CORRECTION TO OUR PAPER "ON HEREDITARY RADICALS"

by

F. SZÁSZ and R. WIEGANDT (Budapest)

The authors are grateful to Dr. B. J. GARDNER for the following observations.

In our paper "On hereditary radicals", Period. Math. Hungar. 3 (1973), 235-241, the statement of Corollary 2 is not that what we have proved. The correct version of Corollary 2 is the following:

If the radical \mathbf{R} is non-hereditary, then there are hereditary radicals \mathbf{P} and \mathbf{Q} such that neither $[\mathbf{P}, \mathbf{R}]$ nor $[\mathbf{R}, \mathbf{Q}]$ contains hereditary radicals except \mathbf{P} and \mathbf{Q} , respectively.

As it has been pointed out by Dr. GARDNER, the whole class $[\mathbf{P}, \mathbf{Q}]$ may contain other hereditary radicals, too. For instance, let **R** be the radical class of rings on groups of the form $A_p \oplus A_q$ where A_p is a direct sum of copies of $C(p^{\infty})$, A_q is a direct sum of copies of $C(q^{\infty})$, and p, q are different primes. Then the maximal hereditary radical class \mathbf{H}_R contained in **R**, is the class **0** consisting of the ring 0, while the minimal hereditary radical **R** containing the radical **R**, is the class $\mathbf{B}(p,q)$ of prime radical rings on direct sums of p-groups and q-groups. If $\mathbf{B}(p)$ denotes the class of prime radical p-rings, then $\mathbf{B}(p)$ is hereditary and $\mathbf{B}(p) \in [\mathbf{0}, \mathbf{B}(p, q)]$ holds.

(Received May 6, 1973)

MTA MATEMATIKAI KUTATÓ INTÉZETE H-1053 BUDAPEST REÁLTANODA U. 13-15. HUNGARY