
Introduction

Studying change

Change in vegetation is ubiquitous. It ranges from

growth, ontogeny, birth and death to the long term evolu-

tionary changes reflecting climatic patterns and selection.

Rainforest is particularly difficult to study because of the

large number of species involved. Such high dimension-

ality either requires an exorbitant amount of data collec-

tion or a change in the manner of description before many

techniques of analysis can be applied. Clustering is one

means of dimensionality reduction which is commonly

employed. In this paper, I shall use clustering to investi-

gate short term changes in rainforest after clearance.

WLWTD suggested four different approaches to

studying change in vegetation. They are:

Palynology: Studies of fossil and sub-fossil material pro-

vide an historic record, although there has been too little

study of the details of change. Dale and Walker (1970)
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Abstract: In this paper, I re-examine the subtropical rainforest succession previously studied by Williams, Lance, Webb, Tracey
and Dale (1969) (WLWTD) using a clustering procedure based on the Minimal Message Length principle of induction. This
principle permits the optimal number of clusters to be estimated automatically. Optimality is defined here as a trade-off between
quality of fit and complexity of model, both measured in message length units.

Because of the common unit of measurement, we can assess the numerical effectiveness of the procedures adopted in the previous
study and compare the results obtained by using density as against presence/absence data or the value of numeric data independent
of presence/absence effects. The results also bear on the “principle of explicability” which posits that users seek interpretable results,
even if they are less efficient in purely numerical terms.

The optimal density result identified 8 clusters, although these were further clustered into 3 higher level groupings. The pattern of 2
temporal stages followed by spatial segregation is clear, with extra detail concerning aberrant stands and temporal dependency in the
third spatial stage also apparent. This analysis was the most effective at recovering structure in the data, of those examined.

Imposing the WLWTD analysis on density data was markedly suboptimal and even the number of clusters recognised (7) was
strictly incorrect. However, by subjective interpretation WLWTD selected a number of clusters which was very close to the optimal
density solution. For this reason insight gained into the processes operating was not overly compromised. The optimal density result
cleans up a few corners and adds more detail but the main outlines are sufficiently clear in the subjectively assessed presence data.

The results from optimal presence/absence analysis were understandable and effective, though considerably less detailed than those
obtained using the density data or those from WLWTD’s original analyses. Indeed the 3 clusters established using the presence data
reflect the higher level of structure which is recognisable in the density result. Using numeric data with 0 values set to missing
values, showed little of interest.

Invocation of Kodratoff’s principle of explicability, which argues for interpretability to dominate efficiency, was unnecessary since
the efficient analyses were directly interpretable. The introduction of domain knowledge during the subjective interpretation in the
original analysis was apparently sufficient to counter any losses due to the inefficiency of the clustering method. Given more
effective clustering methods and using the density data, it becomes unnecessary.

Abbreviations: MML-Minimal Message Length, N0M- Numeric data with 0 values set to missing values, WLWTD-Williams,
Lance, Webb, Tracey and Dale (1969)



examined problems in zoning diagrams, which provides

an alphabet for the sequences (see also Dale and Barson

1989). However, pollen records are restricted to particular

environments, and there are problems of interpretation

since the pollen flora may not clearly represent the actual

flora present. Further, the taxonomic precision of pollen

identification is different from that used in vegetation

studies. For long time periods, pollen provides an effec-

tive tool, but its temporal resolution may not be sufficient

to link it with short term studies and we cannot always be

certain of the effects of possible evolutionary changes.

Spatial surrogates: Spatial gradients are often assumed to

reflect temporal stages; i.e., they are regarded as a spatial

representation of a temporal change. The validity of such

an assumption is obviously heavily dependent on the do-

main knowledge of the investigator. But this assumption

of the equivalence of space and time is a dangerous reifi-

cation; the appearance of an environmental series may be

deceptive, as in the case with presumed hydroseres. In any

case, patterns need not be environmentally determined

(Boerlijst and Hogeweg 1991, Dale and Hogeweg 1998,

Dale 1999), which means that changes in direction of the

series can occur without environmental correlates.

Inference from snapshots: Inferring processes and mak-

ing predictions from a sample taken at a single time is

characteristic of many vegetation studies. This again re-

lies heavily on the ability and experience of the investiga-

tor and their reliability will also depend markedly on the

vegetation processes. Dale and Hogeweg (1998) identi-

fied 3 major types of process, only one of which would be

amenable to analysis through snapshots; the other two are

innately resilient to invasion and involve a cyclic disturb-

and-recover sequence, so samples taken at one time will

likely have different origins and different futures.

Critchley (2000) has suggested that vegetation types are

inappropriate for management purposes, which would

suggest that they are not ‘predictive enough’ to be valu-

able. However, short term forecasting might be possible

through introducing ontogenetic information (Gatsuk et

al. 1980).

Tracking disturbances: Examination of vegetation

change over a short period of observation is the method

adopted by WLWTD and in many other studies. Often the

time of study is an enforced limitation because of granting

restrictions and the exigencies of theses! Ideally this fits

into a BACI framework (Before-After, Control-Interven-

tion) but it is also common to make opportunistic usage

of impacts on vegetation, such as fire or clearance, with-

out knowledge of the pre-existing state. However, the

time scale is often inappropriate for the organisms, such

as trees which are long-lived or species with poor disper-

sal but with ability to invade. The time limit is mitigated

where at least one of the investigators maintains a long-

term interest in the vegetation. In that case, it is possible

to observe whether predictions of the future course of the

change processes are indeed correct. Attempts to evaluate

the effectiveness of such short series are therefore of in-

terest.

The effectiveness of limited observational periods can

also be extended if several overlapping sequences are

available. Multiple historical clearances of known date

provide such a series of fragmentary descriptions which

might be melded into a coherent series. Such would also

be possible for pollen diagrams if the temporal resolution

was sufficiently fine. But there are difficulties associated

with using such data, since it raises several questions.

How do we determine if the vegetation was homogeneous

initially and was that homogeneity preserved during and

after clearance (Wildi and Schütz 2000). Formally, too,

the problem is difficult. Finding supersequences for col-

lections of strings was a big problem in human genome

sequencing; the complexity is known to be NP-complete.

There is also the problem, not present in DNA, that we

may be observing several different series. Visual assess-

ment through techniques such as Principal curves, Multi-

dimensional Scaling or Principal Coordinates Analysis may

however be sufficiently persuasive as to allow us to proceed

without too much fear.

The Mt Glorious study

The original analysis of the Mt Glorious data falls into

the fourth class. WLWTD employed several numerical

methods, all of which provided some information. Finally

they recommended clustering all samples together as the

most informative, followed by construction and analysis

of transition matrices derived from these cluster se-

quences.

The clustering method used, Williams et al.’s (1966)

Agglomerative Information Analysis, was based on pres-

ence data only and the choice of number of clusters was a

subjective decision (cf. Austin 1970). WLWTD do not in

fact provide any precise information on the criteria actu-

ally used to establish the number, which was based largely

on interpretability and interestingness. The former in-

cludes conformity with known beliefs or facts (Pazzani

and Kibler 1992) and possibly simplicity, while the latter

relates to deviation from expectation and, in goal-directed

situations, to actionability (Barsalou 1995, Hilderman

and Hamilton 1999). It is impossible to remove all subjec-

tivity from an analysis as MacKay (1969) and Watanabe

(1969) have shown, though we can clearly demarcate it

and sometimes replace some of it by objective criteria.
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The WLWTD results can be briefly summarised as

follows. They elected to accept 7 clusters. 2 of these clus-

ters represented initial temporal phases, one cluster occu-

pying the first 2 time periods and the other the next three.

There is then an abrupt change from ‘pioneer’ to ‘build-

ing’ phase. Subsequently the remaining clusters distin-

guish spatial patterns without temporal significance. This

spatial pattern indicates that stands 8, 9, 10 (and perhaps

5) have some special distinctiveness, attributed by

WLWTD to the presence of Lantana camera. I shall refer

to these as aberrant stands. The whole can be simply rep-

resented as shown in Fig. 1.

Questions for re-analysis

In re-analysing these data, I have not followed the

original in using a transition matrix-based analysis to in-

vestigate the temporal sequences themselves. In most

cases, the patterns so distinguished can be visually appre-

ciated from appropriate diagrams where the cluster as-

signment labels are displayed using the spatial and tem-

poral coordinates. Further, there are alternative means of

examining sequences (see Dale and Barson 1989) and

analysis of transition matrices may no longer be the best

choice.

The original data recorded the density of species in 10

stands at 12 times, but density was not used in the cluster-

ing, and the number of groups was subjectively assessed.

I have sought to use an improved clustering method,

based on the MML principle, to model the data. This per-

mits the evaluation of the quality of a clustering. This

leads to the following questions:

• What is the optimal number of clusters for a density-

based solution? Is it interpretable? How effective is

it in recovering structure?

• How good was the original presence/absence analy-

sis? That is, if I impose the 7-cluster solution on the

numeric data does this give an acceptable result?

• What is the optimal presence-based solution and

how does it differ from the 7-group result of

WLWTD or the density analysis?

• How does this optimal presence clustering differ

from the density-based result?

• It is possible using Williams and Dale’s (1962) parti-

tioning to separate the effects due to presence from

those due to abundance conditional on presence. If

the presence data are separated out, do the residual

N0M provide an adequate basis for analysis?

In addition, I have a further question to raise. This is

concerned with trading efficiency of analysis with inter-

pretability in accordance with Kodratoff’s (1986) princi-

ple of explicability, which posits that users should be able

to interpret results, even if they are less efficient. There is,

after all, little point in obtaining a ferociously efficient re-

sult which is inexplicable! Diday (1988) has used this

principle as an argument for logical as opposed to statis-

tical models.

Collecting presence data is possibly easier than col-

lecting density data; ’possibly‘ because in general most

individual plants would have to be examined to confirm

that no further species are present. If the results are of

roughly the same interest then even if they are less effi-

cient descriptions of the vegetation they may be adequate.

The minimum message length principle

Instead of Information Analysis, the clustering

method employed here is based on the MML principle, as

implemented in the Snob program (Wallace and Boulton

1968, Boulton and Wallace 1970, Wallace and Dowe

2000). Put simply, this principle argues that to find a good

model of some data we need to balance the quality of fit

of a model against the complexity of that model, in effect

providing an operational version of the principle attrib-

uted, probably falsely, to William of Occam’s ‘Entia non

sunt multiplicanda praeter necessitatem’

As a simple example consider a simple regression

equation y = a+b(x)+e. The simplest form would involve

only the constant term a, but in general this would not

give us a good fit to the data. Alternatively we can fit a

polynomial of order (n-1) to n points y = a+Σbix
i
+ e

which will give perfect fit, though one we are unlikely to

feel would apply to any new information. Obviously we

need to compromise between the simplicity of the former

Figure 1. Simplified successional sequence.
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and the quality of fit of the latter. MML provides a prin-

cipled way of doing this.

Somewhat more formally, we start from the notion of

an ‘explanation’. An explanation encodes a body of data

by first stating a ‘theory’ about the data and then encoding

the data in a code which would be optimal were the theory

is true. Obviously, the theory, or model, is chosen from a

class of possible models, since we cannot envisage inves-

tigating every possible model. MML selects a model of

the data from a class of models each of which has a par-

ticular value of a parameter. MML proceeds by estimating

the parameter value so as to minimise the message length

needed to optimally encode the data. This can be shown

to be equivalent to determing the model with the maxi-

mum a posteriori probability, with a probability p being

encoded by a message of length -log2(p).

Examples of classes of model include clustering,

where the parameter is the number of clusters, ordination,

where the parameter is the number of axes and Markov

models where the parameter is the number of states. We

might also have considered the class of ordination mod-

els, with a parameter for the number of axes, or even a

combination of clusters and axes. MML methods for these

are indeed known (Wallace 1995, Edwards and Dowe

1998), though the programs are not presently available for

general use. Note that this combined solution provides a

means of comparing clustering with ordination.

The class of models considered here is that of mixture

models with a single parameter, the number of clusters.

Of course, while choosing a model we have other values

to estimate, such as cluster parameters or factor loadings.

MML provides consistent estimates of the parameters of

the clusters and determines the clusters to which the

things being clustered are to be (partially) assigned. MML

is concerned with mixture modelling and not with seg-

mentation where crisp clusters are demanded and no over-

lap of cluster membership is permitted (MML methods

for segmentation are known). For vegetation, samples

might contain elements of several clusters due to physical

misplacement of sample boundaries so that several types

are included, to the existence of ecotones and ecoclines at

spatial boundaries or of temporal changes where perhaps

one set of species is expanding while another is retracting.

With continuous data, MML employs a coding based

on the accuracy of measurement; after all, it seems rea-

sonable that imprecise data should tell us less. This re-

quires some extra terms to be added to the message but

does not modify the underlying principles. Note that in

choosing between models the actual encoded message

need never be constructed, since to compare models we

need only to know the length of their associated messages.

Since shorter messages mean better models, only the vari-

able components of the message lengths need be esti-

mated. Indeed, the difference between 2 such message

lengths is related to the odds in favour of the shorter, given

the data.

The MML principle is avowedly Bayesian. This

means that we can express our prior beliefs, and the data

will reveal its unexpectedness and hence interest. In the

present examples, I have not introduced any personal be-

liefs as priors and instead have relied on colourless ones;

for example, any number of clusters is regarded as equally

likely a priori. In practice, only extreme values for prior

probabilities markedly affect the results obtained.

The Snob program

The Snob program uses the MML principle to deter-

mine the number and contents of each cluster of things. In

the example presented here the vegetation of one sample

at one time is a “thing’’ while ”stand" refers to a particular

spatial location sampled several times. Essentially, Snob

calculates a message length for each cluster, for the attrib-

utes within clusters and for each thing being classified

with an additional optimisation reflecting the precision of

measurement. Things are assigned to all clusters to some

degree, so that the resulting clusters are overlapping and

fuzzy in nature. Somewhat surprisingly, such fuzziness

can be used to reduce the message length as well.

Briefly, Snob obtains the message length as follows.

For a probability p the message length required is –log(p)

bits, so we have, for model H and data D

Message Length = – log(H )– log(D|H) + other terms

relating to the precision of measurement.

Minimising the message length is equivalent to max-

imising Pr(H).Pr(D|H) which, by Bayes rule, equals

Pr(D).Pr(H|D) and since Pr(D) is independent of H,

MML maximises the Bayesian posterior probability

Pr(H|D). More precisely, assuming a locally flat prior and

a quadratic likelihood function, we have

E(Message Length(y, θ)) = - log(h(θ)) - log (f(y, θ)) +

precision terms,

where h(θ) is the assumed known prior density on θ (the

model class parameter which here is the number of clus-

ters) and f(y|θ) is the likelihood of y given θ. This expres-

sion remains an approximation and there may be modifi-

cations and extensions necessary in other applications of

the principle.
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I have assumed a Gaussian within-cluster distribution

for the numeric data, so the data are regarded as being

sampled from one or more, possibly overlapping, Gauss-

ian distributions. Other possibilities relate to multistate

data, angular data and Poisson distributions. Snob can

change the number of clusters through fusion and splitting

operations, as well as reallocating things between clus-

ters. The result from Snob is based on the Bayesian pos-

terior distribution of the model, so that we are effectively

performing a significance test on the number of clusters.

The null hypothesis is represented by the data forming a

single cluster.

The present program omits many interesting possibili-

ties, such as within cluster variation, the incorporation of

temporal and spatial dependencies between things and the

possibility of hierarchical arrangements of clusters. It is

hoped that these will become available in the near future.

However, even in its present form, Snob offers many fea-

tures which are simply unavailable with any other cluster-

ing method, notably the estimation of number of clusters

and the consistent estimation of model parameters, so that

it is certainly competitive, and possibly superior to, any of

its competitors. Its performance on datasets with over

40000 members is certainly adequate, although the search

methods used have not received a great deal of attention.

It is known, for example, that simulated anealing offers an

alternative search possibility which has yet to be exam-

ined.

Output

The output includes information on the following.

1. The message length cost of encoding the data as

a single cluster which forms a null hypothesis. If

there is no cluster model which has a shorter mes-

sage length, then the null hypothesis is accepted.

2. The estimated number of clusters and the rela-

tive probability of each, together with the total

cost of encoding the data using that selected

number of clusters. I have used the difference be-

tween the 1-class message length and the n-class

message length as a measure of the amount of

structure recovered. In effect it is a measure of re-

dundancy removed by the clustering.

3. For each attribute, within each cluster, the mes-

sage length required to encode distributional pa-

rameters, to some optimal precision, and whether

these values differ significantly from those of the

population as a whole. For numeric values the pa-

rameters are mean and standard deviation (both

coded to an optimal precision), while for multis-

tate attributes the probabilities of each class within

each cluster are estimated. Appropriate parameters

are encoded for numeric Poisson distributions and

angular distributions.

If the attribute does not differ from the population

in at least one cluster, a message to that effect is

printed, and the full output is suppressed.

4. For each thing the cluster(s) to which it is as-

signed together with the relative probability of as-

signment. However, if this probability is <.01 then

output is suppressed. The number of things which

are ambiguously assigned is itself interesting since

it reflects the degree of overlap of the groups. I

have elected to regard any thing which has a prob-

ability ≤0.1 for more than one group as being am-

biguously assigned.

Problems

Small Clusters: In taking the result as optimal, some ca-

veats are required. First, very small clusters are sup-

pressed, although they can be identified by examining the

distribution of message lengths associated with the things

in a particular cluster. As outliers, the cost of encoding

them using the cluster parameters is generally large.

Within cluster correlation: Snob assumes no within-clus-

ter correlation between attributes and if such correlation

exists, extra clusters may be produced. Edwards and

Dowe (1998) have proposed incorporating a single axis of

(linear) variation within clusters. Not all clusters may de-

mand such an axis, and coding a non-existent axis would

increase the message length. Several clusters may share a

common axis while others might require several axes,

which increases the search space considerably. Finally,

the message length expression becomes considerably

more complex to evaluate and the introduction of an axis

poses problems for the multiple assignment of things to

clusters leading to inconsistency in parameter estimates.

Techniques for surmounting most of these problems are

known, but not implemented in the present program.

Independence: Snob assumes that the things are inde-

pendent samples. This is clearly not so in the present case.

Many plants will persist through time in presence at least.

They might also grow larger or more numerous, and with

density as our performance measure, we are concerned

with number. They may also grow less numerous, become

less vital or cover less area, though rarely do they become

smaller. Gatsuk et al (1980) have discussed ontogenies

which includes break-up of patches. In any case, we must

expect some sort of temporal dependency between our

things.

In the same way, because the plots are physically ad-

jacent, we might expect some spatial correlation. This

will differ from the temporal dependence because in gen-
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eral it will not be directional and furthermore it is possible

that relatively remote things can interact, for example

through transfer of propagules, whereas in temporal de-

pendence, remote (ancestral) interactions would be fil-

tered through intermediates. The MML approach has

been extended to cover simple examples of both these

cases. Edgoose and Allison (1999) employed a first order

Markov process to introduce dependency in time, while

Wallace (1998) has looked at some simple forms of spa-

tial dependency. These authors all indicate that further ex-

tensions are possible to cope with more complex depend-

encies, although the amount of data necessary may

become large.

Suboptimal solutions: There are computational difficul-

ties because we are seeking a global optimum, since it is

possible to obtain local minima rather than global ones.

How likely this is depends in part on the separation of the

clusters. There are various alternative algorithms which

might be employed, but their effectiveness has not been

studied. The Snob program allows the user considerable

control over its operations and initiating several searches

will minimise this effect, but it cannot be eliminated en-

tirely.

Data and analyses

Mt Glorious data

The data, more fully described in WLWTD, consist of

10 stands recorded at 12 different times with the 10 stands

arranged in 2 adjacent rows of 5. I shall refer to the units

being clustered as things, each thing being the description

of one plot at one time. 118 taxa were recorded although

some, more especially seedlings, were not identified to

species level. So the initial data matrix is 120 x 118. The

clustering assigns each thing a relative probability of be-

longing to each class, but generally the assignments were

crisp with the largest probability being 0.99 or greater. I

shall comment on cases where any considerable ambigu-

ity of assignment exists. The thing assignments can be

simply displayed, where necessary, in a stand x time array

of 10 x 12 elements although it must be remembered that

the time intervals between samples is not constant. Table

1 provides the actual dates of sampling and for some pur-

poses I have made use of actual number of days from

commencement while for others only the order in se-

quence is used.

Quantity, presence and optimality

There are four analyses in addition to the original

WLWTD results.

• The full density data.

• The density data forced into the groups of WLWTD.

• The optimal presence data solution.

• The numeric data.

Each analysis may differ in number of clusters as well as

assignment of things to clusters and the attributes deemed

significantly different from the population values might

also change. I have left the cluster labels untouched rather

than trying to establish similar clusters from several dif-

ferent analyses. Each analysis is represented by a stand x

time map of cluster labels, and usually by a list of species

showing significant differences from population values at

the 1% level.

For comparing results, I have calculated contingency

tables between group labels and where possible used cor-

respondence analysis to provide illustrations of these re-

lationships.

Results

General comparison

Table 2 shows the general results obtained for the 4

analyses. It is immediately obvious that the density data

contain considerably more information, with the 1-class

message length, about 3 times that for presence and N0M

data. Equally obvious is the difference in number of clus-

ters estimated for the various analyses. While the density

and original WLWTD analyses give a similar number of

clusters, both presence and N0M give rather few.

WLWTD’s original estimate of 7 clusters for the presence

data was apparently a gross overestimate which has some

implications for the use of suboptimal solutions which are

more complex, and for Kodratoff’s principle. The

WLWTD solution imposed on the density data is also

suboptimal as might be expected. A difference of 10 be-

tween the n-class message lengths would give odds of

more than 2200:1 in favour of the true density solution

and the difference here is around 14000!

What is also important is that the differences between

1-class and n-class show that the density analysis is recov-

ering a greater amount of structure, the WLWTD result is

almost as good at recovering structure but the presence

4/2/1958 28/2/1958
6/5/1958 9/7/1958
2/10/1958 31/3/1959
9/12/1959 7/3/1960
14/12/1960 30/11/1961

Table 1. Dates of sampling.
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and still more the N0M are considerable less effective.

However, these results suggest that there is a considerable

amount of residual variation remaining.

Density

The density data results provide 8 clusters. These are

shown in spatio-temporal distribution in Table 3. Note

that only one thing has a notably ambiguous assignment;

in fact 3 other things show some small affinity with other

clusters. The pattern identified by WLWTD is obvious

but considerably more detail has now been incorporated.

The initial temporal stage is predominantly composed

mostly from things from cluster 4, and rarely clusters 3

and 5. Cluster 3 represents what WLWTD recognised as

shoot regrowth from tree stumps and recurs at a late stage

in the series in stands 1 and 8. Cluster 5 probably repre-

sents species poor vegetation, associated with Lantana

camera. But while WLWTD identified stands 9 and 10 as

aberrant, in this analysis there is a sign of change in the

final stage towards juvenile forest as exemplified by clus-

ter 13.

Clusters 10 and 11 are restricted to the second tempo-

ral stage, and are themselves spatially segregated - there

is only 1 transition between them. Both are abruptly re-

placed between times 5 and 6. Cluster 12 is almost re-

stricted to stand 5, which WLWTD suggested might be

related to the aberrant stands 8, 9 and 10, but here forms

a coherent sequence and possible represents another type.

Clusters 13 and 14 also form temporally coherent se-

quences with rather few transitions between them. It

seems that temporal dependence is quite strong, and an

analysis which permitted the incorporation of such de-

pendence would be extremely interesting.

Species showing significant differences from popula-

tion values at the 1% level are shown in Table 4. The first

point of interest is the high number of negative relation-

ships - species absent or with reduced abundance. Of the

positive species groups 10 (especially) and 11 are best in-

dicated. Groups 3, 4, 12, 13 and 14 each have about the

same number of positively associated species while group

5 has but one! In most cases each group has some unique

positively associated species.

Perusal of this table also suggests that in many cases

the clusters are themselves clustered so that species are

associated with collections of clusters - (3,4,5); (10,11);

(12,13,14). This suggests that a level structure or hierar-

chy may be useful. Again, an MML procedure is known

(Boulton and Wallace 1973) but not implemented in the

present program.

Overall the results confirm the general outlines of the

original WLWTD analyses, and provide, I believe, more

detail in matters such as the appearance of rainforest ele-

ments in the aberrant stands 8, 9 and 10, while also clearly

separating stand 5 from the other aberrant stands.

Table 2. General characteristics. Message lengths are in nits. The 1-class length represents the null hypothesis.

Table 3. Spatio-temporal distribution of clusters - density

data. The 10 stands are shown in their correct spatial rela-

tionships. Entries in () indicate other groups to which the

thing is assigned with probability p = 0.1.
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WLWTD Imposed

Results for numeric classes derived from WLWTD

(Table 5) are similar to the MML solution with the

number of ambiguous assignments slightly greater than

the density analysis but fewer than the presence analysis.

The proportion of structure recovered is similar to that of

the density analysis. Having one less cluster, the idiosyn-

crasy of stand 5 is lost, while density groups 10 and 11

have been merged into a single group. The 2 temporal

stages and the other aberrant stands are still recognisable.

There is confusion in the segregation of density groups

12, 13 and 14 as can be seen in Table 6a but the correspon-

dence analysis (Table 6b and Fig. 2) indicates consider-

able correlation of the results. Species information is not

available for this analysis As for the possible level struc-

ture, instead of 3 higher level clusters, there are 4.

When comparing this result with other analyses we

can recognise various ways in which divergence is possi-

ble. In one, called here omission, the alternative analysis

recovers some, but not all, of the original clusters with lit-

tle mixing. In the other the original clusters become

merged to provide a blurred result. In a third the things

can be markedly differently assigned and provide an al-

ternative structure. These may be combined, of course if

some clusters are recovered more or less intact while oth-

ers are blurred. In this case we have partial recovery of

some clusters and a melting pot for the remainder, but

there is no evidence for large scale reassignment which

might presage an alternative structure.

Presence

The MML presence/absence analysis identifies 3

classes (Table 7) and these are strongly associated with

combinations of the clusters of the MML numeric analy-

sis though with increased ambiguity of assignment. The

presence data capture the higher level structure although

it proportionately captures less structure than the density

analysis. Presence group 5 combines density groups 10

Table 4. Attributes significant at the 1% level - density

data.

Table 5. Spatio-temporal distribution of clusters. - density

data. WLWTD groups superposed.
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and 11, presence group 11 combines density clusters 12,

13 and 14 while presence group 12 unites density clusters

3, 4 and 5. Thus the optimal analysis of the presence data

is identifying somewhat gross clusters at a different spa-

tial scale, clusters which are actually recognisable in the

density data as well but are there treated in more detail.

These features are clearly shown in Table 8ab and Fig. 3.

The presence analysis has several more ambiguous as-

signments, and is most remarkable because strong links

between the later aberrant stands 8, 9 and 10 and the initial

temporal stage. These would be relatively species poor,

which might be sufficient to explain the relationship.

There are certainly indications of such a relationship in

the other analyses although WLWTD indicated that their

recognition of relationships between early and late stages

related to stem regrowth from felled forest trees. The spe-

cies associated with the clusters (Table 9) are, with a sin-

gle exception, a subset of those used in the Density analy-

sis.

N0M analysis

The N0M analysis is largely uninteresting and cap-

tures the least proportion of structure of any of the analy-

ses. Only 2 clusters are identified (Table 10) one of which

(16) is commoner at the second temporal stage and in the

aberrant stands. There is no marked correlation with the

density clusters (Table 11) although the correspondence

analysis suggests a relationship between cluster 8 and

density clusters 5 and 12 and cluster 11 with density clus-

ter 11.

In the light of the other analyses some patterns do

seem to be detectable, but the importance of absence in-

formation is obvious. Possibly a crude encoding of abun-

dance (e.g., none, a few, a lot) would be more useful and

efficient than counting plants! The species involved (Ta-

ble 12) are a still smaller subset of those used in the den-

sity analysis than was found in the presence analysis.

Table 6a: Contingency analysis: density and WLWTD solutions. Prediction of density clusters by WLWTD clusters has

R
2

= 0.7798. b: Correspondence analysis of contingency table.

Figure 2. Correspondence Analysis. Density (o) and

WLWTD (x).

a

b
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Discussion

The large amount of residual variation remaining can

be attributed to two reasons. Either there is considerable

random or contingent variation (cf. Brokaw and Busing

2000) or another model of vegetation is needed which will

better fit these data. One possibility is the variable Poisson

model (Stevens 1937) which regards the spatial environ-

ment as composed of patches each with its own quality as

a habitat for any species, as in Dale and Anderson’s

(1973) two-parameter analysis. I am presently investigat-

ing this possibility. Another is the more constrained gra-

dient model which in effect orders patches by their quality

Table 7. Spatio-temporal distribution of clusters - optimal

presence. Entries in () indicate other groups to which the

thing is assigned with probability p ≤ 0.1.

Figure 3. Correspondence Analysis: Density (ο) and Opti-

mal Presence (x).

Table 8a: Contingency analysis density and presence R
2
=

0.7604. b: correspondence analysis.

Table 9. Significant Species Optimal Presence data 1%

level. Boldface identifies the unique species not found in

the density analysis list.

Attribute Significantly Significantly

low group high group

Acacia melanoxylon 11 5

Alphitonia excelsa 11 5

Cayratia clematidea 5

Dioscorea transversa 12 5

Erigeron canadensis 11 5

Lantana camera 11 5

Pandorea pandorina 12 5

Panicum pygmaeum 12 11

Physalis peruviana 11 5

Phytolacca octandra 11 5

Rubus rosifolius 12 5

Solanum aviculare 11 5

Solanum nigrum 11 5

Solanum sporadotrichum 11 5

Stellaria media 5

Trema aspersa 11 5

Urtica incisa 12 5

a

b
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which is assumed to parallel some environmental gradi-

ent(s).

The residual variation would also seem to support the

notions of complexity espoused by Anand (2000). While

it is true that at the species level there is considerable com-

plexity, the overall pattern is one which, I would suggest,

is much simpler. In general terms the rain-forest re-estab-

lishes itself, although some plots have been, temporarily,

diverted to Lantana dominance. Thus, at a structural or

physiognomic level the situation is relatively simple; in-

deed they conform to the linear phase of Anand (loc. cit.).

Further, the presence analysis suggests that even the ab-

errant stands may be the result of the initial state after

clearance permitting a Lantana invasion. It seems that, if

we chose to describe the vegetation in other ways than

species, a simple pattern might emerge

Use of Kodratoff’s principle would seem, from these

analyses, to be unnecessary. The most complicated analy-

sis captured the greatest amount of structure, and pro-

vided clear and interpretable results. There was little need

to consider suboptimal solutions at all, although, as the

original WLWTD results show, these could be them-

selves quite illuminating. There may be an argument for

examining other local optima which might identify differ-

ent structures, but there is no need to exclude the optimal

solution. There is empirical evidence which purports to

show that models slightly more complex than the simplest

are actually more effective (Quinlan and Rivest 1989), but

here Occam’s Razor is vindicated

The density analysis identifies proportionately more

structure than any of the other analyses. WLWTD ap-

proximates to this with reasonable efficiency. The gross

structure of changes can be retrieved using presence data

only and the presence clusters also form a higher level of

abstraction with each of the 3 clusters found further split

by the density analysis. Combining the presence and den-

sity result identifies a 2-level structure but this is also vis-

ible in the density analysis alone. Such a 2-level structure

related to change of performance measure from presence

to density was unexpected, and is probably related to the

importance of absences.

The 2-level structure is not a hierarchy which strictly

invokes dominance relationships between different lev-

els, not equivalence between classes at any one level. In-

Table 10. Spatio-temporal distribution of clusters - N0M

data. Entries in () indicate other groups to which the thing

is assigned with probability p ≤ 0.1.

Table 11a: Contingency analysis for N0M. R
2
=0.10. b:

Correspondence analysis, singular value = 0.58.

Table 12. Significant species for N0M at the 1% level.

Attribute Significantly Significantly

low group high group

Acacia melanoxylon l

Dioscorea transversa l

Erigeron canadensis l

Homalanthus

populifolius l

Pandorea pandorina l

Phytolacca octandra l

Rubus rosifolius l

Urtica incisa l

a

b
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stead, it is a level structure (Bunge 1969, Dale 1976)

which does identify equivalence classes at the various

levels, but for different levels the equivalence involves

qualitative changes in relevant characters. Of course a hi-

erarchical clustering method might be used to identify

such a level structure; Boulton and Wallace (1973) have

described an MML hierarchical; clustering procedure,

and the Snob program is being modified to produce an

intercluster dissimilarity matrix based on the Kullback-

Leibler (1951) distance together with an agglomerative

clustering of this matrix. These developments were not

available at the time of analysis.

Regarding the interestingness of the results, we might

consider comparing the results obtained with those ex-

pected by the interpreters. Unfortunately, Webb and

Tracey’s (subjective) prior probabilities are unavailable

and would in any case be difficult to quantify, so unex-

pectedness is hard to assess. It would have been prefer-

able, in hindsight, to have recorded the expectations be-

fore the analyses were completed. Actionability depends

on the goals of the analysis which presumably were to

identify patterns of change and from them infer possible

processes. If we try to distinguish between the relay and

the initial floristic composition models of succession, for

example, the density data do show weak suggestions of

waves of ‘invasion’ although there are certainly species

which were initially present and maintain themselves

throughout.

Is MML optimality preferable to the suboptimal hier-

archical method used by WLWTD? I suspect that the suc-

cess of the original WLWTD analysis was the result of the

selection of the appropriate, though actually not well sup-

ported, number of clusters, and that minor misallocation

was insufficient to impede the determination of broad

structures. This almost certainly reflects the domain

knowledge brought to the determination of cluster

number by Webb and Tracey. Interestingly, initialising

the Snob search using the WLWTD clusters identified the

optimal density solution whereas initialisation using 8

random clusters often did not. In message length terms the

density analysis, even with more clusters, is markedly su-

perior and it is also much more successful in structure

identification.

MML relies on balancing the message length cost of

complexity of a model with quality of fit. The results here

obtained suggest that this principle is effective in provid-

ing estimates of the number of clusters and estimating

cluster parameters. But MML is not restricted to deter-

mining the number of clusters. We might, for example,

wish to examine various measures of performance to seek

an optimal one, though here we ought also to examine the

practicalities and costs of data collection which would

complicate the assessment of complexity. If we look at the

performance measures commonly employed in vegeta-

tion study, we can interpret them as forming a cumulative

sequence of qualities whose structural content is to be as-

sessed as shown in Table 13. All of these can be regarded

as probabilities. There would be some interesting prob-

lems in providing appropriate prior probabilities.

MML has proved effective in several other problem

areas. It can provide a consistent estimation procedure for

Multiple Factor Analysis (Wallace 1995), which Maxi-

mum Likelihood estimation cannot, and the transforma-

tions suggested by Legendre and Gallagher (2000) would

extend the range of such ordination procedures to various

metrics other than Euclidean. MML, or the related Mini-

mum Description Length principle (Rissanen 1995), has

also been used in regression studies for feature selection,

transformation selection, determining appropriate powers

for polynomials and for the detection of outliers as well

as in the construction of decision trees and graphs. This

means that it can be used to select optimal response func-

tions from families such as that proposed by Huisman et

al. (1993). It has also been used in model-averaging ap-

proaches to prediction, to string similarity, and in the in-

ference of causal (path) models.

MML can be extended to cover collections or families

of model classes. In principle it could choose between

axis-based models and cluster-based models or plexus

models. Turning this principle into practice could provide

extremely useful tools for vegetation science.
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