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MULTIPOLAR HARDY INEQUALITIES ON RIEMANNIAN MANIFOLDS

FRANCESCA FARACI, CSABA FARKAS, AND ALEXANDRU KRISTALY

Dedicated to Professor Enrique Zuazua on the occasion of his 55th birthday

ABSTRACT. We prove multipolar Hardy inequalities on complete Riemannian manifolds, providing various
curved counterparts of some Euclidean multipolar inequalities due to Cazacu and Zuazua [Improved multi-
polar Hardy inequalities, 2013]. We notice that our inequalities deeply depend on the curvature, providing
(quantitative) information about the deflection from the flat case. By using these inequalities together with
variational methods and group-theoretical arguments, we also establish non-existence, existence and mul-
tiplicity results for certain Schrodinger-type problems involving the Laplace-Beltrami operator and bipolar
potentials on Cartan-Hadamard manifolds and on the open upper hemisphere, respectively.

1. INTRODUCTION

The classical unipolar Hardy inequality (or, uncertainty principle) states that if n > 3, then

2 u?
/ |Vu|?dz > u/ —dx, Yu € C5°(R");
Rn 4 R J2]?
here, the constant % is sharp and not achieved. Many efforts have been made over the last two
decades to improve/extend Hardy inequalities in various directions. One of the most challenging research
topics in this direction is the so-called multipolar Hardy inequality. Such kind of extension is motivated
by molecular physics and quantum chemistry/cosmology. Indeed, by describing the behavior of electrons
and atomic nuclei in a molecule within the theory of Born-Oppenheimer approximation or Thomas-Fermi
theory, particles can be modeled as certain singularities/poles x1,...,x,,, € R™, producing their effect
within the form z + |z —x;|~1, i € {1,...,m}. Having such mathematical models, several authors studied
the behavior of the operator with inverse square potentials with multiple poles, namely

e Z\x—%]?’

see Bosi, Dolbeaut and Esteban [BDEO08], Cao and Han [CHO06], Felli, Marchini and Terracini [FMTO07],
Guo, Han and Niu [GHN12|, Lieb [Lie05], Adimurthi [Adil3], and references therein. Very recently,
Cazacu and Zuazua [CZ13] proved an optimal multipolar counterpart of the above (unipolar) Hardy
inequality, i.e.,

/ \Vu|*dz > > / ri w’dz, Yu € CO(R™), (1.1)

I<ici<m :E—gj2|2gj—:17|2
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where n > 3, and x1, ..., z,, € R™ are different poles; moreover, the constant % is optimal. By using

the paralelogrammoid law, (1.1) turns to be equivalent to
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Vul?dz > L /
/1w 2

1<i<j<m
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uldz, Vu € CO(R™). (1.2)
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All of the aforementioned works considered the flat/isotropic setting where no external force is present.
Once the ambient space structure is perturbed, coming for instance by a magnetic or gravitational field,
the above results do not provide a full description of the physical phenomenon due to the presence of the
curvature.

In order to discuss such a curved setting, we put ourselves into the Riemannian realm, i.e., we consider
an n(> 3)-dimensional complete Riemannian manifold (M, g), dg : M x M — [0, 00) is its usual distance
function associated to the Riemannian metric g, dv, is its canonical volume element, exp, : T, M — M is
its standard exponential map, and V u(z) is the gradient of a function u : M — R at & € M, respectively.
Clearly, in the curved setting of (M, g), the vector x — z; and distance |x — z;| should be reformulated
into a geometric context by considering exp;l_l(:n) and dg(z,x;), respectively. Note that

_expt(y)
dg(‘rv y)

where cut(y) denotes the cut-locus of y on (M, g). In this setting, a natural question arises: if Q C M is
an open domain and S = {x1, ..., 2, } C Q is the set of distinct poles, can we prove

_9)2
/Q]Vguﬁdvgz% Z /QVZ-j(x)uzdx, Vu € C§°(Q), (1.3)

1<i<j<m

Vody (-, y)(x) = for every y € M, z € M\ ({y} Ucut(y)),

where

dg($i, l‘j)2 ngg(:pa 517@) o ngg(l‘, xj) ?
dg(z,2;)2dg(z, 5)? dg(z, ) dy(, ;)
Clearly, in the Euclidean space R™, inequality (1.3) corresponds to (1.1) and (1.2), for the above choices of
Vi;, respectively. It turns out that the answer deeply depends on the curvature of the Riemannian manifold
(M, g). Indeed, if the Ricci curvature verifies Ric(M, g) > co(n — 1)g for some ¢y > 0 (as in the case of the
n-dimensional unit sphere S"), we know by the theorem of Bonnet-Myers that (M, g) is compact; thus, we
may use the constant functions u = ¢ € R as test-functions in (1.3), and we get a contradiction. However,
when (M, g) is a Cartan-Hadamard manifold (i.e., complete, simply connected Riemannian manifold with
non-positive sectional curvature), we can expect the validity of (1.3), see Theorems 1.1 & 1.2 and suitable
Laplace comparison theorems, respectively.

Accordingly, the primary aim of the present paper is to investigate multipolar Hardy inequalities on
complete Riemannian manifolds. We emphasize that such a study requires new technical and theoretical
approaches. In fact, we need to explore those geometric and analytic properties which are behind of
the theory of multipolar Hardy inequalities in the flat context, formulated now in terms of curvature,
geodesics, exponential map, etc. We notice that striking results were also achieved recently in the theory
of unipolar Hardy-type inequalities on curved spaces. The pioneering work of Carron [Car97], who studied
Hardy inequalities on complete non-compact Riemannian manifolds, opened new perspectives in the study
of functional inequalities with singular terms on curved spaces. Further contributions have been provided
by D’Ambrosio and Dipierro [DD14], Kombe and Ozaydin [KO09, KO13], Xia [Xial4], and Yang, Su
and Kong [YSK14], where various improvements of the usual Hardy inequality is presented on complete,
non-compact Riemannian manifolds. Moreover, certain unipolar Hardy and Rellich type inequalities were
obtained on non-reversible Finsler manifolds by Farkas, Kristdly and Varga [FKV15], and Kristdly and
Repovs [KR16].

In the sequel we shall present our results; for further use, let A, be the Laplace-Beltrami operator on
(M,g). Let m > 2, S = {x1,...,xn} C M be the set of poles with x; # z; if i # j, and for simplicity of
notation, let d; = dg4(-, x;) for every i € {1,...,m}. Our first result reads as follows.

?

Vij(z) = or Vij(z) = ‘
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Theorem 1.1 (Multipolar Hardy inequality I). Let (M, g) be an n-dimensional complete Riemannian
manifold and S = {x1,...,xm} C M be the set of distinct poles, where n > 3 and m > 2. Then

—2)? d; d; |?
/ Vgul*dv, > M Z / ‘VdL - % u®dug
M M= ciggem /M1 i J
2 [ diAydi —(n—1
+”m Z/M g dz(” )u2dvg, Yu € C(M). (1.4)
i=1 ?
Moreover, in the bipolar case (i.e., m = 2), the constant (";72)2 = % is optimal in (1.4).

Remark 1.1. (a) The proof of inequality (1.4) is based on a direct calculation. If m = 2, the local
behavior of geodesic balls implies the optimality of the constant @ = @; in particular, the second
term is a lower order perturbation of the first one of the RHS (independently of the curvature).
2

(b) The optimality of % seems to be a hard nut to crack. A possible approach could be a fine
Agmon-Allegretto-Piepenbrink-type spectral estimate developed by Devyver [Dev14] and Devyver, Fraas
and Pinchover [DFP14] whenever (M, g) has asymptotically non-negative Ricci curvature (see Pigola,
Rigoli and Setti [PRS08, Corollary 2.17, p. 44]). Indeed, under this curvature assumption one can prove

that the operator —A, — W is critical (see [DFP14, Definition 4.3]), where

2 m
n—2 dzAgdz — (’I’L — 1)
+— > - .

i=1 v

_(n—2)? Vgdi  Vyd,
W= m2 Z dl dj

1<i<j<m

Although expected, we have no full control on the second summand with respect to the first one in
W, i.e., the latter term could compete with the ’'leading’ one; clearly, in the Euclidean setting no such
competition is present, thus the optimality of (’;‘n—?z immediately follows by the criticality of W. It
remains to investigate this issue in a forthcoming study.

(c) We emphasize that the second term in the RHS of (1.4) has a crucial role. Indeed, on one hand,
when the Ricci curvature verifies Ric(M, g) > co(n — 1)g for some ¢y > 0, one has that d;(x) = gq(x, z;) <
7/\/co for every x € M and by the Laplace comparison theorem, we have that d;Ayd; — (n — 1) <
(n — 1)(y/cod; cot(y/cod;) — 1) < 0 for d; > 0, i.e. for every = # x;. Thus, this term modifies the original
problem (1.3) by filling the gap in a suitable way. On the other hand, when (M, g) is a Cartan-Hadamard
manifold, one has d;Agd; — (n — 1) > 0, and inequality (1.4) implies (1.3). This result will be resumed
in Corollary 4.1 (i). In particular, when M = R" is the Euclidean space, then exp,(y) = = + y for every
z,y € R™ and |z|A|x| = n — 1 for every x # 0; therefore, Theorem 1.1 and the criticality of —A — W
immediately yield the main result of Cazacu and Zuazua [CZ13], i.e., inequality (1.2) (and equivalently

(1.1)).

For further use, we notice that K > ¢ (resp. K < ¢) means that the sectional curvature on (M, g) is
bounded from below (resp. above) by ¢ € R at any point and direction.
For every ¢ € R, let s, ct, : [0,00) — R be defined by

sin(v/cr) .
Ve it ¢>0, Vecot(y/er) if ¢>0,
Se(r)=+¢ r if ¢=0, and ct.(r)=¢ 1 it ¢=0, (1.5)

sinh(y/—cr) :/—_ccoth(\/—_cr) if ¢<O.
V—c

if ¢<0,
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Although the paralelogrammoid law in the Euclidean setting provides the equivalence between (1.1)
and (1.2), this property is no longer valid on generic manifolds. However, a curvature-based quantita-
tive paralelogrammoid law and a Toponogov-type comparison result provide a suitable counterpart of
inequality (1.1):

Theorem 1.2 (Multipolar Hardy inequality II). Let (M, g) be an n-dimensional complete Riemann-
ian manifold with K > ko for some kg € R and let S = {x1,....,x} C M be the set of distinct poles
belonging to a strictly convex open set S C M, where n > 3 and m > 2. Then we have the following
inequality:

2 A(n —2)° 3 ko (d%> 2 3 2
|Vu|*dv, >——— u*dvg + /Ri-(kro)u dv
/§ T mr s didysg(di)ske(dy) T = S5 !
’I’L—2m dZAdZ—(TL—l) 00/ &
+m,;é g 7 uldv,, Yu e C3°(S), (1.6)
where d;j = dg(z;, ;) and
o+ -2 L — ¢ty (di) b, (d; if ko #0
Rijlko) ={ & T & Tdid, (Sko(di)sko(dj) Cti (di)ctiy (dy) |, if ko # 0,
0, it ko =0.

Remark 1.2. When (M, g) is a Cartan-Hadamard manifold and ky < 0, one has that R;;(ko) > 0; thus
we obtain a similar result as in (1.3); the precise statement will be given in Corollary 4.1 (ii).

Applications. As we already noticed, multipolar Hardy inequalities have been applied in the flat case
to guaranty existence and uniqueness of solutions for various elliptic PDEs. If the particles (e.g. the
fermions appearing in the Thomas-Fermi theory, see Lieb [Lie05]) are distributed in a curved space, the
aforementioned works cannot be applied. For instance, if some external forces perturb the flat model
(present as a magnetic or gravitational field), the curvature will appear. Such a typical case occurs in
the study of classical particles in the Lobachevsky hyperbolic model or spherical Riemannian model,
described recently by Kudryashov, Kurochkin, Ovsiyuk and Red’kov [KKORI10], and Carinena, Ranada
and Santander [CnRnS11].

Motivated by the latter investigations on curved frameworks, we consider two model Schrodinger-type
equations involving bipolar potentials in two different geometrical settings, namely, in the negatively and
positively curved case, where our multipolar Hardy inequalities can be successfully applied:

A. Non-positively curved case. Let (M, g) be an n(> 3)-dimensional Cartan-Hadamard manifold with
K > ko for some ky < 0, and S = {x1, 22} C M be the set of poles. By keeping the previous notations,
we consider the problem

2 (diz
Ayu+ V(z)u = A o ()
—Agu r)u =

g dydasp, (d1)sg, (d2)
where V,W : M — R are positive potentials, A € [0, (n— 2)2) is fixed, g > 0 is a parameter, and the
continuous function f: R — R is sublinear at infinity. In Theorem 4.1 we prove that problem (£7},) has
only the zero solution for small values of p, while it exists pg > 0 such that (L@f\‘/[) has two distinct weak
solutions in a suitable functional space whenever pu > ug.

wt uW (@) f(u) in M, (Zh)
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B. Positively curved case. If S7 denotes the open upper hemisphere and S = {x,22} C S} is the set
of poles, we study the Dirichlet problem

Vodi  Vgdol|? P
_Agu + C(TL, 5)’& = A ‘ 51 — 52 u + |u|p u, m Si (@Si)
u=0, on OS7,
where g is the usual Riemannian structure on the unit sphere S” inherited by R**1 A € [0, %) is fixed,

C(n,B) > 0 is given in Corollary 4.2 and p € (2,2*); hereafter, 2* = 2n/(n — 2) is the critical Sobolev
exponent. In Theorem 4.2 we prove the existence of infinitely many solutions for (@g;z ); moreover,
by using group-theoretical arguments, we provide qualitative results on the solutions concerning their
symmetries whenever the poles x1 and xo are in specific positions.

The plan of the paper is as follows. In §2 we present a series of preparatory definitions and results
which are used throughout the paper. In §3 we prove the multipolar Hardy inequalities, i.e., Theorems
1.1 & 1.2. In §4 we study problems (£§,) and (Psn ), while in §5 we formulate some remarks concerning
further questions/perspectives.

2. PRELIMINARIES

Let (M, g) be an n—dimensional complete Riemannian manifold (n > 3). As usual, T, M denotes the

tangent space at x € M and TM = U T, M is the tangent bundle. Let d, : M x M — [0,00) be the

zeM
distance function associated to the Riemannian metric g, and B,(z) = {y € M : d4(z,y) < r} be the
open geodesic ball with center x € M and radius r > 0. If dv, is the canonical volume element on (M, g),

the volume of a bounded open set S C M is Vol,(S) = [ dvy. The behaviour of the volume of small
geodesic balls can be expressed as follows, see Gallot, Hulin and Lafontaine [GHL87]; for every x € M we
have

Voly(By(x)) = wpr™ (1 +0o(r)) as r — 0. (2.1)

Let u : M — R be a function of class C. If (z*) denotes the local coordinate system on a coordinate
neighbourhood of x € M, and the local components of the differential of u are denoted by u; = %,

then the local components of the gradient V,u are ut = g uj. Here, g% are the local components of
gt = (gij)_l. In particular, for every o € M one has the eikonal equation

|Vgdg(x0,-)] =1 a.e. on M. (2.2)

In fact, relation (2.2) is valid for every point & € M outside of the cut-locus of xy (which is a null measure
set).

When no confusion arises, if X,Y € T, M, we simply write |X| and (X,Y") instead of the norm |X]|,
and inner product g,(X,Y) = (X,Y),, respectively. The LP(M) norm of Vg u(z) € T, M is given by

1/p
IVl o, = ( / |vgu|pdvg> .

The space HJ (M) is the completion of C§°(M) with respect to the norm

lallyan = \/llgar + 1V gul22ay):
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The Laplace-Beltrami operator is given by Aju = div(V4u) whose expression in a local chart of asso-

; : iy _ g (0% pk Ou
ciated coordinates (z') is Agu = g <amiaxj Fij B

, where I‘fj are the coefficients of the Levi-Civita

connection.
In the sequel, we shall explore the following comparison results (see Shen [She97], Wu and Xin [WX07,
Theorems 6.1 & 6.3], Pigola, Rigoli and Setti [PRS08, Theorem 2.4]):

e Laplace comparison theorem I. if K < ¢ for some ¢ € R, then

Aydy(wo,) = (n— Vet (dy(z0, 2)); (2.3)
e Laplace comparison theorem II. if K > ky for some kg € R, then
Agdy(20,2) < (n— ety (dy (x0,)). (2.4)

where these relations are understood in the distributional sense. Note that in (2.4) it is enough to have
the lower bound (n — 1)kq for the Ricci curvature.

3. MULTIPOLAR HARDY INEQUALITIES: PROOF OF THEOREMS 1.1 AND 1.2

Proof of Theorem 1.1. Let E = Hd?_” and fix u € C§°(M) arbitrarily. A direct calculation on the
i=1
set M\ U/~ ({xi} U cut(a;)) yields that
1 1 n—2 1 o Vod;
\Y% ( E‘E) =E mV E~m g9
g \u g+ m U ZZ:; 4,

Integrating the latter relation, the divergence theorem and eikonal equation (2.2) give that

2
1N\ [2 2 (n —2)? " V,yd;
A4 uEm‘Emdfu :/Vu2dv+7/ 970 2w
S ¥ () g = [ 9t 05 [ SRR e,
n—2 — V,d;
Vou?, —22 ) d
T ;/M< gU7dz‘>vg
(n—22 [ | v,di|
— [ |Vguld, + L2 / Vodil 2,
/M g g m? M; d; g

—2 & d;
_n Z/ div <VL> u2dvg.
moiS M d;

. ([ Vqd; diAgd; — 1
d1V< 5;’ ) = gd? cie{l,...,m}.

Thus, an algebraic reorganization of the latter relation provides an Agmon-Allegretto-Piepenbrink-type

multipolar representation
/ 'ngi ~ Vyd;
M| di d;

Due to (2.2), we have

i u2dvg = /M ‘Vg (uE‘l/m> ‘2 Ez/mdfug

(n—2)°
/M |V gul*dvg — B >

1<i<j<m

—I—n_2§:ICi(u), (3.1)
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u*dv,. Tnequality (1.4) directly follows by (3.1).

where IC;(u) = / difyd 7 (n—1)
M i
(n—2)*

In the sequel, we deal with the optimality of the constant =3~ in (1.4) when m = 2. In this case

the right hand side of (1.4) behaves as ("_42)2 dg(z, ;)72 whenever z — z; and by the local behavior of
the geodesic balls (see (2.1)) we may expect the optimality of %. In order to be more explicit, let
Ailr,Rj={z e M :r <d;(x) <R} forr < Rand i€ {1,....,m}. If 0 <r << R are within the range of

(2.1), a layer cake representation yields for every i € {1,...,m} that
[ g, = Ylbae) Vo5
Ai[T,R]

R
; T o + n/r Voly (B, (x;))pt"dp
R
= o(R) + nwy,log put (3.2)

Let S = {x1, 22} be the set of poles, x; # 2. Let € € (0,1) be small enough such that it belongs to
the range of (2.1), and B, /z(1) N By /z(x2) = 0. Let

lo M —-n
)i i e Al
uo(z) = 4 2l0g(E n
() %di(x)%, if x e Ajle, Ve;
0, ) otherwise,

with i € {1,2}. Note that u. € C°(M), having compact support | J2_, A;[e2, /€] C M; in fact, u. can be
used as a test function in (1.4). For later use let us denote by * = —1

log(1)"
2
\% dl,V d2> dzA di—(n—l)
.= | |V 2d,£:/—<9 I—=LuZdug, Ko = / ! 2d
£ /M’ guE’ Vg € o d1d2 U Vg € ZZ:; o dZQ Ug Vg
and
J. / Ly 2d
— u_dv
T Ju BT @)
The proof is based on the following claims:
I. — ppJ- = O(1), L. =0O(Ve) and K. = O(y/e) as € — 0, (3.3)
and
gl_% J- = +oo. (3.4)

The above properties can be obtained by direct computations, based on the estimates (2.1), (3.2) and
n—1
d;
(for € > 0 small enough), see Kristdly and Repovs [KR16]. Combining relations (3.3) and (3.4) with

inequality (1.4), we have that
I - 52K, T+ "F2IK|  ppJ.+0(1)
HH < < =
J- — 2L, Je = 2L T+ O(Ve)
which concludes the proof. O

Agd; —

‘ <1 ae. in B z(xi),

— pp as € — 0,
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Remark 3.1. Let us assume that in Theorem 1.1, (M,g) is a Riemannian manifold with sectional
curvature verifying K < ¢. By the Laplace comparison theorem I (see (2.3)) we have:

(n—2) Vodi  Vydi|* ,
|V ul?dv, > — Z / — ——| udy,
[; i Gem | i 9
n—2)(n-1) — D.(d; .
+%Z/M d(2 )u2dvg, Yu € C§°(M), (3.5)
i=1 i

where D.(r) = rct.(r) — 1, » > 0. In addition, if (M, g) is a Cartan-Hadamard manifold with K < ¢ <0,
2

then D.(r) > Wi’f";ﬂ for all » > 0. Accordingly, stronger curvature of the Cartan-Hadamard manifold

implies improvement in the multipolar Hardy inequality (3.5).

Proof of Theorem 1.2. 1t is clear that
'ngi Vg,

S (Vydi, Vyd;)
d; d; '

=5+ —2
&L d;d,

(3.6)

Let us fix two arbitrary poles z; and z; (i # j), and a point = € S. We consider the Alexandrov comparison
triangle with vertexes ;, ; and Z in the space M of constant sectional curvature ko, associated to the
points z;, x; and x, respectively. More precisely, Mj is the n-dimensional hyperbolic space of curvature
ko when kg < 0, the Euclidean space when ky = 0, and the sphere with curvature kg when kg > 0.

We first prove that the perimeter L(z;z;x) of the geodesic triangle z;x;x is strictly less than 2m_.

clearly, when ko < 0 we have nothing to prove. Due to the strict convexity of S, the unique geodesic
segments joining pairwisely the points x;, x; and  belong entirely to S and as such, these points are not
conjugate to each other. Thus, due to do Carmo [dC92, Proposition 2.4, p. 218]|, every side of the geodesic

. T . . 2
triangle has length < T By Klingenberg [K1i95, Theorem 2.7.12, p. 226] we have that L(z;z;x) < ko

Moreover, by the same result of Klingenberg, if L(z;z;x) = j—g—o, it follows that either x;x ;o forms a closed
VEo
together a minimizing geodesic of length %) In both cases we find points on the sides of the geodesic

geodesic, or z;x;jx is a geodesic biangle (one of the sides has length and the two remaining sides form

triangle x;x;x which can be joined by two minimizing geodesics, contradicting the strict convexity of S.
We are now in the position to apply a Toponogov-type comparison result, see Klingenberg [K1i95,
Proposition 2.7.7, p. 220]; namely, we have the comparison of angles

Yy = M(TT25) < yu = m(xxe;).
Therefore, (Vyd;, Vyd;j) = cos(yar) < cos(Var)-
On the other hand, by the cosine-law on the space form My, see Bridson and Haefliger [BH99, p. 24],
we have

cosh(v/—kod;j) = cosh(v/—kod;) cosh(v/—kod;) — sinh(v/—Fkod;) sinh(v/—kod;) cos(ya, ), if ko < 0;
cos(vVkod;j) = cos(vkod;) cos(v'kod;) + sin(v'kod;) sin(v'kod;) cos(var, ), it ko > 0;

d?j =d? + d? — 2d;dj cos(Yar ) if ko=0.
Consequently,
cosh(v/—kod;) cosh(v/—kod;)—cosh(v/—kodi;) - .
COS(WM) < sinh(\/—kodi)sinhj(\/—_kodj) 2, it ko <0;
COS(’YM) < cos(vkod;j)—cos(v/kod;) cos(vkod;) ik > 0;

sin(v/kod;) sin(v/kod;) ’
d2+d2—d2,
J g ; —
2d,d; if ko = O,

IN

cos(ya1)
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which implies
i (F) . .
1L 2c0s0m) o) ad sgtdsgtay T Futho), i ko £0;
a2 d? d;d; - dz; .
i j J dzc]lz.’ if ko =0,
]

where the expression R;; (ko) is given in the statement of the theorem. Relation (3.6), the above inequality
and (1.4) imply together (1.6). O

4. APPLICATIONS: BIPOLAR SCHRODINGER-TYPE EQUATIONS ON CURVED SETTINGS

In this section we present two applications in different geometric frameworks. In order to avoid techni-
calities, we shall restrict our attention to problems with only two poles; the interested reader may extend
these results to multiple poles with suitable modifications.

4.1. A bipolar Schrédinger-type equation on Cartan-Hadamard manifolds. First of all, by using
inequalities (1.4) and (1.6), we obtain the following non-positively curved versions of Cazacu and Zuazua’s
inequalities (1.2) and (1.1) for multiple poles, respectively:

Corollary 4.1. Let (M, g) be an n-dimensional Cartan-Hadamard manifold and let S = {x1,...,xpm} C M
be the set of distinct poles, with n > 3 and m > 2. Then we have the followz’ng inequality:

—2)2 d; 9dj
/ |V gu|*dv, > M V Vd 2dvg, Yu € Hj(M). (4.1)
M m 1<z<]<m J
Moreover, if K > ko for some ky € R, then
4(n — 2)? i d%)
2qu, > —— / o 2dvg, Yue HX(M 4.2
/M ’Vgu‘ Vg = m2 Z M dd Sk (dz Sko( )u Vg, u € ( ) ( )

1<i<j<m

Proof. Since (M, g) is a Cartan-Hadamard manifold, by using inequality (1.4) and the Laplace compar-
ison theorem I (i.e., inequality (2.3) for ¢ = 0), standard approximation procedure based on the density of
C§¢(M) in H ;(M ) and Fatou’s lemma immediately imply (4.1). Moreover, elementary properties of hy-
perbolic functions show that R;;(kg) > 0 (since kg < 0). Thus, the latter inequality and (1.6) yield (4.2). O

In the sequel, let (M, g) be an n-dimensional Cartan-Hadamard manifold (n > 3) with K > kg for some
ko <0, and S = {z1,22} C M be the set of poles. In this subsection we deal with the Schrédinger-type
equation

2 (diz2
(%)
—Agu+V(z)u= X\
g (=) dydasi, (di)sg, (dz2)

where A € [0, (n— 2)2) is fixed, p > 0 is a parameter, and the continuous function f : [0,00) — R verifies
(f1) f(s) =o(s) as s — 0" and s — oo;

(f2) F(so) > 0 for some sy > 0, where F\(s / f(t)dt.

According to (f1) and (f2), the number ¢y = max,~ @ is well defined and positive.

On the potential V' : M — R we require that
(Vi) Vo = inf V(z) >0

ut W (@) f(u) in M, (Zh)
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(V2) lim  V(x) = +oo for some xy € M,
dg(z0,x)—00
and W : M — R is assumed to be positive. Elliptic problems with similar assumptions on V have been
studied on Euclidean spaces, see e.g. Bartsch, Pankov and Wang [BPWO01], Bartsch and Wang [BW95],

Rabinowitz [Rab92] and Willem [Wil96].
Before to state our result, let us consider the functional space

HY (M) = {u € Hy(M): /M (IVgul® + V(z)u?) do, < —l—oo}

endowed with the norm s
ol = ([ 19y dvy + [ Vntan,)
M M

The next Rabinowitz-type compactness result (see Rabinowitz [Rab92]) is crucial in the study of weak
solutions of problem (£},):

Lemma 4.1. If V satisfies (V1) and (Va), the embedding Hi-(M) < LP(M) is compact, p € [2,2*).

Proof. Let {uy}x C Hi,(M) be a bounded sequence in H{,(M), i.e., ||ug|ly < n for some 5 > 0. Let ¢ > 0
be arbitrarily fixed; by (V2), there exists R > 0 such that V(x) 2 q for every x € M \ Br(zg). Thus,
(0 + lullv)*

/ (up, — u)*dv, < = L / V(x)|up —ul? <
M\Bg(xo) M\Bg(z0) q

On the other hand, by (V3), we have that H{(M) — Hgl(M) < L2 (M); thus, up to a subsequence
we have that uy — w in L2 (M). Combining the above two facts and taking into account that ¢ > 0
can be arbitrary large, we deduce that uj — u in L?(M); thus the embedding follows for p = 2. Now, if

€ (2,2%), by using an interpolation inequality and the Sobolev inequality on Cartan-Hadamard manifolds
(see Hebey [Heb99, Chapter 8]), one has

2)/2 1-p/2*
lak = ullfny < g = ull 28 ol = ull o r,
2)/2 n(1—p/2*
< Call Vgl —u>||’g<;gM Pl =l 5o,
where C,, > 0 depends on n. Therefore, uy — u in LP(M) for every p € (2,2%). O

The main result of this subsection is as follows.

Theorem 4.1. Let (M, g) be an n-dimensional Cartan-Hadamard manifold (n > 3) with K > ko for some
ko < 0 and let S = {x1,22} C M be the set of distinct poles. Let VW : M — R be positive potentials
verifying (V1), (Vo) and W € LY(M) N L®(M) \ {0}, respectively. Let f : [0,00) — R be a continuous
function verifying (f1) and (f2), and X € [O, (n— 2)2) be fized. Then the following statements hold:

(i) Problem (2%,) has only the zero solution whenever 0 < p < VOHWHZ;(M)chl;

(ii) There exists po > 0 such that problem (274;) has at least two distinct non-zero, non-negative weak
solutions in H{,(M) whenever > pg.
Proof. According to (f1), one has f(0) = 0. Thus, we may extend the function f to the whole R by
f(s) =0 for s <0, which will be considered throughout the proof. Fix A € [0, (n — 2)?).
(i) Assume that u € H{,(M) is a non-zero weak solution of problem (£2§,). Multiplying (22§,) by u,
an integration on M gives that

2

di2
Sk 5
/M |V yul? dv, + /M V(z)u? du, = A 2 ( 2 )

w d1dasg,y (d1)sk, (d2)

u?dv, + ,u/ W (z)f(u)udv,.
M
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By the latter relation, Corollary 4.1 (see relation (4.2)) and the definition of ¢y, it yields that

/\Vgulzdvg—kvo/ u?dy, < /\Vgulzdvg—k/ V(z)u? dvg
M M M

g2 d12>
A / o w?duy + p / W (2)f (w)udo
didas, (d1)sk, (d2) g M J

IN

/\Vgulzdfug—k,uHWHLoo(M)cf/ u? dw,.

Consequently, if 0 < u < Vp|[W||; 2 Loo(M cf , then u is necessarily 0, a contradiction.

(ii) Let us consider the energy functlonal associated with problem (224,), i.e., £, : HL-(M) — R defined
by

o2
Eu(u) = %/M (IVgul* + V(z)u?) dv, — /\/ d1d2S:(gl§ >( u? dv, — / W (x)F (u)dvg.

One can show that £, € C1(H{,(M),R) and for all u,w € H{-(M) we have

g2 dio
k 2

E(u)(w) = /M ((Vgu, Vow) + V(z)uw) dvg — )\/M Trdosr (4 )se (42) ww dvg — / W (x)f(uw)wdu,.

Therefore, the critical points of £, are precisely the weak solutions of problem (274,) in H{,(M). By
exploring the sublinear character of f at infinity, Corollary 4.1 and Lemma 4.1, one can see that &, is
bounded from below, coercive and satisfies the usual Palais-Smale condition for every p > 0. Moreover,
by an elementary computation one can see that assumption (f1) is inherited as a sub-quadratic property

in the sense that
/ W(x dvg / Wz dvg
=0. (4.3)

||U||v—>0 HUHV Ilullv—>oo HuH2

Due to (f2) and W # 0, we can construct a non-zero truncation function ug € H{,(M) such that

/ W (x)F (ug)dvg > 0. Thus, we may define

|UHV cue Hy (M / W (z)F(u)dvg > 0

/ W (x)F (u)dvg

By the relations in (4.3), we clearly have that 0 < up < oo.
Let us fix g > po. Then there exists @, € H{(M) with / W (x)F(a,)dvy > 0 such that p >
[

> no. Consequently,
2 / W () F (i) dv,
M

1, . -
hi= it & < Euli) < gl — | w@r,) <o
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Since &, is bounded from below and satisfies the Palais-Smale condition, the number c}t is a critical value
of £,, i.e., there exists ub € H{-(M) such that &L(uh) = CL < 0 and 5,2(1@) = 0. In particular, ub #01is a
weak solution of problem (2%,).

Standard computations based on Corollary 4.1 and the embedding Hi, (M) < LP(M) for p € (2,2%)
show that there exists a sufficiently small p,, € (0, ||@,||v) such that

inf  &,(u) =n,>0=2E,0) > Eu(u),

llullv=pp
which means that the functional £, has the mountain pass geometry. Therefore, we may apply the moun-
tain pass theorem see Rabinowitz [Rab92], showing that there exists u?, € Hy,(M) such that &/,(u?) = 0
and €u(u2) u’ where ci = infyer maxe(o 17 £4(¥(t)), and T = {y € C([0, 1]; Hi,(M)) : 4(0) = 0, 7(1) =
@y, }. Due to the fact that Cu > infjy ), =p, Eu(u) > 0, it is clear that 0 # ui # u}l Moreover, since f(s) =

for every s < 0, the solutions uL

O o

and ui are non-negative.

Remark 4.1. Theorem 4.1 can be applied on the hyperbolic space H" = {y = (y1,...,yn) : yn > 0}
endowed with the metric g;;(y1, ..., yn) = 62 ; it is new even on the Euclidean space R™, n > 3.

4.2. A bipolar Schrédinger-type equation on the upper hemisphere. A positively curved coun-
terpart of (4.1) can be stated as follows by using (1.4) and a Mittag-Leffler expansion (the interested
reader can establish a similar inequality to (4.2) as well):

Corollary 4.2. Let S"! be the open upper hemisphere and let S = {x1,...,xm} C S be the set of distinct
poles, with n > 3 and m > 2. Let f = max dg(xo,x;), where xg = (0,...,0,1) is the north pole of the

i=1m
sphere S™ and g is the natural Riemannian metric of S™ inherited by R"t1. Then we have the following
mequality:
2
u? dvy, Yu € H;(S’fr), (4.4)

d]

2y > 220 S /

1<i<j<m

)_mb(BrE)

Proof. Let M = S™ be the standard unit sphere in R"*! and the open upper hemisphere St ={y =
(Y1, ooy Ynt1) € S™ : ypy1 > 0}. By Theorem 1.1 we have

/ |Vgu|2dvg Z /

1<i<j<m

n—2 diAgd; — (n—1) ot
+— Z/ g p u? dv,, Yu € CZ(ST).

where Hu||(2:(n75) = /S” IV ul*dv, + C(n, B) /n u*dv, and C(n, B) = (n —1)(n —
+ +

2

; d
Vo%| 2
u” dvg,

Since K = 1, the two-sided Laplace comparison theorem (or a direct computation) shows that Agjd; =
(n — 1) cot(d;).
Fix u € C§°(S"). By using the Mittag-Leffler expansion of the cotangent function, i.e.,

1 — 1
cott = Z+2t; m, tc (O,ﬂ'),
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and the fact that 0 < d; < m, i € {1,...,m} (up to the poles, which has null measure), one has

diNgd; — (n—1) 4 - u?
/n o " d”g:_2(n_1)/nzw2k2—d2d”
+ t + k=1 t

Since d; < w, we get that

3 2
/nzw%? d? /nzww ”gzm/n“dvg'
+

+ k=2

. T
Moreover, since § = E%dg(mo’xi) < 5 one can see that for every x € S7, di(x) = dy(z,z;) <

dg(x, x0) + dg(x0, ;) < 5 + B. Thus, 2 —d? >n?— (5 + %)2 > 0, which implies

u? 1 /
—_dy, < ——m8M u? dv,.
/81”2 @ T (p4g) e

Combining the above two estimates, we have that

Z-Vd

— 2
/ IV yul? dvy + C(n, B) / u? dv, > (n=27 Z / u2 duy,
i St 1<i<j<m”S%
where C(n,8) = (n — 1)(n — 2)¢5)2 The latter inequality can be extended to H}(S%) by
2n? (w2~ (8+5)°) g
standard approximation argument. ]

For simplicity, let S = {z1,22} € S} be the set of poles. We consider the Dirichlet problem

—Agu+C(n, flu =

d do |?
)\u‘vgl Vad> + |ufP"2u, in ST

dl d2 (@S’}r)

u=0, on OS,
where g is the natural Riemannian structure on the standard unit sphere S™ inherited by R* ™! p € (2,2%),
A€ [07 (n_42)2> is fixed and C(n,8) = (n — 1)(n — 2)% hereafter, g = (0,...,0,1) is the

north pole of S™ and § = max{dy(xo, 1), dg(zo,z2)}.
Theorem 4.2. Let S be the open upper hemisphere (n > 3), S = {x1,z2} C S} be the set of poles and
€ (2,2%). The following statements hold:
(i) Problem (Psn) has infinitely many weak solutions in H}(S}). In addition, if x1 = (a,0,...,0,b)
and x93 = (—a,0,...,0,b) for some a,b € R with a®> +b%> =1 and b > 0, then problem (L@gi) has a
sequence {uy }ren of distinct weak solutions in H; (S7) of the form

Up = U <y17 \/?J% +.t y%7yn+1> = Uk <y1, \/ 1 - y% - y%+1ayn+1> .

11 n=>5orn>" and x1 = (a,0,...,0,b), x9 = (—a,0,...,0, or some a,b € R with a* + b* =
(i) If 5 7 d (a,0 0,b) ( 0 0,b) f beR ha®+b>=1

and b > 0, then there exists at least s, = [g + (—1)"_1 — 2 sequences of sign-changing weak

solutions of (@gi) in Hg1 (ST) whose elements mutually differ by their symmetries.
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Proof. Fix X\ € [0, ("_2)2> arbitrarily. The energy functional £ : H, gl (S%) — R associated with problem

1
? 1
dvg — — [ulP du.
b Jsn

+

(Psn) is given by

Vedi  Vds
dq do

1 A
& = 5l —5 [ o
+

It is clear that £ € C'(H}(S"),R) and its critical points are precisely the weak solutions of (Psn).

(i) We notice that the embedding H; (S%) < LP(ST%) is compact for every p € (2,2%), see e.g. Hebey
[Heb99]. By means of Corollary 4.2, one can prove that the functional £ satisfies the assumptions of
the symmetric version of the mountain pass theorem, see e.g. Jabri [Jab03, Theorem 11.5] or Rabinowitz
[Rab86, Theorem 9.12], thus there exists a sequence of distinct critical points of €& which are weak solutions
of problem (%) in H}(Sh).

In particular, let z; = (a,0,...,0,b) and z2 = (—a,0,...,0,b) for some a,b € R with a® + > = 1 and
b > 0. We notice that in this case 8 = dy(zo,21) = dy(xo,x2) = arccosb. We shall prove that the energy
functional £ is invariant w.r.t. the group Gy = idg x O(n — 1) x idr via the action

Cu(e) = u(("'z)
for every u € Hg1 (Sh), ¢ € Go and = € S7}. First, since ¢ € Gy is an isometry on R™*1 a change of
variables easily implies that

1 1 )
wr 5luls — 5 [ luldo,

+
is Go-invariant. Thus, it remains to focus on the Gy-invariance of the functional
Vydi  Vydol|?
u > W2 |t a2 dvy.
sn dy da

To do this, we recall that

ng1 B ng2 2 _ i N i B 2<ng1, ng2>
d ds oA didy
and Vgdy(-,y)(x) = —‘35(;%;;) for every x,y € S, x # y. According to Udrigte [Udr94, p. 19|, one has
_ di(z; — x cosd;) ,
1, _ %l i n )
exp, T Snd, ;e {1,2}, 2 e ST\ {z;}.
Therefore,
exp, (z;) xcosd; — x; . n
Vgdi(x) = Vydg(x,2;) = — = . 1e{l,2}, x e ST\ {x}. (4.5)

d; sin d;
Let ( € Go, i € {1,2} and = € ST} \ {;} be fixed. Since (x; = x;, it follows that
di(Cx) = dg(Cw, @) = dg(C, Cx3) = dg(x, 7;) = di(),
and by (4.5),
(Vgdg(Cx,21), Vedg(C,22)) = (Vgdg(x,21), Vedg(z,22)).

Summing up the above properties (combined with a trivial change of variable), it follows that the energy
functional & is Go-invariant, i.e., £(Cu) = E(u) for every u € Hy(S") and ¢ € Gp.

We now can apply the same variational argument as above for the functional & = €&| Hey (ST) where
Hg,(Sh) = {u € Hg1 (S%) : Cu = u for every ¢ € Go}. Accordingly, one can find a sequence {ug}ren C
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Hg,(Sh) of distinct critical points of &. Moreover, due to the principle of symmetric criticality of
Palais [Pal79], the critical points of & are also critical points for the original energy functional &,
thus weak solutions of problem (@gi ). Since uy are Go-invariant functions, they have the form wuy :=

U <y1, ys + ... + yfnynﬂ) = ug <y1, VAR y72L+17yn+1) , keN.

(ii) Let n = 5 or n > 7, and denote by s, = [%] + (—=1)""' — 2. (Note that ss = 0.) For every
jeA{l,...,s,} we define

an_ [ OG+1)x0(n—2j=3)x0(j+1), ifj+# "5
TTLo() <o (). ifj = g7,

where O(k) is the orthogonal group in R¥. For a fixed G}, we define the function 7; associated to G7 as

( (03,09,01), if j # 252 and o = (01, 09,03) with 01,09 € RIT! oy € RP273;
Ti\O) = n—
J (03,01), if j = "5° and 0 = (01,03) with 01,03 € R e
Note that 7; ¢ G7, Tng‘Tj_l = G7 and Tj2 = idgn-1. Similarly as in Kristaly [Kri09], we introduce the
action of the group
G;Lﬂ_j = idg X <G§L,Tj> X idgp C O(Tl + 1)

on the space Hg1 (S%) by

Cu(z) = u(e),  (FOule) = —u(T1F ), (4.6)
for every ( € é;‘ =idg X G} X idg, 7; = idr x 7; X idR, u € Hg1 (S%) and x € S!. We define the subspace

of H g1 (S?) containing all the symmetric points w.r.t. the compact group GZTJ_, ie.,

HG}L,TJ» (Sh) = {u € Hgl(Sﬁ) : Cu = u for every ( € GV } .

25T
Note that (see Kristaly [Kri09, Theorem 3.1]) for every j # k € {1,2,..., s, } one has
Her (St)NHeyp  (SY) = {0}, (4.7)

vTj
In a similar way as above, we can prove that the energy functional & is G;ﬁTj-invariant for every
j €{1,...s,} (note that & is an even functional), where the group action on Hj(S") is given by (4.6).

Therefore, for every j € {1, ..., s, } there exists a sequence {Ui}keN C HG?%_ (S7) of distinct critical points
of & = E|ugy (s7)- Again by Palais [Pal79], {u] }ren C Hern (S7) are distinct critical points also for &,
j,‘rj Ty

thus weak solutions for problem (Pgn ). It is clear that every u{z is sign-changing (see (4.6)) and according
to (4.7), elements in different sequences have mutually different symmetry properties. O

Remark 4.2. For n = 6 in Theorem 4.2 (ii), one has sg = 0; therefore, in this case we cannot apply
the above group-theoretical argument to guarantee the existence of sign-changing solutions for problem

(Psn ).

5. CONCLUDING REMARKS

In the present paper we presented some multipolar Hardy inequalities on complete Riemannian man-
ifolds by exploring the presence of the curvature and giving some applications in the theory of elliptic
equations involving bipolar potentials; as far as we know, this is the first study in such a geometrical
setting. During the preparation of the manuscript we faced several problems which, - in our opinion, -
are worth to be tackled in forthcoming investigations. In the sequel, we shall formulate some of them:
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As we already pointed out in Remark 1.1 (b), the optimality of (";3)2 in (1.4) for generic Rie-

mannian manifolds is not yet understood for m > 3 which requires further studies. We notice that
multipolar inequalities involving non-uniform weights on complete Riemannian manifolds can also
be obtained, following Devyver, Fraas and Pinchover [DFP14].

For simplicity reasons, in §4 we considered only some model elliptic problems with familiar growth
assumptions, i.e., sublinear and subcritical pure power term. However, multipolar Hardy inequal-
ities (cf. Theorems 1.1 and 1.2) allow to study other classes of elliptic problems involving other
type of nonlinear terms (critical, concave-convex, etc.).

A challenging problem is to study the heat equation involving multiple poles on strip-like domains
or curved tubes (embedded into appropriate Riemannian manifolds). We notice that in the Eu-
clidean setting such equations have been investigated by Baras and Goldstein [BG84], Krejcirik
and Zuazua [KZ10,KZ11] via Hardy-type inequalities; see also references therein. We notice
that deep studies already exist concerning linear heat equations on Riemannian manifolds having
non-negative Ricci curvature which is related to the Perelman’s volume non-collapsing result, see
Ni [Ni04].
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