
Introduction

Food web connectance is the fraction of potential

links that are actually engaged (Gardner and Ashby

1970). The connectance is one of the key structural prop-

erties of food webs. Recently, the relationship between

connectance and species richness has become a contro-

versial issue (Martinez 1992, Hall and Raffaelli 1993,

Warren 1994, Havens 1992, 1997, Bersier et al. 1999,

Martinez et al. 1999).

The conventional theory of food web connectance is

the hyperbolic connectance hypothesis. This hypothesis

emerged from the theoretical investigations of the rela-

tionship between stability and complexity in ecological

and other systems (Gardner and Ashby 1970, May 1972,

Pimm 1982). Supposing a randomly assembled food web

has S species, connectance C and an average interaction

strength a, May suggested that, for large S, the system

would almost certainly be locally asymptotically stable if

and only if SCa
2
<1. Assuming a constant a independent

of S, this equation suggests that, for local stability, at the

boundary of the inequality, connectance should be in-

versely proportional to species richness, that is, C~1/S.

Cohen and Newman (1984, 1985a) showed that SCa
2
<1

is not necessary and sufficient to assure a hyperbolic de-

cline in connectance.

The local asymptotic stability (LAS) analysis of ran-

domly assembled model food webs has been questioned

for various reasons as a theoretical paradigm for predict-

ing food web patterns. First, randomly assembled food

webs may allow biologically unrealistic structures such as

the absence of autotrophs (DeAngelis 1975, Lawlor 1978,

Pimm 1984). Second, local stability may not be a good

measure of community persistence. May (1974) thought

that qualitative stability deserves study as a determinant

of the relation between complexity and stability.

Recently, Cohen et al. (1990b) incorporated into the

Lotka-Volterra model biologically plausible topological

features of the cascade model (Cohen et al. 1990a) to de-

fine the Lotka-Volterra cascade model (LVCM). Cohen et

al. (1990b) showed that the qualitative global asymptotic

stability (QGAS) of the LVCM in the limit as S→∞ (ex-

tremely large webs) gives a hyperbolic C-S relationship.

QGAS goes beyond LAS in two important ways: it is
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“qualitative” because stability depends only on the sign

pattern, not the numerical values, of the coefficients of the

dynamical equations; and it is “global” because the sys-

tem returns to its equilibrium following perturbations of

any size, not merely following sufficiently small pertur-

bations. The analysis of Cohen et al. (1990b) provides no

information about the C-S relationship in webs with a fi-

nite number of species.

The prediction of a hyperbolic C-S relationship re-

ceived support from analyses of some catalogues of food

webs (Rejmanek and Stary 1979, Pimm 1982, Briand

1983, Cohen and Newman 1985b, Schoenly et al. 1991,

Havens 1997). Early analyses yielded approximately C ≈
4S

-1
(Cohen and Newman 1988). This pattern is equiva-

lent to a roughly linear increase of the number of links

with species richness, L ≈ 2S (Cohen and Briand 1984,

Cohen and Newman 1985b, 1988, Schoenly et al. 1991).

Most early food web data on which these analyses

were based are usually side products of surveys made for

other purposes. Because of this, the validity of food web

properties based on these data was questioned (Paine

1988, Lawton 1989, Winemiller 1989, Martinez 1991,

1992, Hall and Raffaelli 1993). Based on existing and

new data, Martinez (1992) proposed the “constant con-

nectance” hypothesis, namely, that the connectance is in-

dependent of the number of species L/S
2

= k (k is a posi-

tive constant). Between the hyperbolic connectance

hypothesis and the constant connectance hypothesis, an

intermediate hypothesis states that the number of links in-

creases roughly as the 4/3 or 3/2 power of S (Cohen et al.

1986, Schoener 1989, Havens 1992). These alternative C-

S patterns apparently differ from predictions of dynamical

models.

In this study, we show that the QGAS of the LVCM

with a finite number of species predicts a hyperbolic C-S

relationship which is in striking agreement with the em-

pirical regularity C = 4S
-1

emerging from the previous

catalogues of food webs. The LAS and QGAS of LVCM

with a finite number of species provide qualitatively con-

sistent predictions about the C-S relationship. These pre-

dictions appear to be consistent with the data when the

possible effects of selection of data are considered.

The Lotka-Volterra cascade model (LVCM) and

methods of analyses

The Lotka-Volterra cascade model (LVCM) follows

the classic Lotka-Volterra system of ordinary differential

equations (May 1974, Pimm 1982, Cohen and Newman

1988, Cohen et al. 1990b). Let xibe the abundance of spe-

cies i, ei the intrinsic rate of change, pij the coefficient of

interaction of species j with species i, and

. The LVCM assumes that the sign

patterns of the community matrix, P=(pij)
S
i,j, are defined

by the cascade model.

The cascade model has a single parameter c > 0 which

is independent of the number of species S. The cascade

model assumes that for each pair of species i, j = 1, …, S

with i<j, species i can never eat species j, while species j

can eat species i with a probability of c/S (c/S=C is the

connectance, 0<c≤S) independently for each pair of spe-

cies. For large S, the parameter c may be interpreted as

(nearly) the average number of species eaten by the top-

ranked species, species S. Here we suppose all trophic

links to be consumer-victim links, which is a special case

of the LVCM. If pij is the per-capita effect of species j on

the per-capita rate of growth of species i, then we have

Pr(pij < 0 & pji > 0)=c/S. Here Pr(.) means “probability of

the event (.)”. All the species are assumed to be self-lim-

ited, i.e., Pr(pii<0) for all i (Cohen et al. 1990b). We do not

assume that every trophic link has dynamical effects, so

the graphs of dynamical interactions in our model food

webs do not necessarily have to be connected graphs.

If L is the number of undirected non-cannibalistic

links, connectance C refers to undirected connectance,

and E(.) is the mean or expected value, then C = E(L)/[S(S-

1)/2]. In Martinez’s constant connectance hypothesis, the

connectance is directed connectance with cannibalism,

i.e., C‘ = E(L‘)/S
2

(L’ is the number of directed links, in-

cluding cannibalistic links). Each undirected consumer-

victim link counted in L makes two directed links counted

in L’ so that E(L‘) = 2E(L).

Each randomly assembled LVCM food web has

QGAS, according to conditions given by Logofet (1993),

if the digraph of the LVCM food web has no k-cycles for

k≥3. (Other conditions given by Logofet are automatically

satisfied here.) A randomly assembled LVCM food web

has LAS if and only if all the eigenvalues of its Jacobian

matrix have a negative real part, i.e., Re(λi)<0 for all i.

Numerical simulations to estimate the probabilities of

QGAS and LAS are conducted on randomly constructed

LVCM food webs with given S and C. The value of S is

incremented from 2 to 60 with a step of 2. The value of C

is incremented from 0 to 1 with a step of 0.05. For each

combination of C and S values, a random community ma-

trix P=(pij)
S
i,j is generated. First, a uniformly distributed

random number ψ is drawn from the interval (0, 1) to de-

termine whether to assign a link between the species i and

species j (i<j) independently for all pairs of i, j. If ψ≤C,

then a link is assigned, i.e., pij<0 and pji>0. Then the pij

�x x e p xi i i ij j
j

= + ∑e j
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and pii are each assigned a uniformly distributed random

value in the interval (-1, 0), and pji is assigned a uniformly

distributed random value in the interval (0, 1). All uni-

form variables are selected independently.

For each combination of values of C and S, 10000

such random systems are assembled and the relative fre-

quency f of QGAS or LAS is measured. The upper bound

of the standard deviation Sd of each estimated probability

f is Sd = ≤ = 0.005.

To correct measures of correlation for the number of fitted

parameters, we used corrected R
2

= 1 - (1-R
2
)(n - 1)/(n - p

-1), where n is the number of data points, p the number of

parameters, and R
2

the ordinary linear correlation.

Results

C-S relationship as constrained by dynamical stability

The surfaces in Fig. 1A and 1B show the relationship

between S and C at different levels of probability of

QGAS and LAS, respectively. As the values of S and C

increase, a gradual transition from non-zero probability to

zero probability occurs.

The level contours of the probability surfaces of

QGAS and LAS, plotted as functions of C and S, depict

the relationship between C and S at specific levels of prob-

ability of QGAS (Fig. 2A) or LAS (Fig. 2B). The top con-

tour in each of Fig. 2A and Fig. 2B, at the probability of

stability of 0.0001, represents the frontier of stability: it

separates the region of positive probability of stability

f f( ) /1 10000− 05 05 10000. . /⋅

A

B

Figure 1. Perspective

views of (A) the prob-

ability of qualitative global

asymptotic stability and

(B) the probability of local

asymptotic stability in the

Lotka-Volterra cascade

model as a function of spe-

cies richness (S) and con-

nectance (C).

f f S( ) /1−
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from the region of effectively zero probability of stability.

For finite S, it is possible that the probability of stability

may never be 0.

The simulated data points at the frontier of QGAS are

fitted to the hyperbolic model of C as a function of S with

a nonlinear least-squares algorithm, which gives C =

4.5834S
-0.9895

(corrected R
2

= 0.9504) (Fig. 3A). The

standard deviations of the multiplier and the exponent of

S are 0.3729 and 0.0407, respectively. The hyperbolic

form of this C-S relationship is qualitatively insensitive to

the probability (here 0.0001) chosen to represent the fron-

tier of stability. The fitted C-S curve is very close to that

given by the hyperbolic connectance hypothesis C = 4S
-1

(Cohen and Briand 1984) (Fig. 3A). When the number of

links L is plotted against S (C is converted to L by L =

CS(S - 1)/2), the least-squares fit of the simulated data

points at the frontier of QGAS is a power function: L =

1.6021S
1.0511

(corrected R
2

= 0.9544) (Fig. 3B). The

standard deviations of the multiplier and the exponent of

S are 0.2711 and 0.0484, respectively. The fitted L-S plot

appears very close to that given by the species-linkage

scaling hypothesis L = 2S, but clearly departs from that

given by the constant connectance hypothesis L’ = 0.11S
2

(Fig. 3B) (where the coefficient 0.11 is the median value

of the range 0.08-0.14 given by Martinez (1992)) and that

given by the intermediate hypothesis L = 0.6713S
1.36

(Co-

hen et al. 1986).

At the frontier of LAS (Fig. 4), the C-S and L-S curves

fitted by least squares to the simulated data points give C

= 19.9999S
-0.9080

(corrected R
2

= 0.9799) and L =

12.7711S
1.0195

(corrected R
2

= 0.9805). The standard de-

viations of the exponents of S are 0.0257 and 0.0298 in the

C- and L-equations, respectively. Quantitatively, these

curves represent a much more relaxed constraint on food

web complexity than do the curves at the frontier of

QGAS because, for local stability, a larger number of

links is compatible with a given number of species. How-

ever, the exponents of the C-equation and L-equation are

close to -1 and 1 respectively, showing that the curves at

the frontier of LAS are qualitatively in line with the hy-

perbolic connectance law. By simple trial-and-error, we

found that the fitted C-S and L-S curves at the probabilities

of LAS of 0.9, namely, C = 3.5267S
-0.9604

(corrected R
2

= 0.9992) and L = 1.5848S
1.0609

(corrected R
2

= 0.9980),

are visually very close to the curves given by C = 4S
-1

and

L = 2S (Fig. 4). The standard deviations of the two pa-

rameters in the C-equation are 0.0239 and 0.0038, and

Figure 2. Contours of (A) probabilities

of qualitative global asymptotic stability

and (B) probabilities of local asymptotic

stability in the Lotka-Volterra cascade

model as a function of species richness

(S) and connectance (C). Each • repre-

sents the result of 10,000 simulated

webs. The value on each contour curve

is the probability at which the contour is

taken. Small values of S and C assure a

high probability of stability.
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Figure 4. Connectance (C) and

number of links (L) in relation to

species richness (S) at the frontier

(probability of 0.0001) of local as-

ymptotic stability of the Lotka-

Volterra cascade model (thick line).

The least-squares fitted contours at

the probability of 0.9 (thin line) are

visually very close to the curves

given by the hyperbolic connec-

tance (C = 4S
-1

; A) and species-link

scaling (S = 2L; B) hypotheses (—).

The dotted curve overlaps the solid

curve in A. Each dashed curve (-⋅-⋅)
is given by the constant connectance

hypothesis. In comparing the hyper-

bolic connectance hypothesis

(where connectance is measured by

C) with the constant connectance

hypothesis (where connectance is

measured by C’), C‘ is converted to

C by C=C’S/(S-1), so C is not a

constant function of S in the con-

stant connectance hypothesis.
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Figure 3. Connectance (C) and

number of links (L) in relation to

species richness (S) at the frontier

(probability of 0.0001) of qualitative

global asymptotic stability of the

Lotka-Volterra cascade model. The

curvilinear least-squares fit (−−−) of

the simulated data points (•) gives C

= 4.5834S
-0.9895

, R
2

= 0.9504 in A,

and L = 1.6021S
1.0511

, R
2

= 0.9544

in B. The dotted curves (. . .) are

given by the hyperbolic connectance

(C = 4S
-1

; A) and species-link scal-

ing hypotheses (L = 2S; B) ; it over-

laps the solid curve in B. The

dashed curves (-⋅-⋅-) are given by

the constant connectance hypothesis

L‘/S
2

= 0.11. The broken line (- - -)

in B is given by the intermediate hy-

pothesis L = 0.6713S
1.36

.
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those in the L-equation are 0.0623 and 0.0105, respec-

tively.

These results indicate that the hyperbolic connectance

hypothesis and the mathematically equivalent species-

link scaling hypothesis hold for webs with topological

features of the cascade model at the frontiers of LAS and

QGAS.

Reconciliation with empirical data

We evaluate the fitted C-S and L-S equations at the

frontier of QGAS using 150 webs with more than 10 tro-

phic species. (A trophic species consists of all organisms

identified as having the same sets of prey and the same

sets of predators. A trophic species may contain multiple

biological species, or may contain a single life stage of a

biological species.) This set of 150 webs includes 142

sink or community webs having more than 10 (trophic)

species from the 213 webs gathered by Cohen, and 8 new

and large webs [1 web from Martinez et al. (1999) and 7

webs from Williams and Martinez (2000)].

For the 142 webs, the curvilinear least-squares regres-

sions give C = 1.930S
-0.736

(corrected R
2

= 0.400) an L =

1.348S
1.136

(corrected R
2

= 0.774). The standard devia-

tions of the exponents of S are 0.088 and 0.040 in the two

equations, respectively. The two exponents are closer to

-1 and 1, as in the hyperbolic connectance law, than to 0

and 2, as in the constant connectance law. The predictions

by the fitted equations appear rather close to that given by

the threshold of QGAS and the hyperbolic connectance

(link-species scaling) hypothesis, but differ qualitatively

from that given by the constant connectance hypothesis

(Fig. 5).

For the 8 large webs, curvilinear least-squares regres-

sion gives C = 34.373S
-1.307

(corrected R
2

= 0.511). The

standard deviation of the exponent of S is 0.780. Neither

the hyperbolic connectance hypothesis nor the constant

Figure 5. The empirical rela-

tionships between connectance

(C) and trophic species rich-

ness (S), and between number

of links (L) and trophic spe-

cies richness (S). The solid cir-

cles (•) represent 142 webs

from the ECOWeB collection,

and the open circles (o) repre-

sent 8 new and large webs.

The best fits of the 142 webs

are represented by thick solid

lines; the best fits of the total

150 webs are shown by thick

dashed lines - - -; the best fits

of the 8 new webs are shown

by - - - . They are compared

with the hyperbolic connec-

tance or species-link scaling

hypothesis ___ and the con-

stant connectance hypothesis

-⋅-⋅- .
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connectance hypothesis provides a satisfactory curvilin-

ear least-square fit to L-S relationship in the 8 large webs.

Linear least-squares regression of log L against log S

gives L = 6.708S
0.911

(corrected R
2

= 0.346). The standard

deviation of the exponent of S is 0.514. Neither regression

is statistically instructive because of the small R
2
s and

large standard deviations of the exponents of S, but the

fitted curves appear visually closer to hyperbolic connec-

tance than to constant connectance (Fig. 5).

Curvilinear least-squares regressions for the 150 webs

give C = 1.381S
-0.605

(corrected R
2

= 0.273) and L =

0.875S
1.317

(corrected R
2

= 0.506). The standard devia-

tions of the exponents of S are 0.093 and 0.090 in the two

equations, respectively. The fitted L-S curve for this data

set is similar to that previously given by Cohen et al.

(1986), i.e., L = 0.6713S
1.36

, but the overall fit is quite

poor. The curvature and position of the C-S data points

resemble the hyperbolic connectance model more than

they resemble the constant connectance hypothesis (Fig.

5). The new data do not appear to support the constant

connectance hypothesis.

Connectance-species-richness relationship and habitat

variability

Food webs in fluctuating environment are less con-

nected (Briand 1983) and have shorter food chains (Bri-

and and Cohen 1987) than those in constant environ-

ments. Here we extend the analysis of connectance to all

71 documented food webs with more than 10 trophic spe-

cies and identified habitat variability compiled by Cohen

et al. (1990a). These webs were classified into two cate-

gories: 51 webs were labeled as exposed to “fluctuating”

environments and 20 webs as exposed to “constant” envi-

ronments (Cohen et al. 1990a).

In these webs, the average number of trophic species

in constant and fluctuating environments are 21.78±3.60

and 21.45±3.96 (95% confidence interval), respectively.

They are not significantly different from each other (Stu-

dent’s t test, P = 0.9002). However, the connectances in

constant and fluctuating environments are 0.33±0.08 and

0.20±0.02 (95% confidence interval), respectively. The

former is significantly higher than the latter (Student’s t

Figure 6. Empirical connectance (C)

and empirical number of links (L) of

food webs as a function of trophic spe-

cies richness (S) in fluctuating (o) and

constant (•) environments. The connec-

tance and number of links are signifi-

cantly greater in constant than in

fluctuating environments (P = 0.0017).

The curves are the frontier of qualitative

global asymptotic stability (with prob-

ability 0.0001) of the simulated Lotka-

Volterra cascade model.
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test, P < 0.0017) (Fig. 6). This finding confirms the results

of Briand (1983) based on the analysis of 40 webs (32

webs that have more than 10 trophic species in his analy-

sis are included in this study). Briand (1983) assumed a

link of interference competition between any pair of

predators that shared at least one common prey, while we

do not. Species that share a prey need not necessarily have

dynamically significant interference competition.

Of the 51 webs in fluctuating habitats, 43 (84%) webs

have connectance below the frontier of QGAS. In con-

trast, of the 20 webs in constant habitats, only 9 (45%)

webs have connectance below the frontier of QGAS (Fig.

6). The proportion of webs within the frontier of QGAS

in fluctuating environments is significantly higher than

that in constant environments (P<0.0093).

Discussion

Cohen et al. (1990b) showed mathematically that a

hyperbolic C-S relationship holds at the frontier of QGAS

of the LVCM in the limit when S approaches infinity. If

all interactions are consumer-victim links, then at the

frontier of QGAS,

.

Our numerical simulations show that the C-S relationship

at the frontier of QGAS of the LVCM with a finite number

of species is in striking agreement with the empirical

regularity CS = 4. These investigations represent the only

effort, suggested by May (1974), to explore the relation of

qualitative stability to complexity. The C-S relationship

emerging from the QGAS of the LVCM sheds new light

on the hyperbolic connectance hypothesis predicted by

the LAS (May 1972, Pimm 1982, Auerbach 1984, Cohen

and Newman 1984, 1985a, 1988). The QGAS depends

only on the topological properties of food webs, that is,

only on the sign pattern of the interaction matrix, but is

independent of the interaction strengths and initial condi-

tions. Thus, the C-S relationship emerging from the

QGAS represents a fundamental structural property of

food webs.

The frontier of QGAS separates webs in constant en-

vironments from those in fluctuating environments. A

food web having QGAS will remain globally stable un-

less the trophic structure changes. Food webs in fluctuat-

ing habitats usually have high variability in the interaction

coefficients and intrinsic rates of increase or decrease, as

well as frequently perturbed state variables. In fluctuating

habitats, persistence of food webs tends to require food-

web structures that produce QGAS. On the other hand,

food webs in relatively constant environments usually

have lower variability in interaction coefficients and in-

trinsic rates of increase or decrease, as well as less fre-

quently perturbed state variables. In constant environ-

ments, food webs can persist within looser constraints of

stability, such as local stability.

The QGAS of the LVCM shows that the hyperbolic

connectance hypothesis is supported by formal models

and concepts independent of those from which the hy-

pothesis originally derived. The cascade model’s predic-

tions of many biologically reasonable properties (al-

though some debates exist) were based on values of a free

parameter in the hyperbolic connectance hypothesis C =

4S
-1

or something similar. When the cascade model is em-

bedded into the Lotka-Volterra dynamical model, qualita-

tive stability predicts an equivalent hyperbolic C-S rela-

tionship, independently of any prior assumptions about

connectance.

The C-S relationship predicted by the QGAS of the

LVCM agrees well with the empirical regularity emerging

from the early food web catalogues which have been con-

sidered to be of poor quality, but differs considerably from

the relationship derived from the new and large webs.

Moreover, alternative hypotheses were derived based on

different sets of documented food webs (Cohen et al.

1986, Schoener 1989, Warren 1990, 1994, Martinez 1991,

Havens 1992). How should one view the disparity among

alternative hypotheses and between the theoretical predic-

tion and the patterns from the new large webs? Here we

first argue that the concept of a link in the dynamic models

need not be compatible with that in empirical food-web

graphs. Then we suggest that the prediction of hyperbolic

connectance from dynamical stability is not necessarily in

contradiction with different patterns if the underlying as-

sumptions are relaxed or altered.

A trophic link in dynamic models has a different

meaning from a link in empirical food-web graphs

In the empirical webs, a link is drawn if one species

eats another species. In the dynamical models, a link is

assigned only if the trophic or other (e.g., behavioral) in-

teraction has dynamical effects on predator or prey or both

species. In food-web studies, investigators usually try to

detect and report all possible feeding links, based on ob-

servations, stomach analyses, or sometimes guesses based

on knowledge of biology of the species (Paine 1988,

Martinez 1991, Polis 1991, Warren 1994). Some but not

all of these links may be dynamically effective. In real

ecosystems, some feeding links may have no or trivial dy-

namical consequence (Paine 1980, 1988, Lawton 1989) or

only a one-way dynamical consequence, such as the do-

S

CS
→∞

=lim 1
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nor-controlled and recipient-controlled interactions

(Pimm 1980, Lawton 1989, Cohen et al. 1990b). Links

having no or trivial dynamical effects are omitted in dy-

namical models. The C-S relationship predicted by the dy-

namical models might differ from that emerging from the

new large webs because of the difference in the meaning

of a trophic link. The food web catalogues from which the

empirical hyperbolic connectance pattern was derived

were usually side-products of surveys oriented toward

studies of ecosystem functioning or population dynamics,

not detailed food web studies. These webs may have

grasped only the essential and dominant trophic groups

and links of the systems and may have ignored the less

significant interactions. In comparison with detailed webs

that include all trophic links regardless of their dynamic

significance, the earlier simplified webs may have links

that are more in line with the assumptions of dynamical

models.

In dynamical models, a link represents a locally and

instantaneously effective trophic interaction, while in em-

pirical food-web graphs, the species and interactions are

usually lumped over time and space. In reality, many spe-

cies shift diets seasonally or with age or ontogenetic

stages (Price 1984, Paine 1988, Schoenly and Cohen

1991). Diets may also change as a result of optimal forag-

ing if there are changes in the relative abundance of alter-

native food resources (Price 1984, Krebs and Davies

1993). Real trophic links also vary in space (Paine 1980,

1988, Gloss and Lake 1994) but reported food-web

graphs often combine data from several study sites. At

each particular time and local site, the number of actual

links in a food web is less than that in the reported cumu-

lative web. The old food web catalogues usually focused

on the trophic groups and links that exist over broad spa-

tial and temporal scales, and thus might be more in line

with dynamical models than detailed webs which include

all temporary and local links.

Experiments suggest that real food webs may be char-

acterized by a few strong links and many weak links

(Paine 1980, 1988, 1992, Lawton 1992). Those weak

links have, by definition, insignificant dynamical conse-

quences and thus may often have been ignored in food

webs documented with low sampling effort. Our analysis

shows that the connectance in the food webs documented

with relatively low sampling effort is more compatible

with the connectance constrained by the qualitative global

stability of the dynamical models than is the connectance

in the food webs documented with high sampling effort.

This finding suggests that only some reported trophic

links have dynamical consequences relevant to global

qualitative stability.

Various relations between connectance (involving

trophic links) and web sizes have been proposed

(Schoener 1989, Cohen et al. 1990a, Warren 1990, 1994,

Martinez 1992, Havens 1992) based on different sets of

data. These empirical C-S patterns are sensitive to the se-

lection of data sets. Most of these empirical patterns lack

theoretical justifications.

The hyperbolic connectance hypothesis (supposing C

≈ L/S
2
) implies a constant link density (L/S = k) across

food webs of different sizes. The constant connectance

hypothesis implies a link density that is directly propor-

tional to S (L/S = kS). An intermediate hypothesis states

that the link density increases roughly according to L/S =

kS
1/2

(Schoener 1989). More food web data need to be col-

lected and compiled with standardized procedures to test

these hypotheses further (Cohen et al. 1993).

Hyperbolic connectance is not the only pattern that

constraints of dynamical stability could imply

Dynamical stability implies a hyperbolic C-S relation

under certain assumptions or conditions. Changing any

assumptions or conditions may alter the C-S relationship.

An examination of these assumptions and conditions may

explain alternative patterns of connectance.

1) One assumption is that the magnitude and distribu-

tion of interaction coefficients and the evenness of equi-

librium populations are scale-independent (that is, inde-

pendent of the number of species). If the interaction

strengths and population evenness are scale-dependent,

patterns of connectance other than the hyperbolic connec-

tance may be produced. If CSa
2

< 1, which is May’s

(1972) condition, C may remain constant or increase with

S if the average interaction strength a decreases with in-

creasing S. So far, no evidence indicates that interaction

strengths and population evenness are scale-invariant.

2) Another implicit assumption underlying the hyper-

bolic connectance relation is that the species richness S of

food webs is not related to environmental variability.

However, species diversity of many taxa decreases with

increasing environmental variability (MacArthur 1976).

The species richness of food webs could be positively cor-

related with environmental constancy on ecological time

scales (though not necessarily on evolutionary time

scales). Previous (Briand 1983, Briand and Cohen 1987)

and our current analyses of the existing catalogues of food

webs suggested that food webs have a greater connectance

in constant environments than in fluctuating environ-

ments. If the variation in S is largely due to the environ-

mental variability, then the variation in connectance is

also related to the environmental variability, rather than
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simply responding to S. In this case, it would not be sur-

prising if link density increased with S.

3) The hyperbolic connectance represents the C-S re-

lationship at a specific probability of stability. There has

been no justification to explain why all observed food

webs should evolve to a threshold of stability associated

with the same probability. Many observed communities

may be undergoing succession. Food webs in transient

communities under succession usually have lower com-

plexity than food webs in mature climax communities

(Price 1984). These transient communities usually have

not reached the complexity that the threshold of stability

would allow. It is not impossible that, as a transient com-

munity evolves, both the number of species and connec-

tance may increase at the same time. If different food

webs in a collection are at different stages of succession,

a positive correlation between link density and web size

may be produced.

4) The conventional theory of food web dynamics as-

sumes that the complexity of food webs is constrained by

asymptotic or long-term stability. When food webs are

subjected to environmental fluctuations, their transient

dynamical responses may affect their persistence more

than their asymptotic stability. Food-web persistence in

the transient phase may deviate from the long-term as-

ymptotic stability in fluctuating environments. The ability

to persist in the transient phases under fluctuating envi-

ronments may at least partly explain why C and S some-

times follow other than the hyperbolic relationship.

The connectance may be determined not only by the

intrinsic biological mechanisms and dynamical stability,

but also by successional stage and by the features of the

environments such as productivity, and frequency and

amplitude of perturbations. Connectance is determined by

many system-specific factors in addition to the species

richness. The C-S relationship derived from real food

webs is sensitive to the collection of webs. Large data sets

are required to compare webs from different types of habi-

tats.
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