SOME NOTES ON THE UPPER AND LOWER RADICALS

by

TRÂN TRONG HUÊ (Hanoi) and F. A. SZÁSZ (Budapest)

§ 1. Introduction

In the following only associative rings are considered. A radical class or briefly a radical will mean a radical in the sense of Kuroš and Amitsur. For the basic concepts of the radical theory we refer to [2], [6] and [7].

For a given class M of rings, we denote the homomorphic closure of **M** by $H(\mathbf{M})$ and, the hereditary closure of **M** by $J(\mathbf{M})$, these are,

 $H(\mathbf{M}) = \{A \mid A \text{ is a homomorphic image of some } \mathbf{M}\text{-ring}\}$

 $J(\mathbf{M}) = \{A \mid A \text{ is an accessible subring of some } \mathbf{M}$ -ring}

 $\mathcal{U}(\mathbf{M})$ denotes the upper radical class determined by \mathbf{M} and $\mathfrak{L}(\mathbf{L})$ denotes the lower radical class determined by \mathbf{L} .

The class M is said to be regular if it satisfies the following condition:

 $H(I) \cap \mathbf{M} \neq \emptyset$, for every $0 \neq I \triangleleft A \in \mathbf{M}$

where $I \triangleleft A$ means I is an ideal of A. Note: we write I for the class $\{I\}$ containing I as its member.

A regular class may not contain the ring 0, for the sake of short statement we shall assume that regular classes contain the ring 0.

It is well-known that if the class **M** is regular then

$$\mathcal{U}(\mathbf{M}) = \{ A \mid H(A) \cap \mathbf{M} = 0 \}$$

In [5] W. G. LEAVITT and YU-LEE LEE have shown that if L is a homomorphically closed class of rings, then

$$\mathfrak{L}(\mathbf{L}) = \{A \mid J(A/I) \cap \mathbf{L} \neq 0 \text{ for every } A/I \neq 0\}$$

In 2 we shall consider conditions for classes \mathbf{L}_i , \mathbf{M}_I , i = 1, 2, such that the upper and lower radical classes determine the same radical, that is,

$$\mathfrak{L}(\mathbf{L}_i) = \mathfrak{U}(\mathbf{M}_i) \ \mathfrak{U}(\mathbf{M}_i) = \mathfrak{U}(\mathbf{M}_i) \text{ and } \mathfrak{L}(\mathbf{L}_i) = \mathfrak{L}(\mathbf{L}_i).$$

AMS (MOS) subject classification (1980). Primary 16A21.

Key words and phrases. Radical, upper radical, lower radical, homomorphic closure, hereditary closure, special radical, supernilpotent radical.

A class \mathbf{M} of rings has been called special by V. A. ANDRUNAKIEVIČ [1] if it is a hereditary class of prime rings with the property:

If $I \triangleleft A$ with $I \in M$ then $A/I^* \in \mathbf{M}$, where I^* is the two-sided annihilator of I in A.

A radical R is called special if R is an upper radical determined by some special class.

A problem concerning the notion of the special radical can be naturally raised:

Find conditions for classes \mathbf{M} and \mathbf{L} auch that the upper radical determined by \mathbf{M} and, the lower radical determined by \mathbf{L} are special. This problem will be solved in § 3.

ANDRUNAKIEVIČ [1] has shown that every special radical is supernilpotent. The following theorem will be neccessary later on.

THEOREM 1 (cf. [1], Theorem 6, pp. 198). Let R be a supernilpotent radical then the upper radical determined by the class of all prime R-semisimple rings is the smallest special radical containing R.

§ 2. The coincidence of upper radical classes and lower radical classes

2.1 Criterion for $\mathfrak{L}(\mathbf{L}) = \mathfrak{U}(\mathbf{M})$

LEMMA 2. Let **L** be a homomorphically closed class. Then a ring A is $\mathfrak{L}(\mathbf{L})$ -semisimple if and only if $J(A) \cap \mathbf{L} = 0$ holds.

PROOF. Assume a ring A be $\mathfrak{L}(\mathbf{L})$ -semisimple since every semisimple class of a associative rings is hereditary, so every accessible non-zero subrings of A is $\mathfrak{L}(\mathbf{L})$ -semisimple. This implies $J(A) \cap \mathbf{L} = 0$.

Conversely, suppose that a ring A satisfies the condition $J(A) \cap \mathbf{L} = 0$. Assume B be a $\mathfrak{L}(\mathbf{L})$ -ideal of the ring A. cf $B \neq 0$ then every non-zero homomorphic image of B contains a non-zero accessible \mathbf{L} -subring. In particular, B has a non-zero accessible \mathbf{L} -subring. From this it follows $J(A) \cap \mathbf{L} \neq 0$, a contradiction. Thus B = 0 and the ring A is $\mathfrak{L}(\mathbf{L})$ -semisimple.

THEOREM 3. Suppose that the class M is regular and the class \mathbf{L} is homomorphically closed. Then $\mathfrak{L}(\mathbf{L}) = \mathfrak{U}(\mathbf{M})$ if and only if the following conditions are satisfied:

(1) $\mathbf{L} \cap \mathbf{M} = 0$,

(2) For every non-zero ring A, if $J(A) \cap \mathbf{L} = 0$ then $H(A) \cap \mathbf{M} \neq 0$.

PROOF. In view of Lemma 2, the necessity is straightforward.

Conversely, assume that the conditions of the theorem are satisfied. Since **L** is homomorphically closed, so from the first condition follows that no ring of **L** can be mapped homomorphically onto any non-zero **M**-ring. Hence the inclusion $\mathbf{L} \subseteq \mathfrak{U}(\mathbf{M})$ holds. By the minimality of the lower radical we have $\mathfrak{L}(\mathbf{L}) \subseteq \mathfrak{U}(\mathbf{M})$. Now, suppose that a ring A does not belong to the class $\mathfrak{L}(\mathbf{L})$. By Lemma 2 the non-zero $\mathfrak{L}(\mathbf{L})$ -semisimple ring $A/\mathfrak{L}(\mathbf{L})(A)$ has no non-zero accessible **L**-subrings. By the second condition the ring $A/\mathfrak{L}(\mathbf{L})(A)$ can be mapped homomorphically onto some non-zero **M**-ring. This implies $H(A) \cap \bigcap \mathbf{M} \neq 0$ and so the ring A is not in $\mathfrak{U}(\mathbf{M})$. Thus we have $\mathfrak{L}(\mathbf{L}) = \mathfrak{U}(\mathbf{M})$.

2.2. Criterion for
$$\mathcal{U}(\mathbf{M}_1) = \mathcal{U}(\mathbf{M}_2)$$

THEOREM 4. Suppose \mathbf{M}_i (i = 1, 2) are regular classes of rings. Then $\mathcal{U}(\mathbf{M}_1) = \mathcal{U}(\mathbf{M}_2)$ if and only if

$$H(A) \cap \mathbf{M}_i \neq 0$$

for every ring A in \mathbf{M}_i (i = 1, 2).

PROOF. The necessity is obvious.

Now assume that the conditions of theorem are valid. We have to show that $\mathcal{U}(\mathbf{M}_1) = \mathcal{U}(\mathbf{M}_2)$. Let A be an arbitrary ring in \mathbf{M}_1 and, B any non-zero ideal of A. Since the class \mathbf{M}_1 is regular so B can be mapped homomorphically onto some non-zero \mathbf{M}_1 -ring C. By the hypothesis the ring C can be mapped homomorphically onto some non-zero \mathbf{M}_2 -ring. This implies that every nonzero ideal of A can be mapped onto some non-zero \mathbf{M}_2 -ring.

Thus the ring A is $\mathcal{U}(\mathbf{M}_2)$ -semisimple, and so each ring A in \mathbf{M}_1 is $\mathcal{U}(\mathbf{M}_2)$ -semisimle. Since $\mathcal{U}(\mathbf{M}_1)$ is the largest radical for which every ring in \mathbf{M}_2 is semisimple, we must have $\mathcal{U}(\mathbf{M}_2) \leq \mathcal{U}(\mathbf{M}_1)$. Similarly, also $\mathcal{U}(\mathbf{M}_1) \leq \mathcal{U}(\mathbf{M}_2)$ holds.

COROLLARY. Let N be a subclass of a regular class M. Then $\mathcal{U}(N) = \mathcal{U}(M)$ if the following condition is satisfied:

For every non-zero ring $A \in \mathbf{M}$,

(a)
$$H(A) \cap \mathbf{N} \neq 0.$$

PROOF. It is easy to see that if the condition (α) is valid then the subclass N is regular. So the conditions of Theorem 3 are satisfied.

REMARK. In general, the converse is not true. For instance, let A be a non-zero simple ring. We take $\mathbf{M} = \{A, A + A\}$ and $\mathbf{N} = \{A + A\}$. Clearly, the class M is regular and $\mathcal{U}(\mathbf{N}) = \mathcal{U}(\mathbf{M})$ but the condition (α) is not valid.

HUE, SZÁSZ: UPPER AND LOWER RADICALS

2.3. Criterion for $\mathfrak{L}(\mathbf{L}_1) = \mathfrak{L}(\mathbf{L}_2)$

THEOREM 2. Let \mathbf{L}_i , i = 1, 2, be homomorphically closed classes. Then $\mathfrak{L}(\mathbf{L}_1) = \mathfrak{L}(\mathbf{L}_2)$ if and only if the following condition is satisfied:

(β) For every non-zero ring $A \in \mathbf{L}_i$, $J(A) \cap \mathbf{L}_j \neq 0$ (i, j = 1, 2).

PROOF. Suppose $\mathfrak{L}(\mathbf{L}_1) = \mathfrak{L}(\mathbf{L}_2)$. Then every ring A in \mathbf{L}_i is a $\mathfrak{L}(\mathbf{L}_j)$ -radical and by Lemma 2 it follows $J(A) \cap \mathbf{L}_i \neq 0$.

Conversely, assume that the classes \mathbf{L}_i , i = 1, 2, satisfy the condition of theorem. Let A be an arbitrary ring in \mathbf{L}_1 . Since the class \mathbf{L}_1 is homomorphically closed, so every homomorphic image of A is in \mathbf{L}_1 . Therefore, by the condition (β) every homomorphic image of A has a non-zero accessible \mathbf{L}_2 subring. Hence the ring A is in $\mathfrak{L}(\mathbf{L}_2)$. From that follows $\mathfrak{L}(\mathbf{L}_1) \subseteq \mathfrak{L}(\mathbf{L}_2)$. Similarly, also $\mathfrak{L}(\mathbf{L}_2) \subseteq \mathfrak{L}(\mathbf{L}_1)$ holds.

COROLLARY. Let \mathbf{L}_0 be a subclass of a homomorphically closed class \mathbf{L} . If $J(A) \cap \mathbf{L}_0 \neq 0$ holds for every non-zero ring A in \mathbf{L} , then $\mathbf{L}(L_0) = \mathbf{L}(L)$, provided that \mathbf{L}_0 is homomorphically closed.

§ 3. Criterion for the upper and lower radical to be special

LEMMA 6. Let **L** be a homomorphically closed class of rings such that the lower radical $\mathfrak{L}(\mathbf{L})$ determined by **L** is supernilpotent. Then the radical $\mathfrak{L}(\mathbf{L})$ is special if and only if the following condition is satisfied:

(y) For a non-zero ring A if $J(A) \cap \mathbf{L} = 0$ then

 $H(A) \cap P(\mathbf{L}) \neq 0$

where

 $P(\mathbf{L}) = \{A \mid A \text{ is a prime ring and } J(A) \cap \mathbf{L} = 0.$

PROOF. Let L be a homomorphically closed class of rings such that $\mathfrak{L}(L)$ is supernilpotent. By Lemma 2 every ring in P(L) is prime $\mathfrak{L}(L)$ -semisimple. By Theorem 1 the radical $\mathfrak{L}(L)$ is special if and only if $\mathfrak{L}(L) = \mathfrak{U}(P(L))$.

Clearly, the relation $\mathbf{L} \cap P(\mathbf{L}) = 0$ always holds. Thus, by Theorem 3 $\mathfrak{L}(\mathbf{L}) = \mathfrak{U}(P(\mathbf{L}))$ if and only if condition (γ) is valid.

THEOREM 7. If **L** is a hereditary and homomorphically closed class containing all zero-rings then the lower radical $\mathfrak{L}(\mathbf{L})$ is special if and only if the property (γ) is valid.

PROOF. In [4] HOFFMAN and LEAVITT have shown that if L is hereditary, then the lower radical $\mathfrak{L}(\mathbf{L})$ is hereditary. Hence, by the hypothesis, the radical $\mathfrak{L}(\mathbf{L})$ is supernilpotent. Thus the theorem is an immediate consequence of Lemma 6.

LEMMA 8. Let **M** be a regular class of rings such that the upper radical $\mathfrak{U}(\mathbf{M})$ is supernilpotent. Then the radical $\mathfrak{U}(\mathbf{M})$ is special if the following condition is satisfied:

(χ) for every non-zero ring $A \in \mathbf{M}$,

$$H(A) \cap \mathbf{M} \cap \mathbf{P} \neq 0,$$

where **P** is the class of all prime rings.

PROOF. Let **M** be a regular class satisfying the conditions of the lemma. Consider the class $\mathbf{N} = \mathbf{M} \cap \mathbf{P}$. By the Corollary of Theorem 4 we have $\mathcal{U}(\mathbf{M}) = \mathcal{U}(\mathbf{N})$ if condition (α) is satisfied. Next, we denote the class of prime $\mathcal{U}(\mathbf{M})$ -semisimple ring by N_1 that is, $\mathbf{N}_1 = \overline{\mathbf{M}} \cap \mathbf{P}$, where

(*) $\overline{\mathbf{M}} = \{A \mid H(I) \cap \mathbf{M} \neq 0, \text{ for every } 0 \neq I \triangleleft A\}.$

Clearly $N \subseteq N_1$. Since class of prime rings and semisimple class are hereditary so the class N_1 is hereditary.

Let a ring A be in \mathbf{N}_1 . By (*) the ring A can be mapped homomorphically onto some non-zero ring A in \mathbf{M} . By condition (χ) the ring A has some nonzero homomorphic image A_2 in \mathbf{N} . From this it follows that, for every ring Ain \mathbf{N}_1 , $H(A) \cap \mathbf{N} \neq 0$ holds. By the corollary of Theorem 4 we have $\mathcal{U}(\mathbf{N}_1) =$ $= \mathcal{U}(\mathbf{N}) = \mathcal{U}(\mathbf{M})$. Thus, by Theorem 1 the radical $\mathcal{U}(\mathbf{M})$ is special.

THEOREM 9. Let **M** be a regular class of rings. Then the upper radical $\mathcal{U}(\mathbf{M})$ is special if the following three conditions are satisfied:

(i) **M** does not contain non-zero zero-rings.

(ii) For each ring A, if $0 \neq I \triangleleft A$ and $H(I) \cap \mathbf{M} \neq 0$, then $H(A) \cap \mathbf{M} \neq 0$.

(iii) For every non-zero ring $A \in \mathbf{M}$,

$$H(A) \cap \mathbf{M} \cap \mathbf{P} \neq 0.$$

PROOF. In [3] ENERSEN and LEAVITT have shown that if the class N satisfies the conditions (i) and (ii), then the upper radical $\mathcal{U}(\mathbf{M})$ is supernilpotent. Thus, the theorem is an immediate consequence of Lemma 8.

REFERENCES

- [1] V. A. ANDRUNAKIEVIČ, Radikaly associativnyh kolec, I (Radicals of associative rings, I), Mat. Sab. 44 (1958), 179-212. MR 20 # 5220
- [2] N. J. DIVINSKY, Rings and radicals, University of Toronto Press, Toronto, 1965. MR 33 # 5654
- [3] P. O. ENERSEN and W. G. LEAVITT, The upper radical construction, Publ. Math. (Debrecen) 20 (1973), 219-222. MR 48 # 8579
- [4] A. E. HOFFMAN and W. G. LEAVITT, Properties inherited by the lower radical, Portugal. Math. 27 (1968), 63-68. MR 41 # 6888
- [5] W. G. LEAVITT and YU-LEE LEE, A radical coinciding with the lower radical in associative and alternative rings, *Pacific J. Math.* **30** (1969), 459-462. *MR* 40 # 1437
- [6] F. SZASZ, Radikale der Ringe, Akadémiai Kiadó, Budapest, and VEB Deutscher Verlag der Wissenschaften, Berlin, 1975. MR 55 # 8086
 [7] R. WIEGANDT, Radical and semisimple classes of rings, Queen's University, Kingston
- (Ontario), 1974. MR 50 # 2227

(Received December 31, 1979)

DEPARTMENT OE MATHEMATICS UNIVERSITY OF HANOI HANOI VIETNAM

MTA MATEMATIKAI KUTATÓ INTÉZET H-1053 BUDAPEST REÁLTANODA U. 13-15. HUNGARY