LASER CUTTING OF STAINLESS STEEL THIN SHEETS
WITH PULSED Nd:YAG LASER

Gy. Meszlényi
Ph.D. student, Budapest Polytechnic, 1085 Budapest, Tavaszmező utca 17,
e-mail: meszlenyi.gyorgy@kvk.bmf.hu

J. Dobránszky
PhD, Hungarian Academy of Sciences, Research Group for Metal Technology
1111 Budapest, Goldmann tér 3, e-mail: dobi@eik.bme.hu

L. Dévényi
PhD, Budapest University of Technology and Economics, Department of Materials Science and Engineering,
1111 Budapest, Goldmann tér 3, e-mail: devenyi@eik.bme.hu

Abstract: The parameters of laser cutting mainly depend on material and from thickness. In case of a given material and thickness many settings can be chosen. In this article we examine the laser cutting of 0.4 mm thickness stainless steel sheets with pulsed Nd:YAG laser. We examine the effect of cutting speed on cut quality in case of three different combinations of pulse energy and pulse frequency.

Good cut quality and relatively high cutting speed can be achieved with 800 Hz and 20.7 mJ setting, we can cut higher speed, but poor cut quality with 400 Hz and 49 mJ setting.

Keywords: Laser cutting, Pulsed Nd:YAG laser, Cut quality

1. INTRODUCTION

The main production method for thin sheet workpieces is laser cutting. These workpieces can be cut by Nd:YAG [1] laser with 20-50 µm kerf width, by fiber laser (for example Ytterbium mono mode fiber laser) [2], with 12 µm kerf width, or by water-jet guided Nd:YAG laser [3], with narrow kerf width too. The narrower the kerf width the lower the energy input for the workpiece, because of melting lower amount of material. Lower energy input means narrower heat affected zone, lower heat-caused distortion and more accurate workpiece profile.

Nowadays the most commonly used laser for thin workpiece cutting is Nd:YAG laser with 1064 nm wavelength. It has got different configurations: either with conventional flash lamp excitation, (for example Lasag KLS 246) or with lased diode excitation having better efficiency, or with Q-switch: capable for emitting high energy pulses.

Thawari made a full analysis on the higher power pulsed Nd:YAG laser cutting of Ni-base superalloys [4]. Beside a laser system a positioning system is necessary for thin sheet workpiece fabrication [5]. This positioning system clamps the workpiece and moves it relatively to the laser spot forming the structure of the workpiece. The positioning system for workpiece fabrication ensures two perpendiculars a translation and an adjustment of the mutual position of the work piece and the laser spot [6-7].

2. EXPERIMENTS

Objective: discovering relationships between cutting speed, pulse frequency, pulse energy and cut quality. Applied laser system: LASAG KLS 246 pulsed Nd:YAG with 20 W average power. Work piece positioning system produced by Aerotec Ltd. allowing two
perpendicular translations in horizontal plane plus rotation around horizontal axis programmed with CNC code.

<table>
<thead>
<tr>
<th>C</th>
<th>0.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>18.31</td>
</tr>
<tr>
<td>Ni</td>
<td>10.06</td>
</tr>
<tr>
<td>Mn</td>
<td>1.76</td>
</tr>
<tr>
<td>Si</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Tab. 1. Chemical composition of AISI 304L austenitic stainless steel

The applied material was AISI 304L austenitic stainless steel sheet with 0.4 mm thickness, the chemical composition of the material can be seen in Tab. 1.

The stainless steel sheets were cut 10 mm long cuts with different laser settings. Tab. 2 shows the laser processing parameters used for this experiment. The laser cutting experiment was made with the aid of oxygen gas. The pressure of oxygen was 5×10^5 Pa. The exothermic reaction of oxygen and the material made the cutting faster.

<table>
<thead>
<tr>
<th></th>
<th>Laser setting “I”</th>
<th>Laser setting “II”</th>
<th>Laser setting “III”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse frequency</td>
<td>100 Hz</td>
<td>400 Hz</td>
<td>800 Hz</td>
</tr>
<tr>
<td>Average power</td>
<td>12.5 W</td>
<td>19.6 W</td>
<td>16.6 W</td>
</tr>
<tr>
<td>Pulse width</td>
<td>0.3 ms</td>
<td>0.1 ms</td>
<td>0.05 ms</td>
</tr>
<tr>
<td>Pulse energy</td>
<td>125 mJ</td>
<td>49 mJ</td>
<td>20.7 mJ</td>
</tr>
<tr>
<td>Processing speed</td>
<td>1-16 mm/s</td>
<td>0.5-32 mm/s</td>
<td>2-20 mm/s</td>
</tr>
<tr>
<td>Focus position</td>
<td>At the top of the sheet</td>
<td>At the top of the sheet</td>
<td>At the top of the sheet</td>
</tr>
</tbody>
</table>

Tab. 2. Laser processing parameters

Laser setting „I” means low frequency, high-energy pulses with varying cutting speed. Laser setting „II” means medium frequency, medium energy pulses with varying cutting speed. Laser setting „III” means high frequency, low energy pulses with varying cutting speed.

3. RESULTS AND DISCUSSION

Using low frequency laser setting „I” and medium frequency laser setting „II” 3 different region can be observed depending on the cutting speed (Tab. 3)

- In region „A” the cutting speed is low - because of this there is a large overlap between the laser pulses causing good-quality straight-edge kerf with low dross adherence (Fig. 1).
- In region „B” the cutting speed is higher - because of this there is a small overlap between the laser pulses causing poor-quality kerf with striations and more dross adherence (Fig. 6 and 9). In region „C” the cutting speed is high - because of this there is no overlap between the laser pulses causing independent holes in the material: it is the no-cut region (Fig. 4 and 5).
- The “C” region in 100 Hz and 125 mJ laser setting the diameter of the entry holes are almost the same as the diameter of the exit holes (Fig. 4 and 5), but in 400 Hz and 49 mJ laser setting the diameter of the entry holes are bigger than the diameter of the exit holes (Fig. 7 and 8).
Using high frequency laser-low pulse energy setting „III” 2 different regions can be observed depending on the cutting speed (Tab. 3): In region „A” the cutting speed is low because of this there is a large overlap between the laser pulses causing good-quality straight-edge kerf with low dross adherence (Fig. 1).

The former „B” region is missing because one laser pulse is too week to make a hole across the material so with low pulse overlap there is no cut, but the no-cut region is the “C”. In This “C” region the pulses makes holes not crossing the material, and the assist gas blows the molten material from these holes causing spattering at the bottom of the sheet (Fig. 2).

Fig. 3 shows the cross section of this “C” region cut: some of the molten material is blown into the hole. Tab. 3 summarizes the result: shows the effect of the pulse frequency and the cutting speed on the cut quality.
Fig. 4. There is no cut. Laser pulses drilled individual holes. 100 Hz, 16 mm/s; entry side.

Fig. 5. There is no cut because of the laser pulse drilled individual holes. 100 Hz, 16 mm/s, exit side.

Fig. 6 – Poor quality cut at 100 Hz, 4 mm/s, entry side

Fig. 7. There is no cut. Individual holes. 400 Hz, 32 mm/s, entry side

Fig. 8. There is no cut. Laser pulses drilled individual holes. 400 Hz, 32 mm/s, exit side

Fig. 9. Poor quality cut at 100 Hz, 4 mm/s, exit side, strong dross adherence can be observed
Tab. 3 The effect of cutting speed on cut quality at various frequencies

At 800 Hz laser setting a good quality cut can be made up to 12 mm/s cutting speed. Over this speed we cannot cut the material. At 400 Hz laser setting a good quality cut can be made up to 8 mm/s cutting speed; from 8 mm/s to 20 mm/s a poor quality cut can be made, over 20 mm/s there is no cut. At 100 Hz laser setting a good quality cut can be made up to 2 mm/s cutting speed; from 2 mm/s to 8 mm/s a poor quality cut can be made, over 8 mm/s there is no cut. In the region of poor quality cut (“B”) sometimes cutting failures occur because of the non-uniformity of laser-drilled holes little bridges occur in the kerf (Fig.10).

4. CONCLUSION

The effects of the laser cutting parameters on cut quality were analysed. The following consequences can be drawn:

Good cut quality and relatively high cutting speed can be achieved with 800 Hz and 20.7 mJ and 12 mm/s setting, we can cut higher speed (20 mm/s), but poor cut quality with 400 Hz and 49 mJ setting. Since 100 Hz and 125 mJ setting allows low cutting speed, better to use it for materials with larger thickness. Future plans: examination of the role of pulse width; analysis of the cutting of thinner materials with lower energy pulses.
ACKNOWLEDGEMENTS

The authors would like to thank Minvasive Ltd, Zsolt Puskás, Istvánné Hrotkó, Mihály Portkó, Viktor Izápy, Kornél Májlinger for their helpfulness in experiments and analysis. The Hungarian Scientific Research Fund supported this research; project number is K69122.

REFERENCES

