
Introduction

A wide range of possible mechanisms exist for deter-

mining the presence of species in communities. One po-

tential mechanism put forward by Diamond (1975) was

that communities represent structured subsets of the re-

gional species pool and that competition for shared re-

sources imposes the structure (e.g., Fox 1987, Fox and

Brown 1993, Wilson and Roxburgh 1994). There is still

considerable debate over the existence of these commu-

nity ‘assembly rules’, much of it reviewed in the papers

in Weiher and Keddy (1999). Despite this continuing de-

bate, there does now appear to be some evidence that pat-

terns do exist within communities of both animals (Kelt

et al. 1995, Fox 1999) and plants (Wilson and Roxburgh

1994, Weiher et al. 1998).

In this paper, one of the main methods put forward,

that of detecting ‘favoured states’ (Fox 1987), has been

adopted to investigate the structuring of woodland bird

communities. Specifically that means testing the rule that

“there is a much higher probability that each species en-

tering a community will be drawn from a different func-

tional group, until each group is represented, before the

cycle repeats” (Fox 1987). A more general statement of

this hypothesis, “there is a statistical tendency for func-

tional groups to be represented as equally as possible in

communities”, has also been put forward (Fox and Brown

1993). A favoured state is one where the numbers of spe-

cies in each functional group differ by no more than one

species. This corresponds to the Alpha guild of Wilson

(1999) and the type 2 assembly rule of Belyea and Lan-

caster (1999).

Fox’s (1987) favoured state assembly rule was tested

with data from bird communities of discrete woodland

patches in an arable landscape in Cambridgeshire and

Lincolnshire, UK (c. 2000 km
2
). Previous studies of as-

sembly rules in birds and mammals (Fox and Brown

1993, Kelt et al. 1995, Gotelli et al. 1997) were conducted

at much larger spatial scales or across a range of different

biomes, such that the area encompassed by the sites ex-

ceeded the geographic ranges of some of the individual

species (Stone et al. 1996). In contrast, the sites providing

the data for this study consisted of relatively homogeneous

habitat patches, all of which were within the geographic

range of the resident species. Also, many of the bird spe-

cies within the region studied abandon their summer ter-
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ritories and habitats (in which they were sampled) and

spend the winter elsewhere, either in different geographic

areas or in different local habitats. Thus, any assembly

rules must operate every year rather than on the slower

time scale envisaged by Fox and Brown (1993). Thus, the

context of this analysis is considerably different from that

of previous studies, and offers potential new insights into

employment of the assembly rule concept in the analysis

of patterns of co-occurrence in animal communities.

Materials and methods

Study area

A total of 164 woods within Cambridgeshire and

southern Lincolnshire in eastern England was surveyed

over three years (1990 – 1992). The area was c. 70 km

from north to south, and 35 km from east to west, roughly

centred on Monks Wood (52
o
24’N, 0

o
14’W). The woods

ranged in size from 0.02 to 30 ha and consisted of largely

broad-leaved tree species, though a few contained areas

of intermixed conifers and broad-leaves. The surrounding

landscape was dominated by intensive arable farming,

with little remaining semi-natural habitat.

Bird census methodology

The woods were surveyed in each of the three years to

determine their annual complement of breeding species.

The birds were censused using an intensive mapping tech-

nique based on the methodology of the British Trust for

Ornithology’s Common Bird Census (Marchant 1983).

However, all woods were visited four times each year be-

tween the end of March and the beginning of August, and

were searched systematically by walking a route designed

to encounter every potential breeding territory. The cen-

sus employed strict criteria to differentiate between

breeding birds and transients. Only breeding birds are

considered in this analysis. Details of the techniques used

have been presented elsewhere (Hinsley et al. 1995).

Data used in analysis

In total 66 bird species were detected by the census

method. However, some species were excluded from the

analysis for several reasons. The census technique was

deemed inadequate to census accurately nocturnal and

crepuscular species (the owls). A number of species were

excluded as they were associated with non-woodland fea-

tures within the woods, e.g., water bodies, man-made

structures or other vegetation types. Extremely rare spe-

cies (one or two occurrence across all woods), species

with unusual behaviour (cuckoo) and game birds (artifi-

cially stocked and fed) were also excluded.

Method of detecting favoured states

The species-based randomisation method adopted by

Stone et al. (1996), which answers many of the statistical

problems of earlier algorithms (Simberloff et al. 1999)

was used. In producing the null model distribution, this

method keeps the species-specific information on wood-

land occupancy but allocates species randomly to func-

tional groups. This method of constructing the null hy-

pothesis surmounts a previous methodological problem in

which the null model is not strictly null with respect to

competition (the ‘Narcissus’ effect). This is achieved in

the model by keeping row and column constraints on spe-

cies distribution in the randomisation (as suggested by

Wilson 1995), rather than only the row constraints of Fox

and Brown (1993). Thus the method is similar to that

adopted by Wilson and Roxburgh (1994), though the

mechanism of testing for significance is different.

This species-based randomisation method (Stone et

al. 1996) also has the advantage of maintaining geo-

graphical distribution within the null model of species

data, hence preventing the co-occurrence in the model of

species that are normally geographically isolated, another

problem of the Fox and Brown method (Stone et al. 1996).

This is perhaps less necessary at the geographic scale of

the data used here, as all the bird species in this dataset

were distributed across the whole area, though this

method does maintain information within the null model

about woodland preferences. For example, some bird spe-

cies are rarely found in small woods – Eurasian Tree-

creeper (Certhia familiaris), Marsh Tit (Parus palustris)

and Long-tailed Tit (Aegithalos caudatus) (Hinsley et al.

1996a). The method has been shown to perform well in

limiting both Type 1 and Type 2 errors, and has been put

forward as the most appropriate current method for de-

tecting patterns caused by species interactions where

there are strong species-area effects (Gotelli 2000).

The number of favoured states was calculated from

the initial classification of species (see below). The prob-

ability of this number of favoured states achieved by

chance was calculated by comparison with 10000 Monte

Carlo simulations with the random allocation of species

to classes. This high number was possible as the pro-

gramme took c. 10 seconds for this number of simula-

tions. The probability was represented by the proportion

of simulated distributions containing the same number or

more favoured states than the actual classification.

A priori ‘guild’ definition

Four basic methods of assignment to guilds (func-

tional groups) were used to test if the distribution pattern

of birds across the 164 woods could be attributed to the
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action of assembly rules (Table 1). The groupings were

based on either gross breeding habitat requirements or

main foraging habits. In group A, gross habitat require-

ments, the categories were selected as essential habitat re-

quirements for breeding to occur. Given that some species

are generalists in a woodland context, the categories had

to include “ubiquitous” as well as more specific elements.

In group B, main foraging substrate, the categories were

again selected as essential foraging requirements. The

distinction between species that forage mainly within the

woodland and those that forage elsewhere is fundamental

to the species ecology and thus this group had to include

a category for foraging outside of woodland. Having

made this distinction, it became clear that the ecological

requirements of these “outside” foragers were rather di-

verse and the separation by body size was used as an un-

ambiguous means of reflecting this diversity whilst keep-

ing the number of categories within bounds. Also, to limit

the number of guilds, some were merged. For instance,

trunk-feeding species were put into a larger class (tree

canopy and trunks), as only two of this type of bird were

common in the area. The distinction between “true”

woodland birds and “all” birds (groups C and D) was

made because the species most dependent on woodland

were expected to be those most likely to interact/compete

with each other.

Species were allocated to these classes according to

known information about their foraging ecology and

breeding behaviour (Table 2). This method corresponds

to the α2 guild classification method of Wilson (1999).

More detailed tests

The structure of the dataset allowed more detailed

analyses to be carried out. Summer migrants and year-

round residents were tested together and separately (Table

2) to investigate if each wintering strategy influenced the

assembly rules within woodland during the breeding sea-

son. Also, each of the three years of data was tested sepa-

rately to identify differences or similarities between years

that might influence the weight of the conclusions drawn

from the analysis. It should be noted though that the bird

assemblage recorded may not have been entirely inde-

pendent between years due to the effects of site fidelity.

The data were also divided by the size or shape of the

woodlands (Table 3). Woodland size may affect species

richness and population sizes, and hence the strength of

assembly rule operation may vary accordingly. Shape

may also influence the balance between woodland edge

species and those favouring the interior. The effect of

habitat size on assembly rule significance was tested by

splitting the woods into four size categories of roughly

equal numbers. Woodland shape was also used to classify

the dataset as shape appeared to be significant in models

relating species occurrence to habitat parameters (Hinsley

et al. 1996ab). The population size of many species ap-

pears to be related to the availability of woodland edge

rather than area. Shape was defined by the ratio (c) be-

tween the actual perimeter and the perimeter of a circular

wood of equal area (a ratio that is scale independent). The

effect of shape was tested by analysing the differences be-

tween woods with a large amount of edge for their area (c

≥ 1.5) and woods with a relatively small amount of edge

(c < 1.5). The effect of size and shape taken together was

also tested. The effect of perimeter length alone was also

tested as a method of classification, but it did not reveal

any further patterns of interest.

Table 1. Groupings and classes of bird species used in the analysis.
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Table 3. Size and shape categories of woodlands used in the analysis. The parameter c is the ratio between the actual pe-

rimeter of the wood and the perimeter of a circular wood of the same area.

Table 2. Species used in the analysis. Species are shown as resident (R) or migratory (M). The Groupings (A-D) and

Classes refer to those described in Table 1. Species names according to the British Ornithologists� Union (2000).
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Results

All woods

Allocation of species into functional groups using

groupings A (gross breeding habitat requirements), B

(main foraging habits) and C (main foraging habits –

woodland birds only) did not yield significantly higher

numbers of favoured states than expected (Table 4), ex-

cept in 1990 where grouping C was almost significant at

5% (p = 0.057). However, grouping D (gross breeding

habitat requirements - woodland birds only) in all three

years showed significantly higher numbers of favoured

states in the distribution of the 16 resident species than

expected (p = 0.016 in 1990, p = 0.045 in 1991 and p =

0.044 in 1992). This pattern was not observed in migrant

species, or if both migrant and resident species were

tested as one dataset.

The distribution of the number of favoured states pro-

duced by the Monte Carlo randomisation and the calcu-

lated number within the data of grouping D are shown in

Fig. 1 for each year. The fraction of possible favoured

states (produced randomly) in excess of that in the col-

lected data was smallest in 1990 (Fig. 1a) compared to

both 1991 and 1992 (Fig. 1b & c).

Effect of wood size

The significantly higher number than expected of fa-

voured states (an excess) using the resident species in

grouping D was apparent at all sizes of wood, though only

marginally so at the smallest wood size (0.02 – 0.29 ha).

However, it was difficult to produce more favoured states

from the data in 1991 and 1992, as 30 out of 32 and 32 out

of 34 occupied woods, respectively, contained birds in a

favoured state. Thus, the occurrence of two woods only

with an unfavourable state was enough to change the

probability to non-significance at the 5% level. There was

also a lower likelihood of observing favoured states

where woods were large and/or had a high species rich-

ness. However, it may be possible that too few woods

were present in both the smallest and largest size classes

to detect favoured states reliably. Occasional excesses of

favoured states were apparent in the migratory species

and there was some excess of favoured states using group-

ing C at the smaller wood sizes, though only in some years

(especially 1990).

Wood shape

The excess of favoured states in resident species using

grouping D was apparently unaffected by the shape of the

woodlands (Table 5). The marginal excess of favoured

Figure 1. Distribution of calculated favoured states for all

woods out of 10000 randomisations for �true� woodland

birds classified by gross breeding habitat requirements sam-

pled in (a) 1990, (b) 1991 and (c) 1992. The number of fa-

voured states shown by the collected data is indicated with

an arrow.
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states using grouping C was also apparent in both shape

classes.

Shape/size classification

As expected, this analysis yielded similar patterns of

an excess of favoured state in the resident species using

grouping D. More of the year/class combinations were

significant at 5% compared to those using size alone. A

small number of combinations of year and class also

yielded excesses of favoured states with grouping C.

Discussion

The null model approach

The null model construction approach put forward by

Stone et al. (1996), and the distribution it produces after

randomisation, appears to answer the criticisms of pre-

vious attempts to create appropriate null models for simi-

lar data (Gotelli and Graves 1996) and performs well for

this type of data (Gotelli 2000). The following discussion

can then focus on the biological assumptions and interpre-

tation.

Table 4. The years (90 = 1990, 91 = 1991, 92 = 1992) in which the presence of a statistically significant excess of favoured

states was observed for all woodlands, and each class of woodland area. Bird species are grouped according to their habitat

requirements or foraging habit (Table 1) and are classified according to their migratory status (Table 2). Probabilities are

classified as: *** = p < 0.001, ** = 0.001 ≥ p < 0.01, * = 0.01 ≥ p < 0.05, � = 0.05 ≥ p < 0.1.

Table 5. The years (90 = 1990, 91 = 1991, 92 = 1992) in which the presence of a statistically significant excess of favoured

states was observed for woodlands classified by size and shape, and by shape alone. Bird species are grouped according to

their habitat requirements or foraging habit (Table 1) and are classified according to their migratory status (Table 2). Prob-

abilities are classified as: *** = p < 0.001, ** = 0.001 ≥ p < 0.01, ∗ = 0.01 ≥ p < 0.05, � = 0.05 ≥ p < 0.1.
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Many non-statistical criticisms have been put forward

against this type of approach. However, these do not ap-

ply as:

(1) The relatively small study area avoided prob-

lems arising from differences in species geo-

graphic ranges and in dispersal (common in

studies of island bird faunas) (Wiens 1989).

(2) The relatively large sample size and consistent

method of data collection.

(3) The study area was only recolonised by birds

within the last 10-12,000 years (since the last Ice

Age), assumptions about phylogenetic relation-

ships or recently evolved species influencing dis-

tributions are not relevant (Wiens 1989, Gotelli

and Graves 1996).

(4) Despite profound habitat changes as a result of

agricultural improvement, the species pool in the

study area is well established at both national and

regional levels (Graves and Gotelli 1983, Wiens

1989).

(5) The guild classifications proposed are not tax-

onomically based (e.g., Diamond 1975), or based

on hybrid structures of taxonomy and ecology

(Fox and Brown 1993), but are defined solely on

the ecological characteristic of the species in-

volved. Some congeners (e.g., Turdus, Corvus)

share the same guilds across all classifications

whilst other genera have species in more than one

class in a grouping (e.g., Parus, Phylloscopus).

Community structure in small, fragmented woodlands

In the simulations, species grouping D (gross breed-

ing habitat requirements - woodland birds only) was con-

sistently effective in producing a significant excess of fa-

voured states for resident species. It appears that the

occurrence of a species is dependent on competitive inter-

actions for breeding habitat. Thus models based solely on

habitat structure and composition may be improved in

their predictive power if information on co-occurring spe-

cies were included. The inclusion of all nesting birds

(grouping A) failed to show any excess. There was also

some evidence that structure was also a function of the

foraging habits of woodland birds as grouping C showed

a number of significant or near significant excesses of fa-

voured states, particularly when populations were high

(1990). Again the inclusion of all nesting birds (grouping

B) failed to show any excess. It appears that the mainly

larger birds (Columbidae, Accipitridae, Corvidae), as

well as those feeding almost exclusively outside wood-

land (Table 2), present in groupings A and B but excluded

from C and D, are distributed independently of the struc-

turing of the woodland bird species assemblage. Signifi-

cance was similar across all shape and size combinations

and classifications, though classifying woodland habitat

in terms of shape did not appear to add any extra informa-

tion to the groupings according to area alone.

A previous study using these data (Hinsley et al.

1996b) showed that individual species were not distrib-

uted randomly amongst the available habitats, but that

some discrimination occurred. The results in this paper

suggest that there were also interspecific effects influenc-

ing the distribution of species, and hence apparently struc-

turing these woodland bird communities. These conclu-

sions are counter to those drawn by Haila et al. (1993) in

a smaller study who suggested that the location of breed-

ing pairs varied randomly between years, and that species

distribution was a result of random sampling from the lo-

cal population.

Ecological relevance

The analysis indicates that an assembly rule may be

functioning at relatively small scales as well as over large

geographic scales (reviewed in Wiens 1989; Gotelli and

Graves 1996). As the statistical patterns are repeated be-

tween years and the species turnover is relatively rapid

(10 - 100% of species per year - Hinsley et al. 1995), it

appears that assembly rules are functioning at short time

scales as well as at the longer time scales involved in the

assembly of island bird faunas (Diamond 1975).

That resident, woodland species show the strongest

interaction makes ecological sense given that niche over-

lap was likely to be most extensive in terms of both re-

sources and time (i.e., winter and summer) for these spe-

cies. It is interesting that for the smallest area

classification (0.02 – 0.29 ha) only the 1990 data were sig-

nificant at 5%. There was considerable bird mortality in

February 1991 (prior to 1991 census), both nationally

(Marchant and Musty 1992) and locally (Bellamy et al.

1996) such that populations of many species were sub-

stantially lower in 1991 and 1992 than in 1990. Thus in-

terspecific interactions (as well as intraspecific interac-

tions - Hinsley et al. 1996b) may have decreased in

importance at these lower population levels suggesting

that assembly rules may only function at relatively high

population levels. Conversely, in large woods the assem-

bly rules may not operate at the level of the whole wood,

but rather within smaller areas within the wood or else the

assembly rule as identified by favoured states may break-

down at high species richness. More detailed territory

mapping would be necessary to detect the operation of as-

sembly rules under these circumstances.

The apparent operation of assembly rules concerning

resident species is not mirrored in the distribution of mi-
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grant species (though a small number of significant rela-

tionships do appear in the smallest woodland area classes)

or of all the species taken together. The presence of the

migrants coincides with the period of maximum resource

availability in the woodlands and thus their distribution

may simply be superimposed upon the structure estab-

lished by the residents (Timonen et al. 1994). This count-

ers the proposition that the strongest interactions are over

breeding/nesting requirements rather than over foraging

requirements. The simultaneous arrival of a large number

of migrants may facilitate such a process by swamping the

defences of resident territory holders, but there is little

evidence for such an effect. When numbers of resident

breeders are low, migrants may fill up gaps in the resident

community, giving rise to the appearance of structure in

the migrants also. Such an outcome would be most likely

when numbers of arriving migrants were also relatively

low, as in 1991 (due to poor weather conditions during

spring migration) when evidence of structure was de-

tected for migrants in grouping D in some woodland size

categories (Table 4). Although competition would be ex-

pected to be lower when numbers were low, the appear-

ance of structuring could be due largely to interactions

with resident species.

An important consequence of the operation of assem-

bly rules arises if their action results in non-linear changes

in population size as the area of habitat changes. As suit-

able habitat becomes increasingly fragmented or re-

stricted in area, or conversely if habitat area increased and

fragmentation decreased, changes in the population of a

single species as habitat availability changes may not

scale linearly from current distribution patterns (Hinsley

et al. 1996b).

This study demonstrates that at least part of the bird

communities in small, fragmented woodlands in a largely

agricultural landscape are structured by an assembly rule.

This differs from many previous demonstrations of as-

sembly rules in that the geographic scale is smaller, the

methodology has been improved (Stone et al. 1996), the

species are mobile and assembly happens over short time

scales. The implications of this may be considerable. Pre-

dictive models in landscape ecology are currently based

on the relationship between individual species and habitat

and occasionally with predators or food sources. The in-

teractions between species within the same guild means

that species are not distributed randomly within a habitat

and that greater explanatory power may be gained by the

simultaneous consideration of similar species. For species

conservation, the employment of landscape ecological

models without information on competing species may

result in poor decision making. Acceptance of the opera-

tion of assembly rules means that consideration then has

to be given to methods of including many species in mod-

els together and in developing methods of analysing less

well structured data, as studies of the type used here are

uncommon.
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