
Introduction

The concept of connectivity has long been used in

transportation geography (Taaffe and Gauthier 1973), and

more recently in landscape ecology for understanding and

modeling flows of matter and energy within landscape

mosaics (Risser et al. 1984). Landscape patches are con-

nected depending on whether there are patterns or proc-

esses to link them in some way. Connections between

patches arise either from static configurations (e.g., patch

adjacency or soil distribution) or from dynamic processes,

such as dispersal or disturbance (Green 1994). Further-

more, functional connections between landscape patches

clearly change as a function of the process under consid-

eration (Noss 1991). For example, patches that are con-

nected for seed dispersal of anemochorous plant species

may not be connected for zoochorous plant species or for

animal movement (Grashof-Bokdam 1997, Green 1994).

Connectivity determines a large number of ecological

functions of the landscape, including seed dispersal and

colonizing ability (Grashof-Bokdam 1997, Grashof-Bok-

dam et al. 1998), animal dispersal (Johnson et al. 1992,

Schippers et al. 1996, Schumaker 1996, Beier and Noss

1998), gene flow (Green 1994), fire spread and distur-

bance propagation (Turner et al. 1989, Green 1989) and

soil erosion (Davenport 1998). Several approaches to

modeling fluxes through a land mosaic, e.g., percolation

theory (Milne et al. 1996, Keitt et al. 1997) or cellular

automata (Couclelis 1985) are possible (Cantwell and

Forman 1993). Within this context, graph theory (Harary

1969) is an effective way for reducing the complexity of

landscape patterns into an understandable set of spatial

configurations creating an universal framework for mod-

eling landscape fluxes at any scale of observation

(Cantwell and Forman 1993, Keitt et al. 1997).

Graph theory is commonly used in numerous research

fields, such as transportation geography, pharmacology

and microelectronics, to describe structural relationships

between objects. In ecological research, graph theory has

been principally used to analyze food webs (Cohen 1978,

Cohen et al. 1990, Sugihara 1984) and vegetation dynam-

ics (Dale 1985, Roberts 1989, Acosta et al. 2000). Re-

cently, Johnson et al. (1998) used a multiscale topological

approach to investigate the spatial distribution of breed-

ing birds’ species richness in Pennsylvania.

Mathematically, an (undirected) graph G = (V, X) is

composed of a finite set V of vertices together with a pre-

scribed set X of unordered pairs of distinct elements of V,

the elements of X being defined as edges. Focusing on the-

matic maps, such as vegetation or land cover maps as a
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surrogate of the real landscape, a landscape graph repre-

senting the spatial relationships among landscape patches

may be obtained by mapping all vegetation patches as

vertices, while the edges x�� ∈ X = (v�, v�), represent their

adjacency (Keitt et al. 1997). That is, any two vegetation

patches that share a common boundary are connected by

an edge (Figure 1). Notice that, in anthropic landscapes,

contacts at corners between landscape patches, such as

agricultural fields are very common (Cantwell and For-

man 1993), and we think they should be considered as

well as contacts along segments. Following this simple

rule, a landscape graph may be constructed from any the-

matic map at any scale of observation.

In this paper, we introduce a graph-theoretic index of

network connectivity (i.e., global landscape connectivity)

based on the construction of reciprocal distance matrices

from landscape graphs. As an application for demonstra-

tion, the artificial graph of Figure 1 and an actual land-

scape graph derived from the vegetation map of the island

of Palmarola (central Italy) were used.

Data

The island of Palmarola (136.36 hectares) belongs to

the Pontine islands archipelago, located in the Thyrrenian

Sea, about 30 km off the Italian peninsula (40° 51’ N; 12°

58’ E). The maximum elevation is 249 m above sea level.

From Pliocene to lower Pleistocene, the archipelago was

built by the eruption mainly of silicic magmas (trachytes,

rhyolites and more recently basalts) on top of Meso-

Coenozoic sedimentary and metamorphic bedrocks

(Cosentino et al. 1993). Climate is of Mediterranean type,

with annual total rainfall of 649 mm, mainly limited to

autumn-winter period, and annual average temperature of

16.6 °C (Blasi 1994). Climatic data came from the mete-

orological station of Ponza Campo Inglese (185 m above

sea level).

While there have never been permanent urban settle-

ments on the island, the vegetation landscape of Palma-

rola is the result of widespread deforestation for vineyard

cultivation and goat grazing. As a consequence, the

prevalent vegetation types are Cistus spp. and Erica mul-

tiflora maquis, and Genista thyrrena and Euphorbia den-

droides garrigue. Secondary therophytic grasslands with

Brachypodium ramosum, and coastal cliff communities

with Helychrisum litoreum, Limonium pontium and

Crithmum maritimum are also quite common. Erica ar-

borea maquis and Quercus ilex woods can be found just

in the shelter sites on northern slopes previously occupied

by vineyard terracing. From the vegetation map of Palma-

rola (Stanisci and Pezzotta 1992), the corresponding

graph was generated (Figure 2).

Methods and discussion

In the last 50 years, several graph-invariant indices

have been suggested to quantitatively describe the essen-

tial aspects of network connectivity based on graph topol-

ogy (structure). A graph-invariant index yields the same

value for all isomorphic graphs. Graph isomorphism is

defined in terms of changes in the assignment of labels to

the vertices. Such changes do not change the topology and

two isomorphic graphs G� and G� are therefore “identi-

cal” as far as most graph-theoretical properties are con-

cerned (Harary 1969).
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Analytic representations of graphs may be con-

structed from landscape graphs to more fully understand

the connectivity of elements. To obtain analytic repre-

sentations of graph structure, the principal tools are the

corresponding adjacency matrix A(G) and the distance

matrix D(G). For a landscape graph G with N vertices,

A(G) is a square N × N matrix (Basak et al. 1987) with

elements a�� defined as:

Conversely, the distance matrix D(G) of a graph G with

N vertices is a square N × N matrix with elements d�� indi-

cating the topological distances in the graph. The topo-

logical distance d�� between two vertices i and j is the

number of edges along the shortest path between these

two vertices (Figure 3).

For undirected landscape graphs without loops, both

matrices are symmetric with zero elements in the main di-

agonal. Furthermore, graphs represented by adjacency or

distance matrices are invariant to all permutations of the

rows or columns of the matrices. Thus, if G is a graph with

N vertices, there are N! equivalent graphs corresponding

to the number of ways the N vertex labels can be per-

muted. To uniquely characterize the structure of a graph,

topological indices (TI), i.e., graph invariant reduced

forms of adjacency or distance matrices are used (Basak

et al. 1987). For example, a simple way to compute a local

vertex invariant (i.e., a topological index associated to a

single graph vertex) from the adjacency matrix of a graph

is to add all a�� elements along row i or column j of the

matrix. This results in a vector whose elements v�, called

the degree of vertex i in graph theory or beta index in

transportation geography represent the total number of

edges connected to vertex i.

Besides beta connectivity, in landscape ecological ap-

plications of graph theory it may be useful to use the dis-

tribution of cutnodes in the analysis of landscape connec-

tivity. Some connected graphs (i.e., graphs where every

vertex is connected to at least another vertex) can be dis-

connected by the removal of a single vertex or node

termed as cutnode. Edges with the same cohesive prop-

erty are termed as bridges. The fragments (nonseparable

subgraphs) of a graph held together by its cutnodes and

bridges are termed its blocks (Buckley and Harary 1990).

Using our own example, the graph for the island of Pal-

marola (Figure 2) lies in six blocks with three cutnodes

and three bridges connecting them (Figure 4). In ecologi-

cal terms, the presence of cutnodes and bridges in the

graph indicates that there could be barriers to dispersal be-

tween the disconnected blocks (Keitt et al. 1997).

Although indices of adjacency among patches are

useful to quantify the local connectivity of a given land-

scape, they provide little insight into the connectivity

structure of the entire landscape.

In transportation geography, overall network connec-

tivity is measured by the gamma index, as the actual

number of edges in the graph (½Σ�v�) divided by the

number of edges of the corresponding planar graph, i.e., a

graph with the maximum possible number of non-redun-

dant pairwise connections assuming that no edge intersec-

tions are formed (Figure 5):

(2)

For the graph of Figure 1, we obtain γ = 0.5, whereas for

the graph of Palmarola, γ = 0.678. In other words, the

vegetation patches of Palmarola are connected to a rela-

tively higher number of adjacent patches than the vegeta-

tion patches of the artificial landscape of Figure 1. Notice
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that if different kinds of functional connections between

patches are considered rather than spatial adjacency, then

complete graphs ( i.e., graphs where every pair of vertices

is connected by an edge, Figure 6) may represent more

adequate normalization terms for computing gamma con-

nectivity.

The gamma index, however, only measures strict ad-

jacency (touching) among vegetation patches without

taking into account the effects between non-adjacent

patches. A simple remedy of this drawback is to quantify

network connectivity as the total topological distance in

the graph (the number of all the edges between all pairs of

vertices in the graph). This measure was first introduced

by Wiener (1947) as the sum of the off-diagonal elements

in the upper triangular distance submatrix of a given

graph G:

(3)

Since D(G) is symmetric, the total distance of G (the

sum of elements of the distance matrix) is simply twice

the Wiener index W. Therefore, one can reduce the calcu-

lation of W to the upper triangular submatrix without loss

of the properties of D(G). For example, for the artificial

landscape of Figure 1, W = 28, whereas for the vegetation

map of Palmarola, W = 1305.

The comparison of network connectivity between two

landscapes with different numbers of landscape patches is

possible by introducing relative connectivity indices. For

instance, very simple formulae exist for computing W

from chain graphs (Figure 7) and planar graphs (i.e., the

least connected graphs and the most connected graphs, re-

spectively) as a function of the number of vertices N:

W�����= [N(N-1)/][(N+1)/3] (4)

W�����	= (N-2)
�

+2 . (5)

Equation (4) was analytically derived by Bonchev

and Trinajstic (1977). The conjecture behind Equa-

tion (5) is that, for any given number of vertices N, it

is still possible to construct a planar graph where the

topological distance d�� between any pair of vertices

that are not directly connected by one edge equals 2

(see Figure 5). As a consequence, for a planar graph,

the number of elements in the upper triangular sub-

matrix of D(G), N(N-1)/2, can be partitioned into a

first set of 3(N-2) elements (i.e., the number of edges

of the planar graph) where d�� = 1, and a second set of

N(N-1)/2-3(N-2) elements where d�� = 2.

It follows: 1 x 3(N-2) + 2 x [N(N-1)/2-3(N-2)] = (N-2)
�

+2. Notice however that this conjecture was simply veri-

fied with computer brute force and not analytically dem-

onstrated. Counter examples may therefore still be possi-

ble. Following Equations (4) and (5), the Wiener index W

of a graph G can be therefore normalized between 0 and

1 as:

W = (W - W
��) / (W
�� - W
��) =

= (W - W�����	) / (W����� - W�����	) (6)

Connectivity has a trivial relationship to W. Increasing

connectivity for a given number of vertices N generally

corresponds to shorter topological distances between ver-

tices in the graph and to a lower value of W. In our case,

for the graph of Figure 1 W = 0.588 and for the graph of

Palmarola, W = 0.112. Notice also that for complete

graphs the Wiener index equals the number of elements

W dij

i j

= ∑1

2 ,

1 2

3

4

6

5
Figure 5. ������ ����� ���� ��, �������� -����' ��� ���

� ��� 
� �������� 
� ��� ���	����� ����� 
� /�� �� �.�

1 2

3

4

6

5
Figure 6. &
����� ����� ���� ��, ���������

1

2

5

3

4

6
Figure 7. 2����� ����� ����� ���� ��,

���������

(� *��
��� �� ���



in the upper triangular submatrix of A(G) or D(G), i.e.,

N(N-1)/2.

Because gamma connectivity and the Wiener index

are both calculated from integer entries either in the adja-

cency or in the distance matrix, they have a large degen-

eracy, i.e., several non-isomorphic graphs can correspond

to the same W value (Devillers and Balaban 1999). In ad-

dition, the highest contribution to W is made by connec-

tions between topologically distant vertices. Conversely,

a classical law of geography and landscape ecology holds

that everything in a landscape is interrelated, but near

patches are more related that distant ones (Forman and

Godron 1986). In particular, the components of ecologi-

cal systems such as species composition, biotic move-

ment or fluxes of nutrient, water and energy are more

greatly affected by neighboring patches (Acosta et al.

2000). Therefore, from an ecological viewpoint, the Wie-

ner index is anti-intuitive. To remedy these two draw-

backs in the computation of W, the distance matrix D(G)

can be substituted by the reciprocal distance matrix R(G)

with elements d��
��

. The sum of the off-diagonal values in

the upper triangular submatrix of R(G) leads to a topo-

logical index termed the Harary index, H (Ivanciuc et al.

1993, Plavsic et al 1993). Since H is based on a summa-

tion of rational elements, it has a slightly lower degener-

acy than W (Figure 8), while the highest contribution to H

is made by connections between topologically close ver-

tices in the graph. Within this context, the expressions for

calculating the Harary index for chain and planar graphs

assume the form:

H����� = (N-1) + (N-2)/2 + (N-3)/3 + ... + 1/(N-1) (7)

H�����	= N(N+5)/4 - 3 (8)

whereas the expression for calculating H for a complete

graph remains unchanged (H�
�����= N(N-1)/2). Conse-

quently, the expression for calculating the normalized

Harary index H becomes:

H = (H - H�����) / (H�����	 - H�����) . (9)

For our specific examples, the normalized Harary index

is H = 0.236 (H = 9.833) for the artificial landscape of

Figure 1 and H = 0.620 (H = 206.800) for the vegetation

map of Palmarola. Notice that, unlike the normalized

Wiener index, the normalized Harary index increases

with increasing connectivity. We think therefore that H

may be a better measure of landscape connectivity than

more traditional indices such as gamma connectivity or

the normalized Wiener index both from an intuitive and

mathematical viewpoint.

Conclusions

Landscape graphs may be used for quantitatively de-

scribing a landscape as a series of spatially or functionally

interconnected patches. In this sense, the Harary index H

seems to be an effective index to quantify landscape net-

work connectivity in a meaningful way. In ecological re-

search, the relation between the Harary index and land-

scape connectivity may be of some significance for a

better understanding of ecological processes, such as seed

dispersal and gene flow across the landscape (Cantwell

and Forman 1993). Furthermore, the normalized expres-

sion of H may offer a basis for graph theoretical compari-

son of landscape structures across space and time. How-

ever, it should be noted that, to date, the importance of TIs

as a baseline to identify landscape structural properties

that are relevant to critical ecological processes has yet to

be convincingly illustrated. As is the case with other land-

scape indices (MacGarigal and Marks 1995, Riitters et al.

1995), the major shortcomings of TIs are that they are go-

ing to depend both on the classification scheme adopted

for constructing the vegetation map and on the extent of

the area analyzed. In addition, most TIs do not allow on

principle any difference in quality (e.g., effect of different

vegetation types) to be included in the calculation, and

their relevance to ecological problems must be judged by

the ecologist from the perspective of a certain ecological

process (Molinari 1989, Schumaker 1996).

From a statistical viewpoint, by reducing graph to-

pology into a single index, information is necessarily lost,

and there is no ideal function capable of uniquely charac-

terizing all aspects of landscape structure. Nevertheless,

although different TIs have been defined to characterize

different aspects of graph (landscape) structure, like con-

nectivity, size, symmetry, circuitry, fragmentation, etc.

based on distinct objectives and motivations, it is clear

from the above that TIs share certain common features

and a certain degree of intercorrelation (Basak et al.

1987). Future work is required to analyze the mutual re-

lationships of published TIs to find a small set of non-re-
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dundant metrics that span the important dimensions of

landscape structure. Also, the possibilities of developing

new “topoecological” indices that introduce qualitative

differences among distinctive patches in the calculation

of TIs are to be explored.
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