [8] factor semigroups will play an important role. For semigroups various concrete radicals were discussed by J. BOSÁK [2], A. H. CLIFFORD [3], H. J. HOEHNKE [5], J. LUH [7], ST. SCHWARZ [9], H. SEIDEL [10], L. N. SHEVRIN [11] and the author [13]. The possibility to investigate general radicals of semigroups with zero has been shown e.g. by author [15], [16] and R. WIEGANDT [17].

Following author's [15], a class \mathcal{A} of semigroups S with zero is called a radical class if the following conditions are satisfied:

- (i) Every homomorphic image of a semigroup from R belongs to R.
- (ii) Every semigroup S contains an ideal R(S) belonging to \mathcal{R} such that
 - R(S) contains every other ideal belonging to \mathcal{R} , of S.

(iii) We have R(S|R(S)) = 0 for the ideal R(S) defined in condition (ii). (Here and in what follows S|T denotes REES' factor semigroups.)

This R(S) is said to be the \Re -radical of S. If R(S) = S holds, then S is called an \Re -radical semigroup. If R(S) = 0 holds, then S is \Re -semisimple. An \Re -semisimple semigroup is said to be strongly \Re -semisimple, if every homomorphic image of S is \Re -semisimple. The groups with zero obviously are strongly \Re -semisimple for every general radical \Re . By author's paper [15] for every ideal I of S and for every radical \Re the subsemigroup R(I) is an ideal of S.

It is the purpose of this paper to prove that for every radical R, for which every \Re -semisimple semigroup also is strongly \Re -semisimple the mapping $\varphi: I + R(I)$, is a join-endomorphism of the lattice of all twosided ideals Iof the semigroup. The similar ringtheoretical result was previously discussed by author [14]. The dualization of this semigroup-theoretical result, which also generalizes some results of Robert SHULKA [12], was investigated by author [16], and the similar ringtheoretical result by S. A. AMITSUR [1].

First we verify two preliminary propositions.

PROPOSITION 1. The mapping $\varphi: I \to R(I)$ is monotone, i.e. $I_1 \subseteq I_{2^n}$ implies $R(I_1) \subseteq R(I_2)$ for the ideals I_1 and I_2 .

PROOF. Assume $I_1 \subseteq I_2$. Then trivially $R(I_1) \subseteq I_2$ holds. Let us consider the first isomorphism theorem (see D. REES [8]):

(1)
$$(R(I_1) \cup R(I_2))/R(I_2) \simeq R(I_1)/(R(I_1) \cap R(I_2)).$$

On the left hand side of (1) we have a twosided ideal of the \mathcal{R} -semisimple Rees factor semigroup $I_2/R(I_2)$ and therefore, by author's paper [15], this ideal is again \mathcal{R} -semisimple. But on the right hand side of (1) one has a homomorphic image of the \mathcal{R} -radical semigroup $R(I_1)$. Thus, by condition (i) on the right hand side of (1) stays an \mathcal{R} -radical semigroup. These facts imply

 $R(I_1)/(R(I_1) \cap R(I_2)) = 0,$

consequently $R(I_1) = R(I_1) \cap R(I_2) \subseteq R(I_2)$ which means the desired monotony of $\varphi: I \to R(I)$.

PROPOSITION 2. If I and S|I are \Re -semisimple, then S itself is \Re -semi-simple.

The proof is, using the first isomorphism theorem and the definition of *R*-semisimplicity, almost trivial.

REMARK 3. Hitherto we need not have used our assumption that every *R*-semisimple semigroup is strongly *R*-semisimple.

In what follows we use the modularity of the lattice of all ideals of a semigroup. In fact, this lattice is distributive, since it is a sublattice of the Boolean algebra of all subsets of S. On the other side the proof of Theorem 4 is similar to author's [14] proof, taking set theoretical unions instead of sums.

THEOREM 4. Let R be a radical such that every \Re -semisimple semigroup is strongly \Re -semisimple and I an arbitrary (twosided) ideal of the semigroup S. Then the mapping

$$\varphi: I \to R(I)$$

is a join-endomorphism of the lattice of all (twosided) ideals of S, i.e. we always have

(2)
$$\varphi(I_1 \cup I_2) = R(I_1 \cup I_2) = R(I_1) \cup R(I_2) = \varphi(I_1) \cup \varphi(I_2).$$

PROOF. It is easier to prove, that the right side of (2) is contained on the left hand side of (2), since $I_j \subseteq I_1 \cup I_2$ for j = 1 and 2 by Proposition 1 implies. $R(I_j) \subseteq R(I_1 \cup I_2)$ and therefore

$$R(I_1) \cup R(I_2) \subseteq R(I_1 \cup I_2),$$

indeed. The opposite inclusion will be verified in more steps, namely we shall show that both of $(I_1 \cup I_2)/(R(I_1) \cup I_2)$, and $(R(I_1) \cup I_2)/(R(I_1) \cup R(I_2))$ are **R**-semisimple Rees factor semigroups.

By $I_1 \supseteq R(I_1)$ and by the modularity of the lattice of all ideals of S one has

(3)
$$I_1 \cap (R(I_1) \cup I_2) = R(I_1) \cup (I_1 \cap I_2).$$

Therefore $I_1/(I_1 \cap (R(I_1) \cup I_2))$ is isomorphic to a homomorphic image of the strongly \mathcal{R} -semisimple semigroup $I_1/R(I_1)$ which implies the \mathcal{R} -semisimplicity of $I_1/(I_1 \cap (R(I_1) \cup I_2))$, too. Now by $R(I_1) \subseteq I_1$ and by (3) the first isomorphism theorem yields

$$(I_1 \cup I_2)/(R(I_1) \cup I_2)) \simeq I_1/(I_1 \cap (R(I_1) \cup I_2)),$$

thus also $(I_1 \cup I_2)/(R(I_1) \cup I_2)$ is \Re -semisimple, as it has been pointed out previously.

Similarly $R(I_2) \subseteq I_2$ and the modularity of the lattice of all twosided ideals of S imply

(4)
$$I_2 \cap \left(R(I_1) \cup R(I_2) \right) = R(I_2) \cup \left(I_2 \cap R(I_1) \right)$$

Thus $I_2/(I_2 \cap (R(I_1) \cup R(I_2)))$ is \mathcal{R} -semisimple, since by (4) it is a homomorphic image of the strongly \mathcal{R} -semisimple Rees factor semigroup $I_2/R(I_2)$.

By the first isomorphism theorem and by $R(I_2) \subseteq I_2$ we have

(5)
$$(R(I_1) \cup I_2)/(R(I_1) \cup R(I_2)) \simeq I_2/(I_2 \cap (R(I_1) \cup R(I_2)))$$

thus the left hand side of (5) is \mathcal{R} -semisimple.

Now, by Proposition 2 and by the second isomorphism theorem (see D. REES [8]) it follows that $(I_1 \cup I_2)/(R(I_1) \cup R(I_2))$ is \mathbb{A} -semisimple. But the \mathscr{R} -semisimplicity of $(I_1 \cup I_2)/(R(I_1) \cup R(I_2))$ and the first isomorphism theorem imply also the (nontrivial) inclusion:

$$R(I_1 \cup I_2) \subseteq R(I_1) \cup R(I_2)$$

which yields at once also $R(I_1 \cup I_2) = R(I_1) \cup R(I_2)$, indeed.

This completes the proof of Theorem 4.

REFERENCES

- [1] S. A. AMITSUR, A general theory of radicals I, Amer. J. Math. 74 (1952), 774-786;
 II, Amer. J. Math. 76 (1954), 100-125; III, Amer. J. Math. 76 (1954), 126-136;
 [2] J. BOSÁR, On radicals of semigroups, Mat. Casopis Sloven. Akad. Vied. 12 (1962);
- 230-234 (in Russian).
- [3] A. H. CLIFFORD, Semigroups without nilpotent ideals, Amer. J. Math. 71 (1949), 46 - 58.
- [4] A. H. CLIFFORD and G. B. PRESTON, The algebraic theory of semigroups I, II, Providence, 1961 and 1967.

- [5] H. J. HOEHNKE, Structure of semigroups, Canad. J. Math. 18 (1966), 449-491. [6] E. S. LJAPIN, Semigroups, Moscow, 1960 (in Russian).
- [7] J. LUH, On the concepts of radical of semigroup having kernel, Portugal. Math. 19 (1960), 189–198.
- [8] D. REES, On semigroups, Proc. Cambridge Philos. Soc. 36 (1940), 387-400.
- [6] D. INELS, ON Schugroups, 1760. Combining a mices. Not. Co. (1940), 501 400.
 [9] ST. SCHWARZ, Zur Theorie der Halbgruppen, Sb. Prac Přirodověd. Fak. Slov. Univ. Bratislava 6 (1943), 1-64 (in Slovakian).
 [10] H. SEIDEL, Über das Radikal einer Halbgruppe, Math. Nachr. 29 (1965), 255-263.
- [11] L. N. SHEVRIN, On general theory of semigroups, Mat. Sb. 53 (1961), 367-386 (in Russian).
- [12] R. SHULKA, On nilpotent elements, ideals and radicals of semigroups, Mat. Casopis Sloven. Akad. Vied.13 (1963), 209-222 (in Russian).
- [13] F. Szász, Radikalbegriffe für Halbgruppen mit Nullelement, die dem Jacobsonschen ringtheoretischen Radikal ähnlich sind, Math. Nachr. 34 (1967), 157-161.
- [14] F. Szász, Ein radikaltheoretischer Vereinigungsendomorphismus des Idealverbandes der Ringe, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 12 (1969), 73-75.
- [15] F. Szász, On radicals of semigroups with zero I, Proc. Japan Acad. 46 (1970), 595-598.
- [16] F. Szász, On hereditary radicals of semigroups with zero, Proc. Japan Acad.
- [17] R. WIEGANDT, On the structure of lower radical semigroups, Czechoslovak Math. J. 22 (1972), 1-6.

(Received March 27, 1972)

MTA MATEMATIKAI KUTATÓ INTÉZETE H-1053 BUDAPEST REÁLTANODA U. 13-15. HUNGARY

148