THE JOIN-REPRESENTATION OF SOME INTERSECTIONS IN COMPLETE LATTICES

Dedicated to Professor Tatsujiro Shimizu

Ferenc Szász*

(Received October 7,1974)

For the lattice-theoretical notions, used here, we refer to G. Birkhoff [1]. Let L be a complete lattice with the minimal element 0 and maximal element 1. A subset S of L will be called a lower subset of L, if $x \le y$ and $y \in S$ always imply $x \in S$. Furthermore a lower subset S is said to be f-lower subset of L, if $\bigwedge_{r \in F} x_r \in S$ implies the existence of a finite subset Δ of Γ such that $\bigcap_{s \in I} x_s \in S$ holds. Obviously, one has $1 \in S$ for a lower subset S of L, if and only if S = L holds. The empty subset \emptyset let us consider, as a lower subset, as well as an f-lower subset S. The intersection of an arbitrary set-theoretical union of S-lower subsets of S as well as the set-theoretical intersection of finite number of S-lower subsets of S are again S-lower subsets of S.

Let $x \in L$ be an element such that $x \notin S$ for an f-lower subset of L. Then an element $y \in L$ is called an (x,S)-element, if $x \cap y \notin S$ holds. Furthermore, an element $z \in L$ is said to be a strong (x,S)-element, if $z \cap y$ is an (x,S)-element for every (x,S)-element y of L.

It is evident, that every strong (x,S)-element is also an (x,S)-element, and that x itself is a strong (x,S)-element for every f-lower subset S such that $x \notin S$ holds.

Theorem. The intersection z(x,S) of all strong (x,S)-element satisfies $z(x,S) \le x$, and it is again a strong (x,S)-element, which coincides with the join of all minimal (x,S)-elements of L.

Proof. Obviously, $z(x,S) \le x$ holds, since x is a strong (x,S)-element. Let z_1, z_2, \dots, z_n be arbitrary strong (x,S)-elements and y and arbitrary (x,S)-element of L. Then one has

(*) $(z_1 \cap z_2 \cap \cdots \cap z_n) \cap y = z_1 \cap (z_2 \cap (\cdots \cap (z_n \cap y)))$ whence this intersection (*) is an (x,S)-element, and thus $z_1 \cap z_2 \cap \cdots \cap z_n$ is a strong (x,S)-element. Put $z(x,S) = \bigwedge_{y \in r} z_y$, where z_y runs all strong (x,S)-*Mathematical Institute of Hungarian Acade my of Sciences, Budapest, Hungary. elements of L. For the arbitrary (x,S)-element y, let us define

$$w_{\gamma} = z_{\gamma} \cap y \cap x$$

if $z(x_1S)$ would be not a strong (x,S)-element, then y could be chosen such that

$$z(x,S) \cap y \cap x \in S$$

holds, which implies

$$(**) \quad \bigwedge_{\gamma \in \Gamma} w_{\gamma} \in S$$

Therefore, by virtue of the definition of the f-lower subsets (**) yields at once with a finite set Δ of indices:

$$\bigcup_{\delta \in \Delta} w_{\delta} = \sum_{\delta \in \Delta} z_{\delta} \cap y \cap x \in S$$

which is, by the above assertation, a contradiction. Thus z(x,S) is a strong (x,S)-element, indeed.

The intersection of any descending chain of (x,S)-elements being again an (x,S)-element of L, by virtue of Zorn's lemma, there exist minimal (x,S)-elements in L, which generally fail tobe minimal elements in L; they are only minimal element in \geq as a suitable minimal (x,S)-element, which follows from this application of Zorn's lemma. Let j=j(x,S) be the join (i.e. complete union) of all minimal (x,S)-element, y an arbitary (x,S)-element and m a minimal (x,S)-element with $m \leq y$, of L. Then one obviously has, for j=j(x,S) the relation

$$(***) j \cap y \cap x \ge m \cap m \cap x = m \cap x \notin S$$

and thus (***) implies, by the definition of the lower subsets $j \cap y \cap x \in S$. Therefore $j \cap y$ is an (x,S)-element, consequently j is a strong (x,S)-element of L, which implies $j \ge z(x,S)$.

Conversely, $j \le z(x,S)$ can be shown, as follows. $z(x,S) \cap m$ is an (x,S)-element for every minimal (x,S)-element m of L, since (x,S) is strong (x,S)-element. By the minimality of m among all (x,S)-elements we have $m=z(x,S) \cap m \le z(x,S)$, whence also

$$z(x,S) \ge \bigvee_{w \in \mathcal{Q}} m_w = j = j(x,S)$$

where m_w runs all minimal (x,S)-elements of L.

Thus the desired equality z(x,S)=j(x,S) holds, indeed, which completes the proof.

Problem. Let the complete lattice L be, at the same time, also a groupoid, written multiplicatively, generally without the requirements $(a \cup b)c =$

 $ac \cup bc$ and $a(b \cup c) = ab \cup ac$, and let us call an element $p \in L$ prime, if $f \cdot g \leq p$ always implies $f \leq p$ or $g \leq p$, where $f,g \in L$. Then, what is a nontrivial necessary and sufficient condition every strong (x,S)-element to be prime? (Characterize in this groupoid also the minimal (x,S)-elements!)

> Remark. The result of this note dualizes some generalizations [6] of some results of [2], [3], [4] and [5].

References

- [1] G.Birkhoff, Lattice Theory, Providence (1948).
- [2] Ch. W. Curtis, On additive ideal theory in general rings, Amer. Jour. Math. 74, 687-700(1952).
- [3] L. Fuchs, On a new type of radical, Acta Sci. Math. Szeged 16, 43-53(1955).
- [4] L. C. A. van Leeuwen, On the zeroid radical of an ideal, Indagationes Math. 21, 428-433(1959).
- [5] K. Iséki and Y. Miyanaga, On a radical in a semiring, Proc. Japan Acad. 32, 562-563(1956).
- [6] F. Szász, Verbandstheoretische Bemerkungen zum Fuchsschen Zeroidradikal der nichtassoziativen Ringe, Archiv der Math. 12:4, 282-289(1961).
- On right residuals in lattice-ordered groupoids, Math. Nachrichten(to appear).

such

is at

trong

again (x,S)-

e only

ollows

. com-

t and

for j =

 $)x \notin S.$ element

(x,S)

(x,S)

m = m

ompletes

a grou-

 $a \cup b)c =$