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A topology on the class of unequivocal rings

By TRAN TroONG Hu#, ENDRE MaxAT, JR., FERENC ANDOR Sz4sz of Budapest

(Received December 7, 1981)

The fundamental notions used in this note can be found in [3] and [6]. All rings
considered here will be associative. By a radical of a ring we mean a radical in the
sense of Amrrsur and Kurosm. As it is well known, a nonzero ring 4 is called un-
equivocal, if for any radical R, 4 is either R-radical or R-semisimple. The class X
of unequivocal rings was studied by N. DiviNsky [2]; it contains properly the class
of nonzero simple rings.

The aim of this note is to show that the Kurosm lower radical construction as
well as the semisimple class corresponding to the upper radical construction define
topological closure operators on sets of unequivocal rings, The class of all unequivocal
rings can be represented by the union of these topological spaces.

Let L be a nonempty class of rings. I, denotes the homomorphic closure of L:

L, = {A| every nonzero homomorphic image of 4 has a nonzero L, -ideal for some
x < v}

forv=2,3,..., w,. Occasionally we write L, = L,(L). Then L(L) = L, is the lower
radical class defined by L and this is the smallest radical class containing the class L
(see [6]).

We shall use the following result of LEAvITT [4]:

Proposition 1. Let (R;} (i € I) be a set of radical classes. Then the relation

S(L( U u;)) =N S(R)
el i€l
holds, where S(R;) denotes the class of all R-semisimple rings, i ¢ 1.

Let X be the class of all unequivocal rings and let X' be a representative subclass
of X,ie.VAcXI14'c X", A== A", For every cardinal number o we put

X, = (4 € X’ | the cardinal number of A is not larger than ).
It is clear that X, is a set,

Let us define the operator P acting on the set of all subsets of X, as follows.
Pyt

@ if S=ao

P(S)={x,nL(S) if S+o

for every S S X, (® denotes the empty set).
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Theorem 1. P is a topological closure operator on X, which preserves even arbitrary
unvons. That is, I’ satisfies the following properties:

1) P(d) = @

2) PS)2 S

3) P(P(S)) = P(8S)

4) P (‘LE;I S 5) ::'g P(8)) (I is any index set).

Proof. The properties 1) and 2) are obvious, thus we first establish 3).
P(P(S)) = X, n L(P(S)) = X, n L(X, n I(S)).
Since L(X, n I(S)) L(L(8)) = I/(S), we have
P(P(S)) € X, n I(S) = P(S).

By 2) we have I’(P(S)} = P(S). Therefore J’(P(S)) == I’(S) holds,
To establish 4) first of all we prove the following equality:

(1) B(Y8) = E( 1)),

icr il

Since U S; € U I(S)) & L( U L(Si)), by the property of the lower radical we have
iel el i€l

L(ys) S L(YLS)).

icl i€l
On the other hand

Usigsh jgd;
iel
80

E(ig Ss) =2 L(Sy), jcl.

Therefore we have L}( U S;) =2 U L(S;). Again, by the property of the lower radical,
iel el
the inclusion L ( U Si) o L( U L(Si)) holds, and the equality (1) is proved.
il iel
By the definition of the operator P we have

U P(S) = U (X, 0 I(S))) = X; n ( U L(S:)).

icl icr iel

On the other hand we have

X, n(U L(Si}) SA.n L(U L(Sf)) =X, nkh ( U Si) = P( U S;).
il icl ier iel
Therefore the inclusion U PS)y< P ( 1) Si) holds. By Proposition 1 and equality (1)
we have el a

icl iel iel

SL( U Si) = SL( U L(S,-}) = N SL(S)).

Hence if 4 € X, a

ring. We have 4 ¢

U LS,
ier
Therefore P {1
iel
Remark, The at
of X,.
The operator P
by @G,.
Proposition 2, «
some radical class.
Proof. Let S«
n—= Lr(S'].
Conversely let
L(X, nR) = R and

P(8S) =
Thus P(S) = S foll

Proposition 3. 4
the R-semisimple ela
Proof. Let G ¢
is the set-theoretica
R is some radieal cl¢
Given a ring A
unequivocal ring, s
G S X, nSR. Conv
Nince 4 =k [0}, g0 »
TSR < G Thus G
Now let G = X,

ANG

since X, consists of
G.-closed, so G is @,

Proposition 4. Fe¢
(X, G&) contains a.

Proof. Consider
is a prime number,

a ring, which is a

Consider the followin
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Hence if 4 ¢ X, and 4 § U L(S)), then 4 € SL(S;) (i ¢ I) since 4 js an unequivocal
i€l
ring. We have A € N SL(S;) = SL (U Si) so 4 ¢ L(U S;). From this follows

iel el il

UPLS)=X,n ( U L(Si)) 2X.n L( U Si) = P( U Si).

iel iel il iel

Therefore P ( U Si) == U P(8;). The theorem is proved.
i€l i€l

Remark. The ahove theorem is also valid for any set ¥ of unequivocal rings, instead
of X,

The operator P defines a topology on the set X,. We shall denote this topology
by G..

Proposition 2. 4 set § — X, ¥s G-closed if and only if 8 = X, n R, where R s
some radicul eluss,

Proof. Let 8 = X, be a G\-closed set, then § — P(8S) = X, n L(S). We take
R = L(S).

Conversely let S == X, » R. Since X;:nR S R and R is a radical class, we have
LIX, nRB) = R and '

PS) =X, nL(X, nRYS X, R =§.
Thus P(S) = S follows and § is a G-closed set,

Proposition 3. 4 set G < X, s Gy-open if and only if G = X, n SR, where SR is
the R-semisimple elass of some radical R.

Proof. Let G © X, be a G.-open set, then § = X, N G is a G,-closed set ¥Y¥\z
is the set-theoretical difference). By Proposition 2 we have X, \ f = X, n R where
R is some radical class,

Given a ring 4 ¢ G < 2 Ly then 44 X, NG = X, » R, so 4¢R. Since 4 is an
unequivocal ring, so A4 is R-semisimple, 4 ¢ SR. Hence we have A <X, nS8R, so
G & X, nSR. Conversely, given a ring A = X, © SR then 4 is an R-semisiple ring.
Nince o == [0}, so A ¢ . Hence we have 4 EX, "R=X,\G, ic, 4 £ G and X,
"SR S G Thus G = X, n SR holds.

Now let G = X, n SR for some radical R. We have

XNG =X, N\ (X, nSR) = X, \ SR — X, nR,
since X, consists of unequivoeal rings only. By Proposition 2, X, \ G — X,.nR is
Gi-closed, so G is G -open. The proposition is proved,
Proposition 4. For every wnfinite x the space (X,, G.) s not compact. More exactly
(X, G,) contains a sequence having no point of accumulation in any (X,, Gy), x = N,.
Proof. Consider the sequence of the simple rings Z, = Z/(p), p = 2, where P

is a prime number. We show it has no point of accumulation. In fact, let 4 ¢ X, be

oo
a ring, which is a point of accumulation of this sequence, ie. 4 c N PZ,, p = q.

q=2
Consider the following class R,ofrings: R, = (A |V a,04ac 4 O(a) = 0 and all prime
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factors of O(a) are = ¢}. Analogously to ARMENDARIZ-LEAVITT [1] one can show this
o0 oo

is a radical class. Evidently (Z,, p = ¢} S R, A €N P(Z, p=q S N R, This implies
-2 =2

g g=
by the definition of R, that 4 = {0}, which however does not belong to X, a contra-
diction.

Proposition 5, For every infinite « the space (X,, G.) vs not o More exactly for any
4 € X, of cardinality < « there is an A’ ¢ X., 0 that any neighbourhood of A contains
A" and conversely.

Proof. Let 4’ be the discrete direct sum of copies of 4. Then 4" has cardinality «,

80 4 and 4’ are not isomorphic, however by Divinsky (2] P({4}) = P({A"}), which
is equivalent to our statement.

Proposition 6. For every infinite x the space (X, G,) contains A,, Ay so that
4, € P({4a}), but A, ¢ P({4,)).

Proof. Let 4, == zeroring on C(p™), A, = zeroring on C(p) (p prime). Then by
DiviNsky [2] 4,, 4, € X,, A, € P({4,}), since 4, is an ideal of A;. However evidently
Ay § P({4,)), since A4, ¢ Ly({4,)), and for » =2 4, € L([4,) & 4, € L({4,)) for

some x <7y,

Proposition 7. For evory infinite & the simple rings in X, are not dense in (X, Gy).
More exactly (Xy,, Gy,) contains a ring, which is notin the closure of the set of simple
rings in any (X,, G,), « = N,.

Proof. Let 4, = zeroring on the infinite cyclic group, 8 = {d € X, | 4 is simple}.
Then by DiviNsky [2] 4, € X, but 4, ¢ P(S), since 4, ¢ Ly(S) and fory = 2 4, € L(S)
& A, ¢ L,(S) for some »% < »,

Proposition 8, For every infinite x the space (X,, G,) 1s not connected. More exactly
it contains infinitely many subsets which are both closed and open,

Proof, Let # be any finite set of finite fields, containing with any F ¢ & all its
subfields too, Then by SreEwarr [5] #(F) — {4, 4 is a subdirect sum of some copies of
fields in #) is a class of rings, which is hoth a radical class and a semisimple class
(and in fact all non-trivial such classes are of this form)., Hence #(#) n X, is both
closed and open in X,. Further all (Q(ﬁ' }n XN,)"* are distinet, since the only finite
fields contained in (%), and hence in B(F) n Xy,, are the ones belonging to ..

Theorem 2, The closed sets of (X,, G,) constitute the open sets of a topological space
(X, H,), where analogously the closure of a set T 4= & is the tntersection of X, with the
semisimple class of the upper radical determined by T.

Proof. By Theorem 1, 4) in (X,, G.) any union of closed sets is closed. This implies

that the closed sets of (X, @,) satisfy the axioms for the open sets in the topology
(X, H.). The rest is obvious by Proposition 3.

Remark. Our Theorem 1, the remark following it, the analogues of Propositions 2,
3, further Propositions 5, 6, 8 are valid for (Xa H,) too (only change the role of 4,, 4,).

Proposition 9. For every infinite « the simple rings in X, are not dense in (X,, ).

More exactly (Xy,, Hy,) contains a ring which is not in the closure of the simple rings
in any (X,, H,), x = N,

Proof. By
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Proof. By the construction of the upper radical (Szisz [6], § 3) one sees similarly
to Proposition 7 that the zeroring on C(p®) (which belongs to X, by DiviNsky [2])

does not belong to the semisimple class of the upper radical determined by the simple
rings in X,.

Remark. We do not know if the simple rings in (X,, G.), resp. (X,, H,) are nowhere
dense. Further we conjecture that (X, H,) is not compact. It would be interesting
to know all classes ¥ < X, for which ¥ n X, is both closed and open, for cach a.

Proposition 10. If « < p then (X,, @,) resp. (X,, H,) is « subspuce of the topological
space (Xg, Gp), resp. (Xp, ).

Proof. We have X, S X;. We may consider only the case of (X,, G,). Let G < X,
be an open set in X,, then by Proposition 3, G' = X, n SR, where R is some radical
class, Since X, & Xj, we have G = X, nSR = X, n (X3 n SR). Similarly the intersec-
tion with X, of any open set in X will be open in X,.

We note yet that in a larger universe it is legitimate to introduce the above topo-
logies on the whole of X, for which the analogues of the above statements hold.

References

[1] E. P. Armuxpariz, W. G. Leavirr, The hereditary property in the lower radical construetion,
Canad. J. Math. 20 (1968), 474—476.

[2] N. Drvissky, Unequivoeal rings, Canad. J. Math. 27 (1975), 679 — 690,

[3] J. L. KnrLey, General Topology, Princeton, Van Nostrand, 1955.

[4] W. G. LeaviTr, Sets of radical classes, Publ. Math. Debrecen 14 (1967), 321 —324.

[51 P. N. 8rewarT, Semisimple radical classes, Pacific J. Math. 32 (1970), 249—254.

[6] . Szdsz, Radikale der Ringe, Akadémiai Kiad6, Budapest, 1975.

[7] ¥. Sz4sz, Radicals of Rings, Akadémiai Kiadé, Budapest, 1981.

Ungarische Akademie
Muthematisches Institut
H-1053 Budapest ¥
Redltanoda w. 13—15
Ungarn



