
ar
X

iv
:1

60
9.

01
08

0v
3 

 [
m

at
h.

A
P]

  2
7 

A
ug

 2
01

7

MULTIPOLAR HARDY INEQUALITIES ON RIEMANNIAN MANIFOLDS

FRANCESCA FARACI, CSABA FARKAS, AND ALEXANDRU KRISTÁLY

Dedicated to Professor Enrique Zuazua on the occasion of his 55th birthday

Abstract. We prove multipolar Hardy inequalities on complete Riemannian manifolds, providing various
curved counterparts of some Euclidean multipolar inequalities due to Cazacu and Zuazua [Improved multi-
polar Hardy inequalities, 2013]. We notice that our inequalities deeply depend on the curvature, providing
(quantitative) information about the deflection from the flat case. By using these inequalities together with
variational methods and group-theoretical arguments, we also establish non-existence, existence and mul-
tiplicity results for certain Schrödinger-type problems involving the Laplace-Beltrami operator and bipolar
potentials on Cartan-Hadamard manifolds and on the open upper hemisphere, respectively.

1. Introduction

The classical unipolar Hardy inequality (or, uncertainty principle) states that if n ≥ 3, then
∫

Rn

|∇u|2dx ≥ (n− 2)2

4

∫

Rn

u2

|x|2dx, ∀u ∈ C∞
0 (Rn);

here, the constant (n−2)2

4 is sharp and not achieved. Many efforts have been made over the last two
decades to improve/extend Hardy inequalities in various directions. One of the most challenging research
topics in this direction is the so-called multipolar Hardy inequality. Such kind of extension is motivated
by molecular physics and quantum chemistry/cosmology. Indeed, by describing the behavior of electrons
and atomic nuclei in a molecule within the theory of Born-Oppenheimer approximation or Thomas-Fermi
theory, particles can be modeled as certain singularities/poles x1, ..., xm ∈ Rn, producing their effect
within the form x 7→ |x−xi|−1, i ∈ {1, ...,m}. Having such mathematical models, several authors studied
the behavior of the operator with inverse square potentials with multiple poles, namely

L := −∆−
m∑

i=1

µ+
i

|x− xi|2
,

see Bosi, Dolbeaut and Esteban [BDE08], Cao and Han [CH06], Felli, Marchini and Terracini [FMT07],
Guo, Han and Niu [GHN12], Lieb [Lie05], Adimurthi [Adi13], and references therein. Very recently,
Cazacu and Zuazua [CZ13] proved an optimal multipolar counterpart of the above (unipolar) Hardy
inequality, i.e.,

∫

Rn

|∇u|2dx ≥ (n− 2)2

m2

∑

1≤i<j≤m

∫

Rn

|xi − xj|2
|x− xi|2|x− xj |2

u2dx, ∀u ∈ C∞
0 (Rn), (1.1)

where n ≥ 3, and x1, ..., xm ∈ Rn are different poles; moreover, the constant (n−2)2

m2 is optimal. By using
the paralelogrammoid law, (1.1) turns to be equivalent to

∫

Rn

|∇u|2dx ≥ (n− 2)2

m2

∑

1≤i<j≤m

∫

Rn

∣∣∣∣
x− xi
|x− xi|2

− x− xj
|x− xj |2

∣∣∣∣
2

u2dx, ∀u ∈ C∞
0 (Rn). (1.2)
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All of the aforementioned works considered the flat/isotropic setting where no external force is present.
Once the ambient space structure is perturbed, coming for instance by a magnetic or gravitational field,
the above results do not provide a full description of the physical phenomenon due to the presence of the
curvature.

In order to discuss such a curved setting, we put ourselves into the Riemannian realm, i.e., we consider
an n(≥ 3)-dimensional complete Riemannian manifold (M,g), dg : M ×M → [0,∞) is its usual distance
function associated to the Riemannian metric g, dvg is its canonical volume element, expx : TxM → M is
its standard exponential map, and ∇gu(x) is the gradient of a function u : M → R at x ∈ M , respectively.
Clearly, in the curved setting of (M,g), the vector x − xi and distance |x − xi| should be reformulated
into a geometric context by considering exp−1

xi
(x) and dg(x, xi), respectively. Note that

∇gdg(·, y)(x) = −exp−1
x (y)

dg(x, y)
for every y ∈ M, x ∈ M \ ({y} ∪ cut(y)),

where cut(y) denotes the cut-locus of y on (M,g). In this setting, a natural question arises: if Ω ⊆ M is
an open domain and S = {x1, ..., xm} ⊂ Ω is the set of distinct poles, can we prove

∫

Ω
|∇gu|2dvg ≥

(n− 2)2

m2

∑

1≤i<j≤m

∫

Ω
Vij(x)u

2dx, ∀u ∈ C∞
0 (Ω), (1.3)

where

Vij(x) =
dg(xi, xj)

2

dg(x, xi)2dg(x, xj)2
or Vij(x) =

∣∣∣∣
∇gdg(x, xi)

dg(x, xi)
− ∇gdg(x, xj)

dg(x, xj)

∣∣∣∣
2

?

Clearly, in the Euclidean space Rn, inequality (1.3) corresponds to (1.1) and (1.2), for the above choices of
Vij , respectively. It turns out that the answer deeply depends on the curvature of the Riemannian manifold
(M,g). Indeed, if the Ricci curvature verifies Ric(M,g) ≥ c0(n−1)g for some c0 > 0 (as in the case of the
n-dimensional unit sphere Sn), we know by the theorem of Bonnet-Myers that (M,g) is compact; thus, we
may use the constant functions u ≡ c ∈ R as test-functions in (1.3), and we get a contradiction. However,
when (M,g) is a Cartan-Hadamard manifold (i.e., complete, simply connected Riemannian manifold with
non-positive sectional curvature), we can expect the validity of (1.3), see Theorems 1.1 & 1.2 and suitable
Laplace comparison theorems, respectively.

Accordingly, the primary aim of the present paper is to investigate multipolar Hardy inequalities on

complete Riemannian manifolds. We emphasize that such a study requires new technical and theoretical
approaches. In fact, we need to explore those geometric and analytic properties which are behind of
the theory of multipolar Hardy inequalities in the flat context, formulated now in terms of curvature,
geodesics, exponential map, etc. We notice that striking results were also achieved recently in the theory
of unipolar Hardy-type inequalities on curved spaces. The pioneering work of Carron [Car97], who studied
Hardy inequalities on complete non-compact Riemannian manifolds, opened new perspectives in the study
of functional inequalities with singular terms on curved spaces. Further contributions have been provided
by D’Ambrosio and Dipierro [DD14], Kombe and Özaydin [KÖ09, KÖ13], Xia [Xia14], and Yang, Su
and Kong [YSK14], where various improvements of the usual Hardy inequality is presented on complete,
non-compact Riemannian manifolds. Moreover, certain unipolar Hardy and Rellich type inequalities were
obtained on non-reversible Finsler manifolds by Farkas, Kristály and Varga [FKV15], and Kristály and
Repovs [KR16].

In the sequel we shall present our results; for further use, let ∆g be the Laplace-Beltrami operator on
(M,g). Let m ≥ 2, S = {x1, ..., xm} ⊂ M be the set of poles with xi 6= xj if i 6= j, and for simplicity of
notation, let di = dg(·, xi) for every i ∈ {1, ...,m}. Our first result reads as follows.
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Theorem 1.1 (Multipolar Hardy inequality I). Let (M,g) be an n-dimensional complete Riemannian

manifold and S = {x1, ..., xm} ⊂ M be the set of distinct poles, where n ≥ 3 and m ≥ 2. Then

∫

M
|∇gu|2dvg ≥ (n− 2)2

m2

∑

1≤i<j≤m

∫

M

∣∣∣∣
∇gdi
di

− ∇gdj
dj

∣∣∣∣
2

u2dvg

+
n− 2

m

m∑

i=1

∫

M

di∆gdi − (n− 1)

d2i
u2dvg, ∀u ∈ C∞

0 (M). (1.4)

Moreover, in the bipolar case (i.e., m = 2), the constant
(n−2)2

m2 = (n−2)2

4 is optimal in (1.4).

Remark 1.1. (a) The proof of inequality (1.4) is based on a direct calculation. If m = 2, the local

behavior of geodesic balls implies the optimality of the constant (n−2)2

m2 = (n−2)2

4 ; in particular, the second
term is a lower order perturbation of the first one of the RHS (independently of the curvature).

(b) The optimality of (n−2)2

m2 seems to be a hard nut to crack. A possible approach could be a fine
Agmon-Allegretto-Piepenbrink-type spectral estimate developed by Devyver [Dev14] and Devyver, Fraas
and Pinchover [DFP14] whenever (M,g) has asymptotically non-negative Ricci curvature (see Pigola,
Rigoli and Setti [PRS08, Corollary 2.17, p. 44]). Indeed, under this curvature assumption one can prove
that the operator −∆g −W is critical (see [DFP14, Definition 4.3]), where

W =
(n− 2)2

m2

∑

1≤i<j≤m

∣∣∣∣
∇gdi
di

− ∇gdj
dj

∣∣∣∣
2

+
n− 2

m

m∑

i=1

di∆gdi − (n− 1)

d2i
.

Although expected, we have no full control on the second summand with respect to the first one in
W , i.e., the latter term could compete with the ’leading’ one; clearly, in the Euclidean setting no such

competition is present, thus the optimality of (n−2)2

m2 immediately follows by the criticality of W . It
remains to investigate this issue in a forthcoming study.

(c) We emphasize that the second term in the RHS of (1.4) has a crucial role. Indeed, on one hand,
when the Ricci curvature verifies Ric(M,g) ≥ c0(n−1)g for some c0 > 0, one has that di(x) = gd(x, xi) ≤
π/

√
c0 for every x ∈ M and by the Laplace comparison theorem, we have that di∆gdi − (n − 1) ≤

(n − 1)(
√
c0di cot(

√
c0di)− 1) < 0 for di > 0, i.e. for every x 6= xi. Thus, this term modifies the original

problem (1.3) by filling the gap in a suitable way. On the other hand, when (M,g) is a Cartan-Hadamard
manifold, one has di∆gdi − (n − 1) ≥ 0, and inequality (1.4) implies (1.3). This result will be resumed
in Corollary 4.1 (i). In particular, when M = Rn is the Euclidean space, then expx(y) = x+ y for every
x, y ∈ Rn and |x|∆|x| = n − 1 for every x 6= 0; therefore, Theorem 1.1 and the criticality of −∆ − W
immediately yield the main result of Cazacu and Zuazua [CZ13], i.e., inequality (1.2) (and equivalently
(1.1)).

For further use, we notice that K ≥ c (resp. K ≤ c) means that the sectional curvature on (M,g) is
bounded from below (resp. above) by c ∈ R at any point and direction.

For every c ∈ R, let sc, ctc : [0,∞) → R be defined by

sc(r) =





sin(
√
cr)√
c

if c > 0,

r if c = 0,
sinh(

√−cr)√−c
if c < 0,

and ctc(r) =





√
c cot(

√
cr) if c > 0,

1
r if c = 0,√−c coth(

√−cr) if c < 0.
(1.5)
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Although the paralelogrammoid law in the Euclidean setting provides the equivalence between (1.1)
and (1.2), this property is no longer valid on generic manifolds. However, a curvature-based quantita-
tive paralelogrammoid law and a Toponogov-type comparison result provide a suitable counterpart of
inequality (1.1):

Theorem 1.2 (Multipolar Hardy inequality II). Let (M,g) be an n-dimensional complete Riemann-

ian manifold with K ≥ k0 for some k0 ∈ R and let S = {x1, ..., xm} ⊂ M be the set of distinct poles

belonging to a strictly convex open set S̃ ⊂ M , where n ≥ 3 and m ≥ 2. Then we have the following

inequality:

∫

S̃
|∇gu|2dvg ≥

4(n − 2)2

m2

∑

1≤i<j≤m

∫

S̃

s2k0

(
dij
2

)

didjsk0(di)sk0(dj)
u2dvg +

∑

1≤i<j≤m

∫

S̃
Rij(k0)u

2dvg

+
n− 2

m

m∑

i=1

∫

S̃

di∆gdi − (n − 1)

d2i
u2dvg, ∀u ∈ C∞

0 (S̃), (1.6)

where dij = dg(xi, xj) and

Rij(k0) =





1
d2
i

+ 1
d2
j

− 2
k0didj

(
1

sk0(di)sk0(dj)
− ctk0(di)ctk0(dj)

)
, if k0 6= 0,

0, if k0 = 0.

Remark 1.2. When (M,g) is a Cartan-Hadamard manifold and k0 ≤ 0, one has that Rij(k0) ≥ 0; thus
we obtain a similar result as in (1.3); the precise statement will be given in Corollary 4.1 (ii).

Applications. As we already noticed, multipolar Hardy inequalities have been applied in the flat case
to guaranty existence and uniqueness of solutions for various elliptic PDEs. If the particles (e.g. the
fermions appearing in the Thomas-Fermi theory, see Lieb [Lie05]) are distributed in a curved space, the
aforementioned works cannot be applied. For instance, if some external forces perturb the flat model
(present as a magnetic or gravitational field), the curvature will appear. Such a typical case occurs in
the study of classical particles in the Lobachevsky hyperbolic model or spherical Riemannian model,
described recently by Kudryashov, Kurochkin, Ovsiyuk and Red’kov [KKOR10], and Cariñena, Rañada
and Santander [CnRnS11].

Motivated by the latter investigations on curved frameworks, we consider two model Schrödinger-type
equations involving bipolar potentials in two different geometrical settings, namely, in the negatively and
positively curved case, where our multipolar Hardy inequalities can be successfully applied:

A. Non-positively curved case. Let (M,g) be an n(≥ 3)-dimensional Cartan-Hadamard manifold with
K ≥ k0 for some k0 ≤ 0, and S = {x1, x2} ⊂ M be the set of poles. By keeping the previous notations,
we consider the problem

−∆gu+ V (x)u = λ
s2k0

(
d12
2

)

d1d2sk0(d1)sk0(d2)
u+ µW (x)f(u) in M, (Pµ

M )

where V,W : M → R are positive potentials, λ ∈
[
0, (n − 2)2

)
is fixed, µ ≥ 0 is a parameter, and the

continuous function f : R → R is sublinear at infinity. In Theorem 4.1 we prove that problem (Pµ
M ) has

only the zero solution for small values of µ, while it exists µ0 > 0 such that (Pµ
M ) has two distinct weak

solutions in a suitable functional space whenever µ ≥ µ0.
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B. Positively curved case. If Sn+ denotes the open upper hemisphere and S = {x1, x2} ⊂ Sn+ is the set
of poles, we study the Dirichlet problem





−∆gu+ C(n, β)u = λ

∣∣∣∣
∇gd1
d1

− ∇gd2
d2

∣∣∣∣
2

u+ |u|p−2u, in Sn+

u = 0, on ∂Sn+,

(PSn+
)

where g is the usual Riemannian structure on the unit sphere Sn inherited by Rn+1, λ ∈
[
0, (n−2)2

4

)
is fixed,

C(n, β) > 0 is given in Corollary 4.2 and p ∈ (2, 2∗); hereafter, 2∗ = 2n/(n − 2) is the critical Sobolev
exponent. In Theorem 4.2 we prove the existence of infinitely many solutions for (PSn+

); moreover,

by using group-theoretical arguments, we provide qualitative results on the solutions concerning their
symmetries whenever the poles x1 and x2 are in specific positions.

The plan of the paper is as follows. In §2 we present a series of preparatory definitions and results
which are used throughout the paper. In §3 we prove the multipolar Hardy inequalities, i.e., Theorems
1.1 & 1.2. In §4 we study problems (Pµ

M ) and (PSn+
), while in §5 we formulate some remarks concerning

further questions/perspectives.

2. Preliminaries

Let (M,g) be an n−dimensional complete Riemannian manifold (n ≥ 3). As usual, TxM denotes the

tangent space at x ∈ M and TM =
⋃

x∈M
TxM is the tangent bundle. Let dg : M × M → [0,∞) be the

distance function associated to the Riemannian metric g, and Br(x) = {y ∈ M : dg(x, y) < r} be the
open geodesic ball with center x ∈ M and radius r > 0. If dvg is the canonical volume element on (M,g),

the volume of a bounded open set S ⊂ M is Volg(S) =

∫

S
dvg. The behaviour of the volume of small

geodesic balls can be expressed as follows, see Gallot, Hulin and Lafontaine [GHL87]; for every x ∈ M we
have

Volg(Br(x)) = ωnr
n (1 + o(r)) as r → 0. (2.1)

Let u : M → R be a function of class C1. If (xi) denotes the local coordinate system on a coordinate
neighbourhood of x ∈ M , and the local components of the differential of u are denoted by ui = ∂u

∂xi
,

then the local components of the gradient ∇gu are ui = gijuj . Here, gij are the local components of
g−1 = (gij)

−1. In particular, for every x0 ∈ M one has the eikonal equation

|∇gdg(x0, ·)| = 1 a.e. on M. (2.2)

In fact, relation (2.2) is valid for every point x ∈ M outside of the cut-locus of x0 (which is a null measure
set).

When no confusion arises, if X,Y ∈ TxM , we simply write |X| and 〈X,Y 〉 instead of the norm |X|x
and inner product gx(X,Y ) = 〈X,Y 〉x, respectively. The Lp(M) norm of ∇gu(x) ∈ TxM is given by

‖∇gu‖Lp(M) =

(∫

M
|∇gu|pdvg

)1/p

.

The space H1
g (M) is the completion of C∞

0 (M) with respect to the norm

‖u‖H1
g (M) =

√
‖u‖2

L2(M)
+ ‖∇gu‖2L2(M)

.
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The Laplace-Beltrami operator is given by ∆gu = div(∇gu) whose expression in a local chart of asso-

ciated coordinates (xi) is ∆gu = gij
(

∂2u
∂xi∂xj

− Γk
ij

∂u
∂xk

)
, where Γk

ij are the coefficients of the Levi-Civita

connection.
In the sequel, we shall explore the following comparison results (see Shen [She97], Wu and Xin [WX07,

Theorems 6.1 & 6.3], Pigola, Rigoli and Setti [PRS08, Theorem 2.4]):

• Laplace comparison theorem I: if K ≤ c for some c ∈ R, then

∆gdg(x0, x) ≥ (n− 1)ctc(dg(x0, x)); (2.3)

• Laplace comparison theorem II: if K ≥ k0 for some k0 ∈ R, then

∆gdg(x0, x) ≤ (n− 1)ctk0(dg(x0, x)), (2.4)

where these relations are understood in the distributional sense. Note that in (2.4) it is enough to have
the lower bound (n− 1)k0 for the Ricci curvature.

3. Multipolar Hardy inequalities: proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Let E =

m∏

i=1

d2−n
i and fix u ∈ C∞

0 (M) arbitrarily. A direct calculation on the

set M \⋃m
i=1({xi} ∪ cut(xi)) yields that

∇g

(
uE− 1

m

)
= E− 1

m∇gu+
n− 2

m
uE− 1

m

m∑

i=1

∇gdi
di

.

Integrating the latter relation, the divergence theorem and eikonal equation (2.2) give that

∫

M

∣∣∣∇g

(
uE− 1

m

)∣∣∣
2
E

2
mdvg =

∫

M
|∇gu|2dvg +

(n− 2)2

m2

∫

M

∣∣∣∣∣

m∑

i=1

∇gdi
di

∣∣∣∣∣

2

u2dvg

+
n− 2

m

m∑

i=1

∫

M

〈
∇gu

2,
∇gdi
di

〉
dvg

=

∫

M
|∇gu|2dvg +

(n− 2)2

m2

∫

M

∣∣∣∣∣

m∑

i=1

∇gdi
di

∣∣∣∣∣

2

u2dvg

− n− 2

m

m∑

i=1

∫

M
div

(∇gdi
di

)
u2dvg.

Due to (2.2), we have

div

(∇gdi
di

)
=

di∆gdi − 1

d2i
, i ∈ {1, ...,m}.

Thus, an algebraic reorganization of the latter relation provides an Agmon-Allegretto-Piepenbrink-type
multipolar representation

∫

M
|∇gu|2dvg −

(n− 2)2

m2

∑

1≤i<j≤m

∫

M

∣∣∣∣
∇gdi
di

− ∇gdj
dj

∣∣∣∣
2

u2dvg =

∫

M

∣∣∣∇g

(
uE−1/m

)∣∣∣
2
E2/mdvg

+
n− 2

m

m∑

i=1

Ki(u), (3.1)
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where Ki(u) =

∫

M

di∆gdi − (n− 1)

d2i
u2dvg. Inequality (1.4) directly follows by (3.1).

In the sequel, we deal with the optimality of the constant (n−2)2

m2 in (1.4) when m = 2. In this case

the right hand side of (1.4) behaves as (n−2)2

4 dg(x, xi)
−2 whenever x → xi and by the local behavior of

the geodesic balls (see (2.1)) we may expect the optimality of (n−2)2

4 . In order to be more explicit, let
Ai[r,R] = {x ∈ M : r ≤ di(x) ≤ R} for r < R and i ∈ {1, ...,m}. If 0 < r << R are within the range of
(2.1), a layer cake representation yields for every i ∈ {1, ...,m} that

∫

Ai[r,R]
d−n
i dvg =

Volg(BR(xi))

Rn
− Volg(Br(xi))

rn
+ n

∫ R

r
Volg(Bρ(xi))ρ

−1−ndρ

= o(R) + nωn log
R

r
. (3.2)

Let S = {x1, x2} be the set of poles, x1 6= x2. Let ε ∈ (0, 1) be small enough such that it belongs to
the range of (2.1), and B2

√
ε(x1) ∩B2

√
ε(x2) = ∅. Let

uε(x) =





log
(

di(x)

ε2

)

log( 1
ε )

di(x)
2−n
2 , if x ∈ Ai[ε

2, ε];

2 log
( √

ε

di(x)

)

log( 1
ε)

di(x)
2−n
2 , if x ∈ Ai[ε,

√
ε];

0, otherwise,

with i ∈ {1, 2}. Note that uε ∈ C0(M), having compact support
⋃2

i=1 Ai[ε
2,
√
ε] ⊂ M ; in fact, uε can be

used as a test function in (1.4). For later use let us denote by ε∗ = 1

log( 1
ε)

2 ,

Iε =
∫

M
|∇guε|2dvg, Lε =

∫

M

〈∇gd1,∇gd2〉
d1d2

u2εdvg, Kε =
2∑

i=1

∫

M

di∆gdi − (n − 1)

d2i
u2εdvg

and

Jε =

∫

M

[
1

d21
+

1

d22

]
u2εdvg.

The proof is based on the following claims:

Iε − µHJε = O(1), Lε = O( 4
√
ε) and Kε = O( 4

√
ε) as ε → 0, (3.3)

and

lim
ε→0

Jε = +∞. (3.4)

The above properties can be obtained by direct computations, based on the estimates (2.1), (3.2) and
∣∣∣∣∆gdi −

n− 1

di

∣∣∣∣ ≤ 1 a.e. in B√
ε(xi),

(for ε > 0 small enough), see Kristály and Repovs [KR16]. Combining relations (3.3) and (3.4) with
inequality (1.4), we have that

µH ≤ Iε − n−2
2 Kε

Jε − 2Lε
≤ Iε + n−2

2 |Kε|
Jε − 2|Lε|

=
µHJε +O(1)

Jε +O( 4
√
ε)

→ µH as ε → 0,

which concludes the proof. �
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Remark 3.1. Let us assume that in Theorem 1.1, (M,g) is a Riemannian manifold with sectional
curvature verifying K ≤ c. By the Laplace comparison theorem I (see (2.3)) we have:

∫

M
|∇gu|2dvg ≥ (n− 2)2

m2

∑

1≤i<j≤m

∫

M

∣∣∣∣
∇gdi
di

− ∇gdj
dj

∣∣∣∣
2

u2dvg

+
(n− 2)(n − 1)

m

m∑

i=1

∫

M

Dc(di)

d2i
u2dvg, ∀u ∈ C∞

0 (M), (3.5)

where Dc(r) = rctc(r)− 1, r ≥ 0. In addition, if (M,g) is a Cartan-Hadamard manifold with K ≤ c ≤ 0,

then Dc(r) ≥ 3|c|r2
π2+|c|r2 for all r ≥ 0. Accordingly, stronger curvature of the Cartan-Hadamard manifold

implies improvement in the multipolar Hardy inequality (3.5).

Proof of Theorem 1.2. It is clear that
∣∣∣∣
∇gdi
di

− ∇gdj
dj

∣∣∣∣
2

=
1

d2i
+

1

d2j
− 2

〈∇gdi,∇gdj〉
didj

. (3.6)

Let us fix two arbitrary poles xi and xj (i 6= j), and a point x ∈ S̃. We consider the Alexandrov comparison
triangle with vertexes x̃i, x̃j and x̃ in the space M0 of constant sectional curvature k0, associated to the
points xi, xj and x, respectively. More precisely, M0 is the n-dimensional hyperbolic space of curvature
k0 when k0 < 0, the Euclidean space when k0 = 0, and the sphere with curvature k0 when k0 > 0.

We first prove that the perimeter L(xixjx) of the geodesic triangle xixjx is strictly less than 2π√
k0
;

clearly, when k0 ≤ 0 we have nothing to prove. Due to the strict convexity of S̃, the unique geodesic
segments joining pairwisely the points xi, xj and x belong entirely to S̃ and as such, these points are not
conjugate to each other. Thus, due to do Carmo [dC92, Proposition 2.4, p. 218], every side of the geodesic
triangle has length ≤ π√

k0
. By Klingenberg [Kli95, Theorem 2.7.12, p. 226] we have that L(xixjx) ≤ 2π√

k0
.

Moreover, by the same result of Klingenberg, if L(xixjx) =
2π√
k0
, it follows that either xixjx forms a closed

geodesic, or xixjx is a geodesic biangle (one of the sides has length π√
k0

and the two remaining sides form

together a minimizing geodesic of length π√
k0
). In both cases we find points on the sides of the geodesic

triangle xixjx which can be joined by two minimizing geodesics, contradicting the strict convexity of S̃.
We are now in the position to apply a Toponogov-type comparison result, see Klingenberg [Kli95,

Proposition 2.7.7, p. 220]; namely, we have the comparison of angles

γM0 = m ̂(x̃ix̃x̃j) ≤ γM = m ̂(xixxj).

Therefore, 〈∇gdi,∇gdj〉 = cos(γM ) ≤ cos(γM0).
On the other hand, by the cosine-law on the space form M0, see Bridson and Haefliger [BH99, p. 24],

we have



cosh(
√−k0dij) = cosh(

√−k0di) cosh(
√−k0dj)− sinh(

√−k0di) sinh(
√−k0dj) cos(γM0), if k0 < 0;

cos(
√
k0dij) = cos(

√
k0di) cos(

√
k0dj) + sin(

√
k0di) sin(

√
k0dj) cos(γM0), if k0 > 0;

d2ij = d2i + d2j − 2didj cos(γM0), if k0 = 0.

Consequently, 



cos(γM ) ≤ cosh(
√
−k0di) cosh(

√
−k0dj)−cosh(

√
−k0dij)

sinh(
√
−k0di) sinh(

√
−k0dj)

, if k0 < 0;

cos(γM ) ≤ cos(
√
k0dij)−cos(

√
k0di) cos(

√
k0dj)

sin(
√
k0di) sin(

√
k0dj)

, if k0 > 0;

cos(γM ) ≤ d2i+d2j−d2ij
2didj

, if k0 = 0,
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which implies

1

d2i
+

1

d2j
− 2 cos(γM )

didj
≥





4
didj

s
2
k0

(

dij
2

)

sk0
(di)sk0 (dj)

+Rij(k0), if k0 6= 0;

d2ij
d2i d

2
j

, if k0 = 0,

where the expression Rij(k0) is given in the statement of the theorem. Relation (3.6), the above inequality
and (1.4) imply together (1.6). �

4. Applications: bipolar Schrödinger-type equations on curved settings

In this section we present two applications in different geometric frameworks. In order to avoid techni-
calities, we shall restrict our attention to problems with only two poles; the interested reader may extend
these results to multiple poles with suitable modifications.

4.1. A bipolar Schrödinger-type equation on Cartan-Hadamard manifolds. First of all, by using
inequalities (1.4) and (1.6), we obtain the following non-positively curved versions of Cazacu and Zuazua’s
inequalities (1.2) and (1.1) for multiple poles, respectively:

Corollary 4.1. Let (M,g) be an n-dimensional Cartan-Hadamard manifold and let S = {x1, ..., xm} ⊂ M
be the set of distinct poles, with n ≥ 3 and m ≥ 2. Then we have the following inequality:

∫

M
|∇gu|2dvg ≥

(n− 2)2

m2

∑

1≤i<j≤m

∫

M

∣∣∣∣
∇gdi
di

− ∇gdj
dj

∣∣∣∣
2

u2dvg, ∀u ∈ H1
g (M). (4.1)

Moreover, if K ≥ k0 for some k0 ∈ R, then

∫

M
|∇gu|2dvg ≥

4(n − 2)2

m2

∑

1≤i<j≤m

∫

M

s2k0

(
dij
2

)

didjsk0(di)sk0(dj)
u2dvg, ∀u ∈ H1

g (M). (4.2)

Proof. Since (M,g) is a Cartan-Hadamard manifold, by using inequality (1.4) and the Laplace compar-
ison theorem I (i.e., inequality (2.3) for c = 0), standard approximation procedure based on the density of
C∞
0 (M) in H1

g (M) and Fatou’s lemma immediately imply (4.1). Moreover, elementary properties of hy-
perbolic functions show that Rij(k0) ≥ 0 (since k0 ≤ 0). Thus, the latter inequality and (1.6) yield (4.2). �

In the sequel, let (M,g) be an n-dimensional Cartan-Hadamard manifold (n ≥ 3) with K ≥ k0 for some
k0 ≤ 0, and S = {x1, x2} ⊂ M be the set of poles. In this subsection we deal with the Schrödinger-type
equation

−∆gu+ V (x)u = λ
s2k0

(
d12
2

)

d1d2sk0(d1)sk0(d2)
u+ µW (x)f(u) in M, (Pµ

M )

where λ ∈
[
0, (n − 2)2

)
is fixed, µ ≥ 0 is a parameter, and the continuous function f : [0,∞) → R verifies

(f1) f(s) = o(s) as s → 0+ and s → ∞;

(f2) F (s0) > 0 for some s0 > 0, where F (s) =

∫ s

0
f(t)dt.

According to (f1) and (f2), the number cf = maxs>0
f(s)
s is well defined and positive.

On the potential V : M → R we require that

(V1) V0 = inf
x∈M

V (x) > 0;



10 FRANCESCA FARACI, CSABA FARKAS, AND ALEXANDRU KRISTÁLY

(V2) lim
dg(x0,x)→∞

V (x) = +∞ for some x0 ∈ M ,

and W : M → R is assumed to be positive. Elliptic problems with similar assumptions on V have been
studied on Euclidean spaces, see e.g. Bartsch, Pankov and Wang [BPW01], Bartsch and Wang [BW95],
Rabinowitz [Rab92] and Willem [Wil96].

Before to state our result, let us consider the functional space

H1
V (M) =

{
u ∈ H1

g (M) :

∫

M

(
|∇gu|2 + V (x)u2

)
dvg < +∞

}

endowed with the norm

‖u‖V =

(∫

M
|∇gu|2 dvg +

∫

M
V (x)u2 dvg

)1/2

.

The next Rabinowitz-type compactness result (see Rabinowitz [Rab92]) is crucial in the study of weak
solutions of problem (Pµ

M ):

Lemma 4.1. If V satisfies (V1) and (V2), the embedding H1
V (M) →֒ Lp(M) is compact, p ∈ [2, 2∗).

Proof. Let {uk}k ⊂ H1
V (M) be a bounded sequence in H1

V (M), i.e., ‖uk‖V ≤ η for some η > 0. Let q > 0
be arbitrarily fixed; by (V2), there exists R > 0 such that V (x) ≥ q for every x ∈ M \BR(x0). Thus,

∫

M\BR(x0)
(uk − u)2dvg ≤

1

q

∫

M\BR(x0)
V (x)|uk − u|2 ≤ (η + ‖u‖V )2

q
.

On the other hand, by (V1), we have that H1
V (M) →֒ H1

g (M) →֒ L2
loc(M); thus, up to a subsequence

we have that uk → u in L2
loc(M). Combining the above two facts and taking into account that q > 0

can be arbitrary large, we deduce that uk → u in L2(M); thus the embedding follows for p = 2. Now, if
p ∈ (2, 2∗), by using an interpolation inequality and the Sobolev inequality on Cartan-Hadamard manifolds
(see Hebey [Heb99, Chapter 8]), one has

‖uk − u‖pLp(M) ≤ ‖uk − u‖n(p−2)/2

L2∗ (M)
‖uk − u‖n(1−p/2∗)

L2(M)

≤ Cn‖∇g(uk − u)‖n(p−2)/2
L2(M)

‖uk − u‖n(1−p/2∗)
L2(M)

,

where Cn > 0 depends on n. Therefore, uk → u in Lp(M) for every p ∈ (2, 2∗). �

The main result of this subsection is as follows.

Theorem 4.1. Let (M,g) be an n-dimensional Cartan-Hadamard manifold (n ≥ 3) with K ≥ k0 for some

k0 ≤ 0 and let S = {x1, x2} ⊂ M be the set of distinct poles. Let V,W : M → R be positive potentials

verifying (V1), (V2) and W ∈ L1(M) ∩ L∞(M) \ {0}, respectively. Let f : [0,∞) → R be a continuous

function verifying (f1) and (f2), and λ ∈
[
0, (n − 2)2

)
be fixed. Then the following statements hold:

(i) Problem (Pµ
M ) has only the zero solution whenever 0 ≤ µ < V0‖W‖−1

L∞(M)c
−1
f ;

(ii) There exists µ0 > 0 such that problem (Pµ
M ) has at least two distinct non-zero, non-negative weak

solutions in H1
V (M) whenever µ > µ0.

Proof. According to (f1), one has f(0) = 0. Thus, we may extend the function f to the whole R by
f(s) = 0 for s ≤ 0, which will be considered throughout the proof. Fix λ ∈

[
0, (n − 2)2

)
.

(i) Assume that u ∈ H1
V (M) is a non-zero weak solution of problem (Pµ

M ). Multiplying (Pµ
M ) by u,

an integration on M gives that

∫

M
|∇gu|2 dvg +

∫

M
V (x)u2 dvg = λ

∫

M

s2k0

(
d12
2

)

d1d2sk0(d1)sk0(d2)
u2dvg + µ

∫

M
W (x)f(u)udvg.
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By the latter relation, Corollary 4.1 (see relation (4.2)) and the definition of cf , it yields that
∫

M
|∇gu|2 dvg + V0

∫

M
u2 dvg ≤

∫

M
|∇gu|2 dvg +

∫

M
V (x)u2 dvg

= λ

∫

M

s2k0

(
d12
2

)

d1d2sk0(d1)sk0(d2)
u2dvg + µ

∫

M
W (x)f(u)udvg

≤
∫

M
|∇gu|2 dvg + µ‖W‖L∞(M)cf

∫

M
u2 dvg.

Consequently, if 0 ≤ µ < V0‖W‖−1
L∞(M)c

−1
f , then u is necessarily 0, a contradiction.

(ii) Let us consider the energy functional associated with problem (Pµ
M ), i.e., Eµ : H1

V (M) → R defined
by

Eµ(u) =
1

2

∫

M
(|∇gu|2 + V (x)u2) dvg −

λ

2

∫

M

s2k0

(
d12
2

)

d1d2sk0(d1)sk0(d2)
u2 dvg − µ

∫

M
W (x)F (u)dvg.

One can show that Eµ ∈ C1(H1
V (M),R) and for all u,w ∈ H1

V (M) we have

E ′
µ(u)(w) =

∫

M
(〈∇gu,∇gw〉+ V (x)uw) dvg − λ

∫

M

s2k0

(
d12
2

)

d1d2sk0(d1)sk0(d2)
uw dvg − µ

∫

M
W (x)f(u)wdvg.

Therefore, the critical points of Eµ are precisely the weak solutions of problem (Pµ
M ) in H1

V (M). By
exploring the sublinear character of f at infinity, Corollary 4.1 and Lemma 4.1, one can see that Eµ is
bounded from below, coercive and satisfies the usual Palais-Smale condition for every µ ≥ 0. Moreover,
by an elementary computation one can see that assumption (f1) is inherited as a sub-quadratic property
in the sense that

lim
‖u‖V →0

∫

M
W (x)F (u)dvg

‖u‖2V
= lim

‖u‖V →∞

∫

M
W (x)F (u)dvg

‖u‖2V
= 0. (4.3)

Due to (f2) and W 6= 0, we can construct a non-zero truncation function u0 ∈ H1
V (M) such that∫

M
W (x)F (u0)dvg > 0. Thus, we may define

µ0 =
1

2
inf





‖u‖2V∫

M
W (x)F (u)dvg

: u ∈ H1
V (M),

∫

M
W (x)F (u)dvg > 0





.

By the relations in (4.3), we clearly have that 0 < µ0 < ∞.

Let us fix µ > µ0. Then there exists ũµ ∈ H1
V (M) with

∫

M
W (x)F (ũµ)dvg > 0 such that µ >

‖ũµ‖2V
2

∫

M
W (x)F (ũµ)dvg

≥ µ0. Consequently,

c1µ := inf
H1

V
(M)

Eµ ≤ Eµ(ũµ) ≤
1

2
‖ũµ‖2V − µ

∫

M
W (x)F (ũµ) < 0.
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Since Eµ is bounded from below and satisfies the Palais-Smale condition, the number c1µ is a critical value

of Eµ, i.e., there exists u1µ ∈ H1
V (M) such that Eµ(u1µ) = c1µ < 0 and E ′

µ(u
1
µ) = 0. In particular, u1µ 6= 0 is a

weak solution of problem (Pµ
M ).

Standard computations based on Corollary 4.1 and the embedding H1
V (M) →֒ Lp(M) for p ∈ (2, 2∗)

show that there exists a sufficiently small ρµ ∈ (0, ‖ũµ‖V ) such that

inf
‖u‖V =ρµ

Eµ(u) = ηµ > 0 = Eµ(0) > Eµ(ũµ),

which means that the functional Eµ has the mountain pass geometry. Therefore, we may apply the moun-
tain pass theorem, see Rabinowitz [Rab92], showing that there exists u2µ ∈ H1

V (M) such that E ′
µ(u

2
µ) = 0

and Eµ(u2µ) = c2µ, where c
2
µ = infγ∈Γ maxt∈[0,1] Eµ(γ(t)), and Γ = {γ ∈ C([0, 1];H1

V (M)) : γ(0) = 0, γ(1) =

ũµ}. Due to the fact that c2µ ≥ inf‖u‖V =ρµ Eµ(u) > 0, it is clear that 0 6= u2µ 6= u1µ. Moreover, since f(s) = 0

for every s ≤ 0, the solutions u1µ and u2µ are non-negative. �

Remark 4.1. Theorem 4.1 can be applied on the hyperbolic space Hn = {y = (y1, ..., yn) : yn > 0}
endowed with the metric gij(y1, ..., yn) =

δij
y2n

; it is new even on the Euclidean space Rn, n ≥ 3.

4.2. A bipolar Schrödinger-type equation on the upper hemisphere. A positively curved coun-
terpart of (4.1) can be stated as follows by using (1.4) and a Mittag-Leffler expansion (the interested
reader can establish a similar inequality to (4.2) as well):

Corollary 4.2. Let Sn+ be the open upper hemisphere and let S = {x1, ..., xm} ⊂ Sn+ be the set of distinct

poles, with n ≥ 3 and m ≥ 2. Let β = max
i=1,m

dg(x0, xi), where x0 = (0, ..., 0, 1) is the north pole of the

sphere Sn and g is the natural Riemannian metric of Sn inherited by Rn+1. Then we have the following

inequality:

‖u‖2
C(n,β) ≥

(n− 2)2

m2

∑

1≤i<j≤m

∫

Sn+

∣∣∣∣
∇gdi
di

− ∇gdj
dj

∣∣∣∣
2

u2 dvg, ∀u ∈ H1
g (S

n
+), (4.4)

where ‖u‖2
C(n,β) =

∫

Sn+

|∇gu|2dvg + C(n, β)

∫

Sn+

u2dvg and C(n, β) = (n − 1)(n− 2)
7π2−3(β+π

2 )
2

2π2
(

π2−(β+π
2 )

2
) .

Proof. Let M = Sn be the standard unit sphere in Rn+1 and the open upper hemisphere Sn+ = {y =
(y1, ..., yn+1) ∈ Sn : yn+1 > 0}. By Theorem 1.1 we have

∫

Sn+

|∇gu|2 dvg ≥
(n− 2)2

m2

∑

1≤i<j≤m

∫

Sn+

∣∣∣∣
∇gdi
di

− ∇gdj
dj

∣∣∣∣
2

u2 dvg0

+
n− 2

m

m∑

i=1

∫

Sn+

di∆gdi − (n− 1)

d2i
u2 dvg, ∀u ∈ C∞

0 (Sn+).

Since K ≡ 1, the two-sided Laplace comparison theorem (or a direct computation) shows that ∆gdi =
(n − 1) cot(di).

Fix u ∈ C∞
0 (Sn+). By using the Mittag-Leffler expansion of the cotangent function, i.e.,

cot t =
1

t
+ 2t

∞∑

k=1

1

t2 − π2k2
, t ∈ (0, π),
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and the fact that 0 < di < π, i ∈ {1, ...,m} (up to the poles, which has null measure), one has

∫

Sn+

di∆gdi − (n− 1)

d2i
u2 dvg = −2(n − 1)

∫

Sn
+

∞∑

k=1

u2

π2k2 − d2i
dvg.

Since di < π, we get that
∫

Sn+

∞∑

k=2

u2

π2k2 − d2i
dvg ≤

∫

Sn+

∞∑

k=2

u2

π2k2 − π2
dvg =

3

4π2

∫

Sn+

u2dvg.

Moreover, since β = max
i=1,m

dg(x0, xi) <
π

2
, one can see that for every x ∈ Sn+, di(x) = dg(x, xi) ≤

dg(x, x0) + dg(x0, xi) <
π
2 + β. Thus, π2 − d2i > π2 −

(
β + π

2

)2
> 0, which implies

∫

Sn+

u2

π2 − d2i
dvg ≤

1

π2 −
(
β + π

2

)2
∫

Sn+

u2 dvg.

Combining the above two estimates, we have that
∫

Sn+

|∇gu|2 dvg + C(n, β)

∫

Sn+

u2 dvg ≥
(n− 2)2

m2

∑

1≤i<j≤m

∫

Sn+

∣∣∣∣
∇gdi
di

− ∇gdj
dj

∣∣∣∣
2

u2 dvg,

where C(n, β) = (n − 1)(n − 2)
7π2−3(β+π

2 )
2

2π2
(

π2−(β+π
2 )

2
) . The latter inequality can be extended to H1

g (S
n
+) by

standard approximation argument. �

For simplicity, let S = {x1, x2} ∈ Sn+ be the set of poles. We consider the Dirichlet problem




−∆gu+ C(n, β)u = λu

∣∣∣∣
∇gd1
d1

− ∇gd2
d2

∣∣∣∣
2

+ |u|p−2u, in Sn+

u = 0, on ∂Sn+,

(PSn+
)

where g is the natural Riemannian structure on the standard unit sphere Sn inherited by Rn+1, p ∈ (2, 2∗),

λ ∈
[
0, (n−2)2

4

)
is fixed and C(n, β) = (n − 1)(n − 2)

7π2−3(β+π
2 )

2

2π2
(

π2−(β+π
2 )

2
) ; hereafter, x0 = (0, ..., 0, 1) is the

north pole of Sn and β = max{dg(x0, x1), dg(x0, x2)}.
Theorem 4.2. Let Sn+ be the open upper hemisphere (n ≥ 3), S = {x1, x2} ⊂ Sn+ be the set of poles and

p ∈ (2, 2∗). The following statements hold:

(i) Problem (PSn+
) has infinitely many weak solutions in H1

g (S
n
+). In addition, if x1 = (a, 0, ..., 0, b)

and x2 = (−a, 0, ..., 0, b) for some a, b ∈ R with a2 + b2 = 1 and b > 0, then problem (PSn+
) has a

sequence {uk}k∈N of distinct weak solutions in H1
g (S

n
+) of the form

uk := uk

(
y1,

√
y22 + ...+ y2n, yn+1

)
= uk

(
y1,

√
1− y21 − y2n+1, yn+1

)
.

(ii) If n = 5 or n ≥ 7, and x1 = (a, 0, ..., 0, b), x2 = (−a, 0, ..., 0, b) for some a, b ∈ R with a2 + b2 = 1

and b > 0, then there exists at least sn =
[n
2

]
+ (−1)n−1 − 2 sequences of sign-changing weak

solutions of (PSn+
) in H1

g (S
n
+) whose elements mutually differ by their symmetries.
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Proof. Fix λ ∈
[
0, (n−2)2

4

)
arbitrarily. The energy functional E : H1

g (S
n
+) → R associated with problem

(PSn+
) is given by

E(u) = 1

2
‖u‖2

C(n,β) −
λ

2

∫

Sn+

u2
∣∣∣∣
∇gd1
d1

− ∇gd2
d2

∣∣∣∣
2

dvg −
1

p

∫

Sn+

|u|p dvg.

It is clear that E ∈ C1(H1
g (S

n
+),R) and its critical points are precisely the weak solutions of (PSn+

).

(i) We notice that the embedding H1
g (S

n
+) →֒ Lp(Sn+) is compact for every p ∈ (2, 2∗), see e.g. Hebey

[Heb99]. By means of Corollary 4.2, one can prove that the functional E satisfies the assumptions of
the symmetric version of the mountain pass theorem, see e.g. Jabri [Jab03, Theorem 11.5] or Rabinowitz
[Rab86, Theorem 9.12], thus there exists a sequence of distinct critical points of E which are weak solutions
of problem (PSn+

) in H1
g (S

n
+).

In particular, let x1 = (a, 0, ..., 0, b) and x2 = (−a, 0, ..., 0, b) for some a, b ∈ R with a2 + b2 = 1 and
b > 0. We notice that in this case β = dg(x0, x1) = dg(x0, x2) = arccos b. We shall prove that the energy
functional E is invariant w.r.t. the group G0 = idR ×O(n− 1)× idR via the action

ζu(x) = u(ζ−1x)

for every u ∈ H1
g (S

n
+), ζ ∈ G0 and x ∈ Sn+. First, since ζ ∈ G0 is an isometry on Rn+1, a change of

variables easily implies that

u 7→ 1

2
‖u‖2

C(n,β) −
1

p

∫

Sn+

|u|p dvg

is G0-invariant. Thus, it remains to focus on the G0-invariance of the functional

u 7→
∫

Sn+

u2
∣∣∣∣
∇gd1
d1

− ∇gd2
d2

∣∣∣∣
2

dvg.

To do this, we recall that
∣∣∣∣
∇gd1
d1

− ∇gd2
d2

∣∣∣∣
2

=
1

d21
+

1

d22
− 2

〈∇gd1,∇gd2〉
d1d2

.

and ∇gdg(·, y)(x) = − exp−1
x (y)

dg(x,y)
for every x, y ∈ Sn+, x 6= y. According to Udrişte [Udr94, p. 19], one has

exp−1
x xi =

di(xi − x cos di)

sin di
, i ∈ {1, 2}, x ∈ S

n
+ \ {xi}.

Therefore,

∇gdi(x) = ∇gdg(x, xi) = −exp−1
x (xi)

di
=

x cos di − xi
sin di

, i ∈ {1, 2}, x ∈ S
n
+ \ {xi}. (4.5)

Let ζ ∈ G0, i ∈ {1, 2} and x ∈ Sn+ \ {xi} be fixed. Since ζxi = xi, it follows that

di(ζx) = dg(ζx, xi) = dg(ζx, ζxi) = dg(x, xi) = di(x),

and by (4.5),

〈∇gdg(ζx, x1),∇gdg(ζx, x2)〉 = 〈∇gdg(x, x1),∇gdg(x, x2)〉.
Summing up the above properties (combined with a trivial change of variable), it follows that the energy
functional E is G0-invariant, i.e., E(ζu) = E(u) for every u ∈ H1

g (S
n
+) and ζ ∈ G0.

We now can apply the same variational argument as above for the functional E0 = E|HG0
(Sn+) where

HG0(S
n
+) =

{
u ∈ H1

g (S
n
+) : ζu = u for every ζ ∈ G0

}
. Accordingly, one can find a sequence {uk}k∈N ⊂
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HG0(S
n
+) of distinct critical points of E0. Moreover, due to the principle of symmetric criticality of

Palais [Pal79], the critical points of E0 are also critical points for the original energy functional E ,
thus weak solutions of problem (PSn+

). Since uk are G0-invariant functions, they have the form uk :=

uk

(
y1,

√
y22 + ...+ y2n, yn+1

)
= uk

(
y1,

√
1− y21 − y2n+1, yn+1

)
, k ∈ N.

(ii) Let n = 5 or n ≥ 7, and denote by sn =
[
n
2

]
+ (−1)n−1 − 2. (Note that s6 = 0.) For every

j ∈ {1, ..., sn} we define

Gn
j =

{
O(j + 1)×O(n− 2j − 3)×O(j + 1), if j 6= n−3

2 ;
O
(
n−1
2

)
×O

(
n−1
2

)
, if j = n−3

2 ,

where O(k) is the orthogonal group in Rk. For a fixed Gn
j , we define the function τj associated to Gn

j as

τj(σ) =

{
(σ3, σ2, σ1), if j 6= n−3

2 and σ = (σ1, σ2, σ3) with σ1, σ2 ∈ Rj+1, σ2 ∈ Rn−2j−3;

(σ3, σ1), if j = n−3
2 and σ = (σ1, σ3) with σ1, σ3 ∈ R

n−1
2 .

Note that τj /∈ Gn
j , τjG

n
j τ

−1
j = Gn

j and τ2j = idRn−1 . Similarly as in Kristály [Kri09], we introduce the
action of the group

Gn
j,τj = idR × 〈Gn

j , τj〉 × idR ⊂ O(n+ 1)

on the space H1
g (S

n
+) by

ζu(x) = u(ζ−1x), (τ̃jζ)u(x) = −u(ζ−1τ̃−1
j x), (4.6)

for every ζ ∈ G̃n
j = idR ×Gn

j × idR, τ̃j = idR × τj × idR, u ∈ H1
g (S

n
+) and x ∈ Sn+. We define the subspace

of H1
g (S

n
+) containing all the symmetric points w.r.t. the compact group Gn

j,τj
, i.e.,

HGn
j,τj

(Sn+) =
{
u ∈ H1

g (S
n
+) : ζ̃u = u for every ζ̃ ∈ Gn

j,τj

}
.

Note that (see Kristály [Kri09, Theorem 3.1]) for every j 6= k ∈ {1, 2, ..., sn} one has

HGn
j,τj

(Sn+) ∩HGn
k,τk

(Sn+) = {0}. (4.7)

In a similar way as above, we can prove that the energy functional E is Gn
j,τj

-invariant for every

j ∈ {1, ..., sn} (note that E is an even functional), where the group action on H1
g (S

n
+) is given by (4.6).

Therefore, for every j ∈ {1, ..., sn} there exists a sequence {ujk}k∈N ⊂ HGn
j,τj

(Sn+) of distinct critical points

of Ej = E|HGn
j,τj

(Sn+). Again by Palais [Pal79], {ujk}k∈N ⊂ HGn
j,τj

(Sn+) are distinct critical points also for E ,

thus weak solutions for problem (PSn+
). It is clear that every ujk is sign-changing (see (4.6)) and according

to (4.7), elements in different sequences have mutually different symmetry properties. �

Remark 4.2. For n = 6 in Theorem 4.2 (ii), one has s6 = 0; therefore, in this case we cannot apply
the above group-theoretical argument to guarantee the existence of sign-changing solutions for problem
(PSn+

).

5. Concluding remarks

In the present paper we presented some multipolar Hardy inequalities on complete Riemannian man-
ifolds by exploring the presence of the curvature and giving some applications in the theory of elliptic
equations involving bipolar potentials; as far as we know, this is the first study in such a geometrical
setting. During the preparation of the manuscript we faced several problems which, - in our opinion, -
are worth to be tackled in forthcoming investigations. In the sequel, we shall formulate some of them:
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(a) As we already pointed out in Remark 1.1 (b), the optimality of (n−2)2

m2 in (1.4) for generic Rie-
mannian manifolds is not yet understood for m ≥ 3 which requires further studies. We notice that
multipolar inequalities involving non-uniform weights on complete Riemannian manifolds can also
be obtained, following Devyver, Fraas and Pinchover [DFP14].

(b) For simplicity reasons, in §4 we considered only some model elliptic problems with familiar growth
assumptions, i.e., sublinear and subcritical pure power term. However, multipolar Hardy inequal-
ities (cf. Theorems 1.1 and 1.2) allow to study other classes of elliptic problems involving other
type of nonlinear terms (critical, concave-convex, etc.).

(c) A challenging problem is to study the heat equation involving multiple poles on strip-like domains
or curved tubes (embedded into appropriate Riemannian manifolds). We notice that in the Eu-
clidean setting such equations have been investigated by Baras and Goldstein [BG84], Krejčǐŕık
and Zuazua [KZ10, KZ11] via Hardy-type inequalities; see also references therein. We notice
that deep studies already exist concerning linear heat equations on Riemannian manifolds having
non-negative Ricci curvature which is related to the Perelman’s volume non-collapsing result, see
Ni [Ni04].
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[FKV15] C. Farkas, A. Kristály, and C. Varga, Singular Poisson equations on Finsler-Hadamard manifolds, Calc. Var.

Partial Differential Equations 54 (2015), no. 2, 1219–1241. MR 3396410
[FMT07] V. Felli, E. M. Marchini, and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials, J.

Funct. Anal. 250 (2007), no. 2, 265–316. MR 2352482
[GHL87] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry, Universitext, Springer-Verlag, Berlin, 1987.

MR 909697
[GHN12] Q. Guo, J. Han, and P. Niu, Existence and multiplicity of solutions for critical elliptic equations with multi-polar

potentials in symmetric domains, Nonlinear Anal. 75 (2012), no. 15, 5765–5786. MR 2948296
[Heb99] E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathemat-

ics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical
Society, Providence, RI, 1999. MR 1688256

[Jab03] Y. Jabri, The mountain pass theorem, Encyclopedia of Mathematics and its Applications, vol. 95, Cambridge
University Press, Cambridge, 2003, Variants, generalizations and some applications. MR 2012778

[KKOR10] V. V. Kudryashov, Yu. A. Kurochkin, E. M. Ovsiyuk, and V. M. Red’kov, Classical particle in presence of

magnetic field, hyperbolic Lobachevsky and spherical Riemann models, SIGMA Symmetry Integrability Geom.
Methods Appl. 6 (2010), Paper 004, p. 34.

[Kli95] W. P. A. Klingenberg, Riemannian geometry, second ed., de Gruyter Studies in Mathematics, vol. 1, Walter de
Gruyter & Co., Berlin, 1995. MR 1330918
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[Udr94] C. Udrişte, Convex functions and optimization methods on Riemannian manifolds, Mathematics and its Appli-
cations, vol. 297, Kluwer Academic Publishers Group, Dordrecht, 1994. MR 1326607

[Wil96] M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24,
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