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ON RINGS WITHOUT ZERO DIVISORS
By Ismail A, Amin and Ferenc A. Szisz

In this paper connections between certain radicals of particular rings are
considered. In this context a less known radical, namely the Fuchsian zeroid
pseudo-racical F(A) and its generalization studied by the second author will play
an important role. For its importance, and even for the sake of completeness,
we present in the first half of the paper known results mostly done by the
second author. New results are given concerning MHR-rings (rings not necessa-
rily having 1 and satisfying the minimum condition for principal right ideals).
Important examples arc given with the aim of differentiating the Fuchsian
zeroid pscudo-radical with other radicals.

DEFINITION 1. Generalization of the Fuchs zeroid radical (after F. Szész [11]):
Let L be a complete lattice with minimal element 0 and maximal element 1.

Moreover let S be a semifilter or upper subset of L, defined by:
(1) if x€S and x=y, then also y&S.

DEFINITION 2. An upper subset SCL is called of finite character, shortly an
SF-upper subset, if
@ ?‘\E/P X,&S implies the existence of a finite subset I'* of I' such that

already V X,ES holds.
rers

PROPOSITION 3. The union of an arbitrary family of f-upper subsels is again
ai f-upper subset of L.

PROPOSITION 4. The intersection of a finite number of f-upper subsets is again
an f-upper subset of L.

DEFINITION 5. Let #EL, but xS, for an fupper subset S of L. Then y&L
is called an (S, #)-element, if one has the relation x\/ y&S.

DEFINITION 6. An element z&L with z&S is said to be a strong (S, x)-
element, if z\V/y&S always holds, provided that y is an arbitrary (S, x)-element.

PROPOSITION 7. Ewvery strong (S, x)-element is also an (S, x)-element.
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THEOREM 8. The complete union Z s(8) of all strong (S, x)-elements is again
a strong (S, x)-element Z(x) of L, which must coiucide with the intersection of
all maximal (S, x)-elements.

PROOF. Follows from F. Szisz's book [14] (see Theorem 45. 1),

REMARKS (9.1) It is trivial that the union of a finite number of strong (S, x)
-clements is again a strong (S, x)-element.

(9.2) In a complete lattice ¥<Cy iff there exists an x* such that xVat=y
holds, and < is a partial ordering. The word “maximal” in Theorem 8 must be
understood in the sense of this ordering<<.

DEFINITION 10. If . is an arbitrary family of J-upper subsets of L, then 2,
(x)=s/n\ajs“(x) is called the #-zeroid pseudo-radical of xSL with x&ES,, for

every S,E4.
DEFINITION 11. If €S, for every S,E4, put z, (x)=1.

DEFINITION 12. Let L he a lattice ordered groupoid satisfying for every triple
a, b, ¢ of elements of L:

(@) a.b<aAb

@) (@Vb)e<ac\/ be, furthermore

() a@Ve)<abVac.

REMARK 13. Qur system of axioms (a), (b) and (c) is a little different from
the usual one for lattice ordered groupoids (see G.Birkhoff [2]), but for our
purpose the axioms (a), (b) and (c) are the most useful and suitable.

DEFINITION 14. A subset S of L is said to be an f-subgroupoid of the lattice
ordered groupoid, if the following properties hold:

(d) S is an f~upper subset of (L, <.

(e) S is a subgroupoid of (ZL,.).

DEFINITION 15. The empty set ¢ is always considered as an JSf-subgroupoid of
(Ea);

PROPOSITION 16. Every f-subgroupoid S is a filter of L. (see Kowalsky [8]).

PROPOSITION 17. The set theoretical union of an arbitrary ascending chain of
f-subgroupoids of (L, <,.) is again an f-subgroupoid of L.
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PROPOSITION 18. The intersection of a finite n
egain an J-subgroupoid of L(<,.).

DEFINITION 19.
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umber of f-subgroupoids of L is

Let «#" be an arbitrary family of J-subgroupoids S, of L. Put
20 Z (%) =Sgéf2 S“(x).

In (20) the element Z &) is called the algebraic A -zeroid pseudo-radical
of ¥EL with zt:ESljr for every 8.E4°

THEOREM 21. Tke eleent 7

&) is always a complete intersection of Drime
elements.

PROOF. Follows from Szisz’s book [14] (Theorem 45.2).

REMARK 22, As well known, the element
always implies p<<a or p<<b (or eventuall
a, b&L),

P of L is called prime, if =<ab
v also p<<e'Vd holds; in some cases of

THEOREM 23. Let L be the complete lattice of all two-sided ideals of a not

necessarily associative ring A. Then for T EL we have T~ =Z 4(0) if and only
if the factoring A/.F~ is semiprime, (sec Mary Gray [6]).

REMARK 24, Our ring A does not generally have a unity element 1.

PROOF. (of Theorem 23) follows from Theorem 45.3 of [14].

DEFINITION 25. By a weai: block of a (not necessarily associative) ring 4 we

understand a subset B such that 5~ 154, T4, I NB#¢ and 5~ 2NB#g
always imply 97, I NB# g%, < NB.

PROPOSITION 26. Lot L be the lattice of ali two
B be a weak block of A.

J-subgroupoid of L.

“sided ideals of the ring A and
Then the ideals 5~ «<4 satisfying T ,(\B#¢ form an
PROOF. It is almost trivial,

DEFINITION 27. An arbitrary subset B

of the ring A4 is called a dlock of 4, if
(&) B is a weak block of 4,

(h) #EB implies x"&B for every positive exponent #&Z.

PROPOSITION 28. Tre complementary subset C(P) of every prime ideal P of the
ring A elways is ¢ weak block A.
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PROOF. It is trivial by the definition.

PROPOSITION 29. If B is @ weak block of the ring A such that ils compleme-
ntary subset C(B) is an ideal of A, then C(B) is a prime ideal of A.

PROPOSITION 30. Ewvery multiplicalive subgroupoid M satlisfying OFEM of the
multiplicative groupoid of the ving A is a block of A.

REMARK 31. If F is a commutative and associative field, and x and y are
noncommutative indeterminates over F, then one can find in the skew polynomial
ring F[x, ¥] some blocks, which are not subsemigroups M with relation 0zM.

REMARK 82. Let D be a division ring, #€Z, #=2, and D,=A be the total
matrix ring over D of type #X#n. Then A=D, contains the subset B, which is
a weak block, but B is not a block of A.

THEOREM 33. The upper Bacr nil vadical [3] is always contained in Z 0,
provided S, 4, and T ES, with property S ,N\B,#¢ for some blocks B, of
the ring A.

PROOF. It follows from Theorem 45.4 of [14].

EXAMPLE 34.1. Let A be an associative ring, generally without unity element
1, M be a right A-module, H, and H, be subsets of M and N be a non-zero
submodule of M. Then the subset S;=[x; xEA4, N,=N] is a multiplicative
subsemigroup of (4;) with 0&S;.

EXAMPLE 84.2. With the above notation, S,= [¥; *E4, nx=n {or every nEN]
is again a multiplicative subsemigroup with 0€S.,.

EXAMPLE 34.3. Put S;=[x: x€A, HxCH,, H,&=H,]. Then z, y&S; imply
1yES; with 0&S,,

EX:\I\{PLE 34.4. Put Séz [x: xEA, HszHI, ngﬂ‘_z]- Thel’l 06:‘-54 and S.I iS
a multiplicative subsemigroup of (A:-).

EXAMPLE 35. The left units (i.e. elements, which are left divisors of every
clement of the associative ring A) form a multiplicative subsemigroup 55 with

EXAMPLE 36. The left-right dual of Sy is Sg
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EXAMPLE 37. The left unity clements 1,
group S; with property 0&ES;.
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of A form a multiplicative subsemi-

EXAMPLE 38, The left-right dual of Sz is S,

EXAMPLE 89. Every non-zero idempotent e=¢’SA4 (with e
semigroup So=[e] with 06 S,

EXAMPLE 40. The subset of all non left divisors of zero formsa sub

#0) forms alonc a

semigroup
EXAMPLE 41. The left-right dual of S1o 18 Sy

DEFINITION 42. Let A be an associative ring; put K=[5; 54, NSy,
#0l, K,=[9: 94, T <8,#4l, and A= [X,, K,]. Then the ideal: (43)

Z ,(0)=Z(4) is called the zeroid bseudo-radical of the ring A in sense of L.
Fuchs [5].

DEFINITION 44, For 9~ <l4, the ideal Z (I is called the 7adical of 9 in
the sense of van Leuwen [9].

THEOREM 45. If A has no non-zero divisors of zero, then Z(A)=0 holds.

PROOF. It follows from Definition 44. '

THEOREM 46. The Fuchsian zeroid pseudo-radical F(A)

of an arbitrary asso-
ciative ring is always an intersection of some prime ideals.

PROOF. It follows from 42, 43 and Theorem 23.

COROLLARY 47. The factor ring A/F(A) is semiprime.

PROOF., It follows immediately from Theorem 4.
We bave yet the sharper.,

THEOREM 48,

In the factor-ring A/F(A) the ideal 5=F(A)/F(A) is the oniy
nil ideal.

PROOF. Let C/F(A) be a nil ideal of 2 /F(A) and B<A. Then we obviously
have for every ¢€C the relation ckEF(

A) for some k=1, k&Z. Thus with every
clement 8B holds:

(49) G+ofer +B,
by the non-commutative analogue of Newton’s binomial expansion for (6-+¢)",
By our definition, every element of # (A)+B is a left divisor of Zero, conse-
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quently b+c¢ always also is a left divisor of zero, therefore CCF(A), since we
can similarly verify that every element of C+D is also a right divisor of zero,
provided that every element of D<]4 is a right divisor of zero in the ring A.

THEOREM 50. If A is an arbitrary MHR-ring with a right unity element 1 =e,
then F(A)=G(A) holds, where G(A) is the Brown-McCoy radical of A. (By its
importance we repeat the proof.)

PROOF. If C<4 contains a non-left-divisor of zero ¢&C, then let (¢, be a
minimal right ideal among these principal right ideals (¢),. Then by definition:

(51) (e, =),

holds. Now (51) implies, by e=1,E4, an equation cozr:g.d with some dEA.
Hence ¢y (c-d—1,)=0 implies by our assumption on ¢, evidently ¢, d,=1EC;
consequently x=x.1EC for every sEA. Therefore C=A4. In other words, if
C#A, then every element of C is a left divisor of zero. Thus the intersection
of all proper two-sided ideals coincides with the ideal Z [(O=Z ,(0)=G(4),
where G(4) is the Brown-McCoy radical, .#"=[S;], the set having only the
clement Sp, and Sz=[5 : I <4, J NB#¢] =S,=S,;, the semigroup defined in
Example 40. Put Z,(0)=Z . (0), where A#"»==[S¢]l, Sc=[I": I <4, I NCg]
=S§,=8,, the semigroup defined in Example 41, and here B and C are blocks
in sense of Definition 27. Thus we have, by Theorem 33, U(4A)SZ,(0) Z,(0)
=F (4) F,(A)=F(A). Moreover, by F.Szdsz's paper [21], part I, on MHR-
rings, one has U(4)=G(4), since /, €4, and hence

€2))] G(A)=UA)CFACZ,(0)=G(A).

THEOREM 53. If A is @ von Neumann vegular ring with two-sided unity elcinent
1, their F(A)=G(A) holds.

PRrROOR. If &7 <{A and 9" #4, i€9, then by i€iAi therc exists an clement
jEA such that i=ifi. Now 9 4 implies 1&.5, and thus ji—-169 and
{j—16£.9 . Moreover we have

(G1Y)] i(ji— 1) =iji—i=0=(7—1)i,
which completes the proof.

REMARK 55. By Example 57 to follow, there exists a ring A4 such that F(4)
has the cardinality 8, where 8, is an arbitrary cardinal number and A4 is at
the same time also a von Neumann regular ring with two-sided unity element.
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REMARK 56, The eXistence of a ring 4 with properties pointed out in Remark

43, disproves a false proposition of article 6 of a paper of L. Fuchs [5]. Th
our ring also shows that our

us
generalized zeroid pseudo-radicals are generally
different from 2z (®=F(4) and from the van Leeuwen’s zeroid pseudo-radical Z
() of an ideal 9~ <4 of the ring 4 [91.

EXAMPLE 57. Let D be g division ring of arbitrary cardinality, V he a loft
D-vector space of dimension N, where N, is fixed, but arbitrarily given,
Moreover, let A be the ring of all lincar transformations of V i.e., 4 is the
ring of all D-endomorphisms of the left D-module ¥, which can be also considered
as a right A-module. Thus V is a (D, A)-bimodule. By a generalization of F.
Szasz [20], our ring 4 must be von Neumann regular. Furthermore, we eviden-

tly have 1€4 and almost trivially |F(4)| =N«, where | X| denotes the cardinality
of a set X,

Morcover, put
(58) I =[e; €A, dimp(V, @) <N,]
This yields a chain o e SITHCCA with <A for arbitrary ordinal
number v. Now we consider the following J~uppe
group S*=[(0), .5~ o F b I, Al=K -1t
Ky=[5", T o, T A]

T subsemigroups of the semi-

K= 5y 5, A
K, =[5, Al

Ktri-l: L4]

Ka-'&::fﬁ‘

Then S**= K. .. & o K, K, .. is an upper fsemigroup, and the corresponding
zeroid pseudo-radical satisfies obviously 0:#F(4)=G(4)=Z Eard Q=N 22 _(0),
and !F(A)]=N,d, too. This completes the proof.

DEFINITION 59. Let @p @y v @, be left divisors of zero of the ring 4 i.c.
there exist elements 070,€4 such that

60 clblzazbgz--@a b =0

mn
holds, If there exists at least one element 0:0€4 such that already
(61) @b=a h=r=q ph=(
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holds, then 4 is called a right uniform ring.

DEFINITION 62, Similarly, by left-right duality, also the left uniform rings
can be introduced. If A is both left and right uniform, then A is said to be a
untform ring,

PROPOSITION 63. Let for n=2, nsZ, the ring A, be the set of all matrices of
type nin over A. Put J/"‘QA”, where A is @ uniform ring, Then cvery element
% of T is left divisor of zero in A, if and only if there exists an ideal KCA

such that A, CK, holds, where cvery element of K is a left divisor of zero in A

PROOF, It follows {rom 45.9 of [14].

THEOREM 64, If the ring A is uniform, then we have
(65) FCA“)=(F(A))” Jor every n=1, nsZz,

PROOF. It follows from Proposition 63 and from Theorem 45,10 of [14].

EXAMPLE 65, Every ring with a non-zero left-annihilator is a left uniform
ring.

REMARK 66. Every homomorphic image of the ring A has no non-zero left
annihilator if and only if ¢€EeA+ AaA holds for every clement a4 (sce [16],
[171, [18], [19]). A is an E; of the sense of Szasz,

REMARK 67. Every ring having non non-zero divisors of zero is both left
uniform and right uniform.

PROBLEM 68. Construct a ring A such that F(A/F(A4))540 holds.

PROBLEM 69. Construct a left uniform ring A which is not right uniform.

PROBLEM 70. Does F(A,)=(F(4)), hold for every left uniform ring A?

DEFINITION 71, The generalized nil radical N ¢ Bl is the special (upper)
radical, determined by the class of all rings without non-zero divisors of zero.

DEFINITION 72, The Thierrin corpoidal radicel T is the special Cupper) radical
determined by the class of all division rings,

PROPOSITION 73. T(A)2N ¢ @ways holds for any ring A.
PROOF. It follows from Definitions 63 and 64.

DEFINITION 74, Let S be the upper radical determined by the class of all
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simple MHR-rings without divisors of zero.

PROPOSITION 75. If for cvery maximal completely prime ideal Ca<}A, (see
[11]) of a ring A, A/C, has a non-zero idempotent g=e+C, e&C and eg-—eECa,
C being the heart of A, then T(A)2S(A) and S=2NC,.

o

PROOF. ¢ =¢ (mod C) implies Cr=cx (mod ©), elex—x)EC, egC. Hence,
ex=x (mod C) for every xEA. But then we have yex=yx (mod C) for every
YEA. Thus (ye—y)xEC, for all %, yEA. Consequently ye=y (mod C). Therefore
¢=1EA4/C, and therefore, T(A};S(A)QOCCG)=V(A).

PROPOSITION 76, V(A4) coincides with the special (upper) radical determined
by the class of all rings with 1, but without non-zero divisors.

PROOF. Clear (see [3]).

DEFINITION 77. A ring A is called reduced, if A has no non-zero nilpotent
elements.

REMARKS 78.1. A non-zero nilpotent ring is not reduced, but every ring
without non-zero divisors of zero is reduced.

REMARK 78.2. By a result, independently obtained by V.A. Andrunakievich
—Yu.M. Rjabuhin [1] and P.N, Stewart [13], A is reduced if and only if 0=
QC“ where C,<A4 are completely prime ideals.

THEOREM 79. [1]. For a ring A the following are equivalent:

(1) Every homomorphic image B of A is reduced.

@ (a)=(a'2) holds for every principal two-sideq ideal (a) of A.
@ @ B)=@d)=(DN®) hold Jor every pair of elements a, b A.
(4 a€a°A+Ad°+4d°4, for cvery aSA.

(8) Every ideal is an intersection of some completely prime ideals.

PROOF. Apply Zorn’s Lemma [1].

THEOREM 0. Let A be an MHR-ring such that every subdivectly irreducible
homomorphic image B of A is without non-zero divisors of zero, then G(A)=T(A4)
=Be(A), where Be(4) denotes the Behrens radical of the ring A.

PROOF. By the above 1&C, where C is the heart (i.e. the non-zero intersection
of all non-zero two-sided ideals) of B. But then, as well known, B=C@D holds
by a two-sided Pierce decomposition of B with the central idempotent element 1
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of B. Now, B being subdirectly irreducible, C=B holds: whence GCA=T(A)=
Be(A4), by F. Széss’s paper [21] (MHR-rings, 1) namely every simple MHR-
ring without non-zero divisors of zero is a division ring.

The following new results can also be casily proved.,

PROPOSITION 81. For every ring A satisfying A#=F(A) and

#n
(82 Au}:,l@fiu(whem the rings A; are arbitrary, but the mumber of direct
m=

summands is finite) holds F(A)=3OF(4,).

PROPOSITION 83. If A= g D4, for arbitrary infinite set I' of indsces 7, then
T
oine has F(A)=A.

PROPOSITION 84, If A=B®?‘é‘; ©C, satisfying F(B)=B, and C, are arbitrary

rings, then F(A)=A.

THEOREM 85, The homomorphic closure C of the class C of all zeroid pseudo-
radical rings A=F(A) consists of all associative rings.

PRCOF. Put an arbitrary ring ASC, and an arbitrary ring B such that B=F
(B)EC. Then, by Proposition 75, we obtain D=AEBE&C, and A=D/BeC
Lolds, which completes the proof.,

THEOREM 86. The Amitsur-Kurosh lower radical class L(C) determined by the
class C of all Fuchsian zeroid bseudo-radical rings, consists of all associative
rings.

PROOF. L(C)2C, and Theorem 85 can be applied to C,
PROBLEM S7. Let us find a one-sided analogue of our Theorem 72.

REMARK 88. In a strong connection with Remark 57, let us finally yet point
out, that by F. Szdsz [19] a ring A such that every homomorphic image has no
non-zero two-sided annihilators satisfies aSaA+Aa+AeA for every a4, and
conversely. These rings form the class of all Egrings, which is bigger than
that of B -rings. By [18] and [19] the class of all Eyrings, and the class of
all Eg-rings, are Amitsur-Kurosh radical classes, satisfying

C(E9)#C(Ey)

EXAMPLE 89. Let A4 be the finite commutative ring A={a}, generated by a
single clement ¢€4 such that a+a(=2q) =a3—02=r:3+62=0 are valid. Then one
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has A={a"}@(4°-a} is a ring theoretica
position of {g} by (:zf)szagzag). Thus,
F(D)=A with |Al=4, but (4)={a°-q)
A=(A4)70 even in case 4] =4,

1 direct sum (applying a Pierce decom-
we have, by Proposition 75, evidently
s (CAD =0, [(A|=2, whenee F(4)=

EXAMPLE 90, Let Q be the set of all rational numbers

r/s with 7, s€Z, ss0.
Let A be the subset of all rational numbers ¢=

2
,gffl » Where &, I€Z. Then A
ring, which is a Jacohson radical
side 4 does not contain non-zero
the field Q. But therofore F(4)
can occur also the situation

0=F(A)#A=J'CA)=L(C(AJ).
where C is the class of all Fuchsian zeroid pseudo-

is, with the usual addition and multiplication g
ring, since A=9"(4) holds. On the other

divisors of zero, since it can bhe embedded into
=0, consequently even in case |A] =N,

radical rings.
PROBLEM 91, Does G(A=F(4) always hold for every MHRring 4, and for
the Brown-McCoy radical G(4) of the ring A?
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