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ON THE RADICAL CLASSES AND THE TRANSFREE-
IMAGES OF RINGS

By
TRAN TRONG HUE and F. SZASZ (Budapest)

1. The purpose of this note is to consider the relation between the transfree-
images and the radical classes in category of associative rings. This stays in connec-
tion to the solution of problem 8 of [2].

The notion of transfree-images is dual to that of subdirect embedding (cf. [3]).
An object A of the category € is said to be a transfree-image of the free product
[[ Ai(p;) if there exists an epimorphism y: /] 4;(¢;)—~A such that all maps y: g;:
i€l ier

A;—~A, i€l are normal monomorphisms.
Instead of a transfree-image of the free product [J 4;(¢;) we speak of a trans-
iel

free-image of the objects A;, i€l

A class M of rings is said to be a radical class in sense of Amitsur and Kurosh
if the following conditions are satisfied :

(i) M is homomorphically closed.

(ii) The sum of all M-ideals of a ring A is an M-ideal.

(iii) M is closed under extensions, that is if B and A/B€M then also A€M.

The lower radical class defined by the class M is the smallest radical class
containing M.

2. Assume that the ring A is a transfree-image of rings A4;, i€, by an epi-
morphism 7. Following the definition all maps y: g;: A;—~A4, i€l are normal
monomorphisms, so they are embeddings and their images are ideals of the ring A.

Let M be an arbitrary abstract class of rings. We put

T,(M) = {A|A4 is a transfree-image of some M-rings}.
LEMMA 1. Every nonzero T,(M)-ring has a non-zero M-ideal.
This statement follows immediately from the above remark.
DEerFINITION. The class M is said to be closed under transfree-images if
T,(M)=M.

_ THeoreM 1. For every class M of rings there always exists the smallest class
M satisfying: M2M and M is closed under transfree-images.

Proor. The class of all rings is closed under transfree-images and it contains M.
Since the intersection of classes being closed under transfree-images, is again such
a class, we have M= N(M,|M,2M and M, is closed under transfree-images).

THEOREM 2. If M is a homomorphically closed class of rings, then also the
class T,(M) is homomorphically closed.
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Proor. Let A4 beatransfree-xmage of M-rings A;, icI, by an eplmorphlsm 7,
and 4 a homomorphic image of A4 _by a homomorphism f. Then the images
A; of each A;, i€l are M-ideals in A. Further by the universal property of the
free product there exist uniquely determined mappings

7: [ A(@) - A and o: [] Ai(e) ~ [T Ai(2)
ier i€r i€l
such that the following diagrams are commutative

Zi'_‘_?‘"’ H‘Zi(éi) Ai_‘i" HAi(Qi)

\ i€l 17 lft iel l"
i a3 11 4@

A

where fi=f-90; and k; is an embedding. Clearly, the mappings 7: g;, i€l are
normal monomorphisms. We can easily show that the square

Il Ai(e)——— 4

ier lv_ — l_f
H‘Zi(gi)‘y_’A

iel

is commutative. Hence we have jo=f.y. Since f-y is an epimorphism, so
is 9. Thus A€T,(M) holds. The theorem is proved.
THEOREM 3. Every radical class is closed under transfree-images.

Proor. Let M be a radical class and A€T,(M). M(A) denotes the sum of

all M-ideals of 4. Suppose M(A4)>~A. By Theorem 2 MI(‘I D is a nonzero T,(M)-
ring, and hence by Lemma 1 it contains a non-zero M-ideal ﬁ By the condi-

tion (iii), A" is an M-ideal of A4, so A’=M(A), a contradiction. Thus AEM
holds. This completes the proof.

COROLLARY. For every class M of rings the inclusion T,(M)S%(M) holds,
where (M) is the lower radical class defined by M.

Let us consider the subclass of 7,(M) defined as

A is a transfree-image of some M-rings }

Tro(M) = {A

by an epimorphism which is a surjection) ’

LEMMA 2. Assume that M is an abstract class of rings. The ring A belongs

to T,(M) if and only if in A there exist M-ideals B;, icI such that 2 B;=A
i€l

The proof is trivial.
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THEOREM 4. The class M of rings is a radical class if and only if the following
conditions are satisfied:

(A) M is homomorphically closed.

(B) M is closed under transfree-images.

(C) M is closed under extensions.

ProOOF. Theorem 3 and the definition of radical yield the necessity.

For the sufficiency we only must show that condition (B) implies condition
(ii). If condition (B) is valid, then MEST,(M)S T (M)=M. By Lemma 2 it is
clear that condition (ii) is satisfied.

Next, with the help of transfree-images we shall get a new construction which
does give the lower radical. In order to do this we consider the following operator
W acting on classes of rings by

W(M) = {A %EM for some M-ideal B of A}.
LemMMA 3. If M is a homomorphically closed class then W(M) is homo-
morphically closed, too.

ProOOF. Let A bein W(M) and B any proper ideal of 4. By the definition
of W(M) there exists an ideal C of A4 such that C and A4/C both belong to
M. Since the class M is homomorphically closed so we have

B+C & A [B+C A
B Bnc < ‘E/ FEpbal T

Thus A/B belongs to W(M) and so W(M) is homomorphically closed.
The lemma is proved.

Now, let M be any class of rings. Define K;(M) to be the homomorphic
closure of M. For every ordinal a=>1, put

T,(K,-1(M)) if a is not a limit ordinal
K.(M) =\w(|J K;(M)) if ais a limit ordinal.
B=<a

Finally define K(M)=UK,(M), where the union is taken over all ordinals «.
Clearly, if « and p are ordinals with f=oa then K,(M)S K, (M).

LeMMA 4. For every ordinal a=1, K (M) is homomorphically closed. Hence
K(M) is a homomorphically closed class.

Proor. K;(M) is homomorphically closed. Let a«>1 be an ordinal and
suppose Kj(M) is homomorphically closed for all f<o.

If o is not a limit ordinal, then by Theorem 2 and the induction hypothesis,
K,(M)=T,(K,_,(M)) is homomorphically closed.

Let o be a limit ordinal. Clearly, by the induction hypothesis, the class
U Kp(M) is homomorphically closed. So by Lemma 3, the class Ky(M)=

B<a
=W (U K;(M)) is also homomorphically closed. Thus by transfinite induction
B<a

K,(M) is homomorphically closed for all ordinals «. It follows immediately that
K (M) is homomorphically closed.
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THEOREM 5. K(M)=%(M).

Proor. We use Theorem 4 to show that K(M) is a radical class. By Lemma 4,
the class K(M) satisfies condition (A). Suppose that a ring A4 is a transfree-
image of K(M)-rings A;, i€l. Then for i€l there exists an ordinal «; such that
A€K,(M). Let o« be an ordinal greater than all o;-s, i€]. Hence every ring
A;, i€l belongs to K,(M). So we have

A€T,(K,(M)) = K,4,(M) S K(M).
Thus, condition (B) is satisfied.

Now, let 4 have an ideal B such that both B and A/B arein K(M). Then,
there exist ordinals o; and «, such that BEK, (M), A/BcK,,(M). We take a limit
ordinal o greater than the ordinals «;, i=1,2. Then both B and A/B belong
to the class | J Kz(M). So we have

f<a

A¢ W(ﬂL<J K, (M) = K,(M) S K(M).

Hence condition (C) is valid. Thus K(M) is a radical class.

By the minimality of % among radical classes containing M, it is enough
to show K(M)SZ(M). This is accomplished by proving K,(M)S¥(M) for
every ordinal.

Clearly, Ki(M)S%(M). Let o be an ordinal exceeding one, and assume
K;(M)SZ(M) for all ordinals f<o. Suppose A€K,(M).

If « is not a limit ordinal, then we have

AEK,(M) = T,(K,_1(M)) S T,(Z(M)) = L (M).
Let o be a limit ordinal, then by the definition we have
AEK,(M) = W(BL<J¢ Ky(M)).
Therefore there exists an ideal B in A4 such that both B and A4/B belong to
U K;(M). By the induction hypothesis, it is clear that pU K;(M)S Z(M). From
th1s AcZ (M) follows by condition (C) of Theorem 4, and the theorem is proved.
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