SHARP UNCERTAINTY PRINCIPLES ON RIEMANNIAN
MANIFOLDS: THE INFLUENCE OF CURVATURE

ALEXANDRU KRISTALY

ABSTRACT. We present a rigidity scenario for complete Riemannian manifolds sup-
porting the Heisenberg-Pauli-Weyl uncertainty principle with the sharp constant in R"
(shortly, sharp HPW principle). Our results deeply depend on the curvature of the
Riemannian manifold which can be roughly formulated as follows:

(a) When (M, g) has non-positive sectional curvature, the sharp HPW principle holds
on (M, g). However, positive extremals exist in the sharp HPW principle if and only if
(M, g) is isometric to R™, n = dim(M).

(b) When (M, g) has non-negative Ricci curvature, the sharp HPW principle holds on
(M, g) if and only if (M, g) is isometric to R™.

Since the sharp HPW principle and the Hardy-Poincaré inequality are endpoints of
the Caffarelli-Kohn-Nirenberg interpolation inequality, we establish further quantitative
results for the latter inequalities in terms of the curvature on Cartan-Hadamard mani-
folds.

Nous présentons un scénario de rigidité pour les variétés riemanniennes complétes sou-
tenant le principe d’incertitude d’Heisenberg-Pauli-Weyl avec la constante optimale en
R™ (briévement, le principle d’HPW). Nos rsultats dpendent profondment de la courbure
de la variété riemannienne et ils peuvent étre formulés comme suit :

(a) Lorsque (M, g) a courbure sectionnelle non positive, le principe I’HPW (se main-
tient) a lieu sur (M, g). Néanmoins, des fonctions extrémales positives existent dans le
principe ’HPW si et seulement si (M, g) est isométrique & R™, n = rmdim(M).

(b) Lorsque (M, g) a courbure de Ricci non ngative, le principe ’'HPW a lieu sur
(M, g) si et seulement si (M, g) est isométrique a R™.

Comme le principe d’HPW et lingalité Hardy-Poincaré sont des cas extrémes de
I'inégalité d’interpolation de Caffarelli-Kohn-Nirenberg, nous établissons des résultats
quantitatifs pour les derniéres inégalités en terme de la courbure sur les variétés de
Cartan-Hadamard.

Dedicated to professor Zoltan M. Balogh on the occasion of his 50th birthday

1. INTRODUCTION AND MAIN RESULTS

The Heisenberg uncertainty principle in quantum mechanics states that the position
and momentum of a given particle cannot be accurately determined simultaneously, see
[25]. The rigorous mathematical formulation of this principle is attributed to Pauli and
Weyl [37], stating that the function itself and its Fourier transform cannot be sharply
localized at the same time. In terms of PDEs, the Heisenberg-Pauli-Weyl uncertainty
principle in the Euclidean setting is described by the inequality

(/ |Vu(x)|2dx> </ |x|2U(x)2dx> > %2 (/ u(x)2dx)2, Vu € CE(R™).  (1.1)
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It is well known that the constant %2 is sharp and the extremals are given (up to a

constant) by the family of Gaussian functions uy(z) = e ", X > 0.

Since its initial formulation, the Heisenberg-Pauli-Weyl principle is deserving continu-
ously a deep source of inspiration in different areas of Physics and Mathematics. Without
the sake of completeness, Heisenberg-Pauli-Weyl principle has been studied in various
contexts, see Ciatti, Ricci and Sundari [13] (for positive self-adjoint operators on measure
spaces), Fefferman [19], Folland and Sitaram [21], and Nahmod [33] (locating eigenvalues
for selfadjoint differential operators via SAK principle), Andersen [2, 3], Erb [17, 18] and
Kombe and Ozaydin [28, 29] (sharp uncertainty principle on compact/noncompact Rie-
mannian manifolds), Okoudjou, Saloff-Coste and Teplyaev [34] (for fractals, graphs and
metric measure spaces), and references therein.

The purpose of our paper is to describe a complete scenario concerning the sharp Heisen-
berg-Pauli-Weyl uncertainty principle on complete Riemannian manifolds. Hereafter, in
order to avoid confusions, the sharpness is understood in the sense that the Heisenberg-
Pauli-Weyl principle holds on a Riemannian manifold (M, g) with the same constant ”72
as in the Euclidean space R".

To be more precise, let (M, g) be an n(> 2)—dimensional complete Riemannian man-
ifold, its canonical volume element dV,, and d,,(z) = d(zo,x) be the distance function
from a point xo € M. For xq € M fixed, we consider the Heisenberg-Pauli- Weyl principle
on (M, g) of the form: for all u € C§°(M),

2 2
( /M yvgu|2dvg) ( /M diOUQdVg) > ”Z ( /M u2dVg) . (HPW),,

Our first result can be stated as follows:

Theorem 1.1. [Non-positively curved case|] Let (M,g) be an n—dimensional Cartan-
Hadamard manifold (simply connected, complete Riemannian manifold with non-positive
sectional curvature).

(i) [Sharpness| The Heisenberg-Pauli-Weyl principle (HPW)_  holds for every xq €

2, .
M; moreover, - is sharp, i.e.,

, ( / rvguﬁdvg) ( / diouzdvg)
— = inf M M2 .

M

(i) [Extremals] The following statements are equivalent:
'fL2

(a) 7 is achieved by a positive extremal in (HPW),_  for some xq € M;

(b) ”IZ is achieved by a positive extremal in (HPW)_ - for every zy € M;
(c) (M,g) is isometric to R".

Some remarks are in order concerning Theorem 1.1.

Remark 1.1. (a) (HPW),_ is a consequence of a quantitative/weighted Heisenberg-
Pauli-Weyl principle stated below in Theorem 3.1. Note that similar weighted Heisenberg-
Pauli-Weyl type principles have been investigated on Riemannian manifolds diffeomorphic
to R™ (thus, in particular, on Cartan-Hadamard manifolds). Indeed, by using an operator
theoretic approach, Erb [18, Theorem 2.54] stated weighted Heisenberg-Pauli-Weyl princi-
ples where the weights are in terms of volume distortion coefficients involving information
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on the curvature of the manifold. By using Bishop-Gromov comparison arguments, Corol-
lary 2.68 of Erb [18] can be seen as (HPW),_ . Note however that the sharpness and the
characterization of extremals in (HPW)_ are not explicitly investigated in [18].

(b) One could expect finer results for (HPW)_ whenever the Riemannian manifold is
the model hyperbolic space. Andersen [2, 3] proved that hyperbolic Gaussians are can-
didates for extremal functions in Heisenberg-Pauli-Weyl principles within the hyperbolic
setting. Recently, Kombe and Ozaydin [29, Theorem 4.2] claimed that the hyperbolic
Gaussian function u(z) = e *4®* (where a > 0 is a root of a highly nonlinear equation)
is an extremal function in the Heisenberg-Pauli-Weyl principle (HPW ), on the hyperbolic
space H™; hereafter, d(x) = dg~ (0, ) denotes the hyperbolic distance between 0 and z in
the Poincaré ball model. According to Theorem 1.1, the scenario described in [29] cannot
occur; moreover, two further independent arguments are presented in §3.2 which confirm
the fact that in the hyperbolic setting the expected Gaussian function u(x) = e=d@)? can-
not be extremal in (HPW), for any o > 0. More precisely, the hyperbolic Gaussians are
extremals for a quantitative Heisenberg-Pauli-Weyl principle rather than for (HPW),,
as we shall explain in the sequel, see (3.13).

(c) Being within the context of Cartan-Hadamard manifolds, the sharpness of Sobolev-
type inequalities usually require the validity of the longstanding Cartan-Hadamard con-
jecture, i.e., the sharp isoperimetric inequality (which is valid in 2, 3 and 4—dimensional
Cartan-Hadamard manifolds), see e.g. Hebey [24, Section 8.2]. We notice that such a
hypothesis is not needed in Theorem 1.1.

In the non-negatively curved case the situation is even more rigid than in Theorem 1.1:

Theorem 1.2. [Non-negatively curved case|] Let (M, g) be a complete, n—dimensional
Riemannian manifold with non-negative Ricci curvature. The following statements are
equivalent:

(a) (HPW),_ holds for some xq € M;
(b) (HPW),_  holds for every xo € M;
(c) (M, g) is isometric to R™.

Remark 1.2. Theorem 1.2 can be included into the best constant program initiated by
Aubin [4], and studied by Ledoux [30], Cheeger and Colding [12], Druet, Hebey and
Vaugon [16], do Carmo and Xia [15], Minerbe [32], Li and Wang [31], etc. Indeed, in the
aforementioned papers, the authors established that complete Riemannian manifolds with
non-negative Ricci curvature supporting some Sobolev-type inequalities should be close
to Euclidean spaces whenever the constant is sufficiently close to the sharp Euclidean
Sobolev constant. The reader may consult Hebey [24] for a thoroughgoing presentation
of this subject.

In the sequel, we shall present some closely related results to the sharp Heisenberg-
Pauli-Weyl principle on Riemannian manifolds which are of independent interests.
Let p,q € R and n € N be such that

2(p —q)
p—2

For a fixed o € M, we consider the Caffarelli-Kohn-Nirenberg interpolation inequality on
(M, g): for all uw € C§°(M),

(o) (] o) 2 (] ) o,

0<g<2<pand2<n< (1.2)




4 ALEXANDRU KRISTALY

An endpoint of (CKN), is precisely the Heisenberg-Pauli-Weyl principle (HPW)
whenever p — 2 and ¢ — 0. As a part of the best constant program, Xia [39] proved that
if (M,g) is a complete, n—dimensional Riemannian manifold with non-negative Ricci
curvature, then (M, g) supports (CKN), = for some o € M if and only if (M,g) is
isometric to R™. In the Euclidean setting, Xia [39] also proved the sharpness of (";—Qq)z in
(CKN),, and the existence of a class of extremals

ur(z) = (A + |z — 20>~ q) , A>0. (1.3)

The reader may also consult Kristaly and Ohta [27] for a study of Caffarelli-Kohn-
Nirenberg inequalities on 'positively curved’ metric measure spaces.

The non-positively curved counterpart of Xia’s result, similar to Theorem 1.1, can be
stated as follows:

Theorem 1.3. Let p,g € R and n € N be such that (1.2) holds and let (M,g) be an
n—dimensional Cartan-Hadamard manifold.

(i) [Sharpness| The Caffarelli-Kohn-Nirenberg interpolation inequality (CKN), ~holds

for every xy € M and the constant (m Qq)Q 1s sharp, i.e.,

woar o L) () )

B 1n
p ueCs (M)\ {0} Juf? [T
v dL

(i) [Extremals] The following statements are equivalent:

(a) (";75)2 is achieved by a positive extremal in (CKN),_ ~ for some xo € M;

(b) (”;72‘1)2 is achieved by a positive extremal in (CKN),_ ~for every zq € M;
(¢) (M, g) is isometric to R™.

The other endpoint of (CKN), , whenever p —> 2 and ¢ — 2, is the famous Hardy-
Poincaré inequality on (M, g): for all u e Coo(

/ IV ul*dV, > / —dV (HP),,

In the Euclidean setting it is well known that ("; 2 s sharp, but there are no extremal

functions. The lack of extremals motivated various improvements of the Hardy-Poincaré
inequality; see e.g. Adimurthi, Chaudhuri and Ramaswamy [1], Barbatis, Filippas and
Tertikas [5], Brezis and Vazquez [8], Filippas and Tertikas [20], Ghoussoub and Moradifam
[22, 23], Wang and Willem [36], etc.

In the last few years, the Hardy-Poincaré inequality has been also studied on complete,
non-compact Riemannian manifolds, where the influence of geometry played a key role;
see e.g. Berchio, D’Ambrosio, Ganguly and Grillo [6], Berchio, Ganguly and Grillo [7],
Carron [11], D’Ambrosio and Dipierro [14], Kombe and Ozaydin [28, 29], Yang, Su and
Kong [40], and references therein.

Our aim is to provide a new type of improved Hardy-Poincaré inequality which shows
that more curvature implies more powerful improvements:

Theorem 1.4. [Improved Hardy-Poincaré inequality via curvature] Let (M, g) be an
n—dimensional Cartan-Hadamard manifold such that the sectional curvature is bounded
from above by ¢ < 0. Then for every xo € M and v € C§°(M), we have

_22 2 -1 —9 2
[ 1wy @S2 [ gy S0 [
M 4 M

&2, 2 w2+ |fdZ,
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(G sharp (independently by the second term on the RHS).

In addition, the constant ~—;

Remark 1.3. It seems similar rigidity results for the Hardy-Poincaré inequalities as in
the Theorem 1.2 cannot be established on non-negatively curved spaces. In the proof of
Theorem 1.2 the existence of extremals in the Euclidean case is crucial which fails in the
case of Hardy-Poincaré inequalities.

Plan of the paper. In Section 2 we first recall the notions and results from Riemannian
geometry which are used throughout the proofs. In Section 3 we first deal with the generic
Heisenberg-Pauli-Weyl principle by proving Theorems 1.1&1.2, and then we consider this
principle on hyperbolic spaces (w.r.t. the paper [29]). In Section 4 we study related
inequalities to the Heisenberg-Pauli-Weyl principle on Cartan-Hadamard manifolds (i.e.,
Caffarelli-Kohn-Nirenberg interpolation inequality and Hardy-Poincaré inequality).

2. PRELIMINARIES

Let (M, g) be an n—dimensional complete Riemannian manifold, and d : M x M —
[0, 00) be the metric function associated to the Riemannian metric g. Let B(x,p) = {y €
M :d(x,y) < p} be the open metric ball with center = € M and radius p > 0. If dV/ is
the canonical volume element on (M, g), the volume of a bounded open set S C M is

Vol (S) = / dV, = Hausy(S),
S

where Haus,(.S) is the Hausdorff measure of S with respect to the metric function d. In
general, one has for every x € M that

i VoL(B(z. )

p—0+ Wnp"

=1, (2.1)

where w,, is the volume of the standard n—dimensional Euclidean unit ball.
Let u : M — R be of class C'. If () is the local coordinate system on a coordinate
neighborhood of x € M, and the local components of the differential of v are denoted

U; = g—;, then the local components of the gradient V u are u’ = g“u;. Here, g are the

local components of g~ = (g;;) "
The Laplace-Beltrami operator is given by Aju = div(V,u) whose expression in a local
chart of associated coordinates (z') is

o 0%u ou
— 4 Tk 27
Agu g <8x28xj F” 8xk) ’

where Ffj are the coefficients of the Levi-Civita connection.
If u,v: M — R are of class C?, one has the following integration by parts formula

/ vA udV, = —/ (Vgv, Vou)dVy,
M M

where (-,-) denotes the scalar product associated with the Riemannian metric g for
1—forms. For simplicity, we shall use the notation || = y/{a, a) for any 1—form.

A Riemannian manifold (M, g) is called Cartan-Hadamard if it is complete, simply
connected and with non-positive sectional curvature.

For every ¢ < 0 we consider the function ct. : (0,00) — R defined by

if ¢=0,

cte(p) = { i/ﬂcoth(\/ﬂp) if ¢<0.
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For further use, let D, : [0,00) — R defined by
_J 0 it p=0,
D.(p) = { pct(p) —1 if p>0.
It is clear that D, > 0.

Hereafter, d,,(x) = d(zo, x) denotes the distance function from a given point zo € M.

Theorem 2.1. [Laplacian comparison; see [38, Theorem 5.1)] Let (M, g) be an n—di-
mensional Cartan-Hadamard manifold such that the sectional curvature is bounded from
above by ¢ <0, and let xyg € M be fivred. Then we have (in distributional sense) that

Agdyy > (n—1)cto(dy,)-

In the proof of our results Bishop-Gromov-type volume comparison principles play a
crucial role. Here we adapt from the Finsler version the following form (see Shen [35],
Wu and Xin [38, Theorems 6.1 & 6.3] and Zhao and Shen [41]):

Theorem 2.2. [Volume comparison| Let (M, g) be a complete, n—dimensional Riemann-
1an manifold. Then the following statements hold.
(a) If (M, g) is a Cartan-Hadamard manifolds, the function p — W is mon-
decreasing, p > 0. In particular, from (2.1) we have
Vol (B(z, p)) > wpp™ for all x € M and p > 0. (2.2)

If equality holds in (2.2), then the sectional curvature is identically zero.

(b) If (M, g) has non-negative Ricci curvature, the function p +— W is non-
increasing, p > 0. In particular, from (2.1) we have
Voly(B(x, p)) < wpp™ for all x € M and p > 0. (2.3)

If equality holds in (2.3), then the sectional curvature is identically zero.

3. HEISENBERG-PAULI-WEYL PRINCIPLE ON RIEMANNIAN MANIFOLDS

3.1. Non-positively curved case: proof of Theorem 1.1. First, we present a quan-
titative version of the Heisenberg-Pauli-Weyl principle.

Theorem 3.1. [Quantitative Heisenberg-Pauli-Weyl principle| Let (M, g) be an n—di-
mensional Cartan-Hadamard manifold such that the sectional curvature is bounded from
above by ¢ < 0. Then for all xyg € M and u € C3° (M), we have

2 - 2
(/ \vguﬁdvg) (/ diOUQdVQ) > = (/ <1+ n 1Dc(dx0)) quv;,) .
M M M n

Proof. Let xp € M and u € C§°(M) be fixed arbitrarily. According to Theorem 2.1,
one has

[ sy, = 2 [ (14 ddgda)ea,
M M
> 2/ (1+ (n — 1)dy,cte(dy,))u*dV,
M

- Zn/M (1 + = 1Dc(dm)) w2dv,. (3.1)

n
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An integration by parts yields
[ Ay, = = [ (9,0, v,y
M M

= —4/ udy, (Vgu, Vydy,)dVy.
M

By the eikonal equation |V, d,,| = 1 a.e. on M, one has that |(V,u, V,d,)| < [V,ul.
Thus, by Schwartz inequality one gets

2
( / udzo<vgu,vgdmo>dvg) < < / dgou2dx/g> < / yvguyzdvg).
M M M

The latter relation coupled with (3.1) yields the quantitative Heisenberg-Pauli-Weyl prin-
ciple, which concludes the proof. 0

Proof of Theorem 1.1. (i) Let o € M be fixed. Since D, > 0, due to Theorem 3.1, the
Heisenberg-Pauli-Weyl principle (HPW)_ holds.

We shall prove that the constant % is optimal in (HPW)_ , following Aubin’s argument

[4]; see also Hebey [24]. Let
([ 1vaan,) ([ aeav,)
CHPW = inf M M . (32)

ueCse (M)\{0} (/ . ) 2
u
o g

Since (HPW)xO holds, then Cypyw > %2. Assume that Cypyw > %. By (3.2), one has

2
( / |vgu|2dvg) ( / d§0u2dvg) > Chpw < / u2dVg) , Yu € C°(M). (3.3)
M M M

For every € > 0, there exists a local chart (£2, ¢) of M at the point zy and a number § > 0
such that ¢(2) = B.(0,d) and the components g;; of the metric g satisfy

in the sense of bilinear forms. Here, B,(0, d) is the n—dimensional Euclidean ball of center
0 and radius ¢ > 0.
According to (3.3) and to the two-sided metric estimate (3.4), for £ > 0 small enough,

2

there exists 0 > 0 and Clpyy, > % such that for every ¢ € (0, 0) and w € C(B.(0,9)),

2
(/ |Vw|2dx> (/ |x|2w2dx) > Chpw (/ deaz) . (3.5)
B.(0,6) B.(0,6) B(0,6)

Let u € C§°(R™) be fixed arbitrarily and set wy(z) = u(Ax), A > 0. It is clear that
wy € C§°(B,(0,0)) for enough large A > 0. Inserting wy into (3.5), and having the scaling
properties

/ |Vwy [P dz = A\*7" |Vul*da, / |z|*wide = 272" |z|*u?dz,
Be(0,0) Rr B (0,5)

Rn
/ widr = )\_”/ u?da,
B.(0,0) n
2
( : |Vu|2dx> ( : |x|2u2dx) > Chpw </ u2dx> :

and

it follows that
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In particular, in the latter relation we may substitute the Gaussian function u(z) = e“”3|2,
obtaining that %2 > Ciypw @ contradiction. Consequently, Cppw = %2.

(ii) First, if (M, g) is isometric to R™, the sharp Heisenberg-Pauli-Weyl principle (HPW)
can be equivalently transformed into (1.1) for which the Gaussian functions uy(x) =
e * '\ > 0, are extremal functions. Thus, the implications (c¢)=(b)=-(a) hold true.

We now prove (a)=(c). Let uy > 0 be an extremal function in the sharp Heisenberg-
Pauli-Weyl principle (HPW)_ for some xy € M. In particular, in the estimates in Theo-
rem 3.1 we should have equalities; thus, by (3.1) one has D, = 0 (i.e., we necessarily have
¢ = 0, so the sectional curvature of (M, g) cannot be bounded above by a fixed negative
number), and

Ag(d3) = 2n. (3.6)

Let us fix p > 0 arbitrarily. Note that the unit outward pointing normal vector to the
sphere S(xg,p) = 0B(xg,p) = {x € M : d(xo,x) = p} is given by n = V,d,,. Let us
denote by dg, the volume form on S(zo, p) induced from dV,. By applying Stokes’ formula
and the fact that (n,n) = 1 we have

2nVol,(B(xo, p)) = /B B av, = / div(V, (&)Y,
Z0o,p

B(zo,p)

= / (n, vg<dio>>d§g =2 dy, (n, ngfco>d§g
S(xo,p) S(zo0,p)

= 2,0/ (n,n)dg, = 2p/ dg,
S(xo,p) S(xo,p)
= 2pA,(S(wo, p)),
where

A(S(e0. ) = lim Voly(B(zo, p + s)i — Voly(B(x0.p)) _ dipv()lg(B@O, )

is the surface area of S(zg, p). Thus, the above relations imply that
dideg(B(l'mp)) ﬁ

VoL, (Blzo.p)) o
By integrating this expression and due to relation (2.1), we conclude that
Vol (B(zo, p)) = wyp" for all p > 0. (3.7)

Let x € M and p > 0 be arbitrarily fixed. Since (M, g) is of Cartan-Hadamard type,

by the volume comparison (see Theorem 2.2(a)), the function r w
decreasing on (0, 00). Therefore, one has

Vol (B(x, p))

1S non-

wy, < (see (2.2))
pn
1,(B
< lim supM (monotonicity)
r—00 rn
1,(B d
< limsup lelB@o T+ d(0, 2))) (B(z,7) C Blxo,r + d(zo, 7))
r—00 re
_ limsu Voly(B(zo, 7 + d(xo, x))) (r+ d(xo,2))"
- p (r 4+ d(zg, x))" rr
= Wy (see (3.7))
Consequently,

Vol (B(z, p)) = wypp" for all z € M and p > 0. (3.8)

Zo
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Now, the equality case in Theorem 2.2(a) implies that the sectional curvature is identically
zero, which concludes the proof. 0J

Remark 3.1. Implication (a)=-(c) in Theorem 1.1 has also a geometric proof. Indeed,
due to Jost [26, Lemma 2.1.5] and relation (3.6), it follows that we have equality in
the CAT(0)-inequality with reference point zo € M, i.e., for every geodesic segment
v :10,1] — M and s € [0, 1], we have

d*(0,7(s)) = (1 = s)d*(x0,7(0)) + sd®(zo, 7(1)) — 5(1 = 5)d*((0), 7(1)).

Now, Alexandrov’s rigidity result implies that the geodesic triangle formed by the points
zg, 7(0) and (1) is flat, see e.g. Bridson and Haefliger [9]. Therefore, the conclusion that
(M, g) is isometric to the Euclidean space R™ follows in a standard manner; the author
thanks J. Jost and A. Lytchak for pointing out this approach.

3.2. Sharp Heisenberg-Pauli-Weyl principle on hyperbolic spaces. For the hy-
perbolic space we use the Poincaré ball model H" = {z € R" : || < 1} endowed with the
Riemannian metric

where p(z) = ﬁ It is well known that (H", gyyp) is a Cartan-Hadamard manifold with
constant sectional curvature —1. The volume form is

dVin (z) = p(z)"dz, (3.9)
while the hyperbolic gradient and Laplace-Beltrami operator are given by
\Y
Vinu = _2u and Agnu = p "div(p" *Vu),
p
where V denotes the Euclidean gradient in R™. The hyperbolic distance between the origin

and x € H" is given by
1+ |z
= 0.0 =0 (157)

Recently, Kombe and Ozaydin [29] stated a Heisenberg-Pauli-Weyl principle on (H”, gyyp )-
For completeness, we recall the statement of Theorem 4.2 from [29]:

"Let u € C§°(H"), d = d(z) = dg»(0,2) and n > 2. Then

2 2

Moreover, equality holds in (3.10) if u(z) = Ae 2 where A € R, and

n—1 Cnfg
a—n_2<n—1+27r Cn> (3.11)

with C,, = / e_adngHn, a >0

Relation (3.10) holds true, see also Theorem 1.1. However, the statement concerning the
equality in (3.10) cannot happen, which has the following three independent proofs:

n

Argument 1 (based on the non-solvability of (3.11)) . Let C,, = C\,(«) = / e AViyn

be as above. We claim that the non-linear equation (3.11) cannot be solved generically in
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a > 0. For simplicity, we consider only the case n = 4; then equation (3.11) reduces to

a = w(a), where
/ eiadeV[Hp
JH

/ e_adQ dVH4
4

Since w > 3, the values for a should belong to [5,00) in order to solve v = w(a).

2 )
We claim that

3
w(a) = 5 3+ 2m

w(a) > 2a+ 1 for every a € [4,00), (3.12)

which will clearly imply the non-solvability of o = w(«).
By (3.9), a change of variables shows that

3/ e~ sinh(t)dt 12¢rf <L
w(a) = ? S _? + 2\/a>

P < . 2 ", 3 1\’
h°(¢)dt cerf | —— ) — 3erf [ ——
/0 e~ sinh°(t) eaer <2\/5) 3er <2\/5>

2 S
where erf(s) = 7 / e~ dt is the Gauss error function. Therefore, the claim (3.12) is
T Jo

equivalent to the inequality

1 > orf 3
— erf [ —= ).
ova) = \ava
If ! € O1 the latter i lity i ivalent t
= — - e latter inequa s e alent to
S o ik r inequality is equivalen

1+s* g0 _ erf(3s) 1
— O 8 Z
31—7326 — erf(s)’ 0 < 0’4

Simple estimates for the error and exponential functions give for every s € (O, ﬂ that

2 2)2
1—1—32‘ _Ssz_erf(?)s)23(1—1-3)(1—45) _31—132 >0,
1 —7s? erf(s) 1—-7s2 1—3s?

which concludes the proof of (3.12).

Argument 2 (based on Theorem 1.1). Following Kombe and Ozaydin [29], let us assume
that the hyperbolic Gaussian « = e=*¥ > ( is an extremal function in (3.10) for some
a > 0. Due to Theorem 1.1 (ii), it follows that the hyperbolic space (H", gnyp) is isometric
to the standard Euclidean space R”, a contradiction.

Argument 3 (based on Theorem 3.1). Due to Theorem 3.1, for every u € C§°(H") one

has
2 2,2 n? n—1 2 ’
(3.13)
Since D_;(d) > 0, if one expects to have equality in (3.10) for u = e=*% for some a > 0,

we necessarily have in (3.13) the relation D_;(p) = 0 for every p > 0; this relation means
that for every p > 0 we have

0= pct_1(p) — 1 = pcoth(p) — 1,
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a contradiction. Moreover, in the inequality (3.13) the constant %2 is sharp and an inte-
gration by parts easily shows (by using the exact form of the volume element (3.9)) that
the equality holds for the hyperbolic Gaussian family of functions u, = e o > 0.

Summing up the above discussions, we conclude that:

The hyperbolic Gaussian functions uy = e >, X > 0, represent the family
of extremals for the quantitative Heisenberg-Pauli-Weyl principle (3.13),
but not for the ’pure’ Heisenberg-Pauli-Weyl principle (3.10).

3.3. Non-negatively curved case: proof of Theorem 1.2. Implications (¢c)=(b)=-(a)
trivially hold. The proof of the implication (a)=(c) is divided into four steps. Let 2o € M
be fixed.

Step 1. If (M,g) is isometric to R", then (HPW)_ = can be transformed into the
inequality (1.1) for which the standard class of Gaussian functions are extremals.

For later use, if we consider the function 7" : (0,00) — R defined by

T(\) :/ ez X >0,

the equality for the family of extremals in (1.1) can be rewritten to the form
TN = gT(A), A> 0. (3.14)

Moreover, by the layer cake representation and changing a variable, one has the following
representations which are used later:

o0 2 2 > 2
T(A) — 4)\Wn/ pn+1€72>\p dp — _nwn/ thrleft dt. (315>
0 (2))2 0

Step 2. Let xg € M be fixed. By our hypothesis, (HPW)_ holds; in particular, (M, g)
cannot be compact. We consider the class of functions

iin(z) = e M@\ > 0.

Clearly, the function @, can be approximated by elements from C§°(M) for every A > 0.
By inserting @y into (HPW),_ , and using [V,d,,| = 1 a.e. on M, we obtain that

2 / &2, eV, > g / e P 0dv,, A > 0. (3.16)
M M
We introduce the function .7 : (0,00) — R defined by
T\ = / e PEady,, A > 0.
M

By the layer cake representation, .7 can be equivalently rewritten to

T\ = /OOO Vol, ({az e M:e P > t}) dt = /01 Vol, <{x €M :e P > t}) dt

= 4)\/ Volg(B(xg,p))pe_”"’de.
0

Since the Ricci curvature is non-negative, one account of (2.3), the function .7 is well
defined and differentiable. Thus, relation (3.16) is equivalent to

AT > 270, A>o0. (3.17)

|3



12 ALEXANDRU KRISTALY

Step 3. We shall prove that

T (A) > T(A) for all A > 0. (3.18)
By (3.14) and (3.17) it turns out that
/ !

T'(N) < T()\), \ s 0.

TA) T TW
Integrating this inequality, it yields that the function A — % is non-increasing; in
particular, for every A > 0,

7 > lim inf—)\) (3.19)

T
T(A) = Aseo T(N)
Now, we shall prove that

.. TN
> 1. .
llﬂgf o) = 1 (3.20)

Due to relation (2.1), for every € > 0 one can find p. > 0 such that
Voly(B(zo, p)) 2 (1 — €)wnp” for all p € [0, p.].

Consequently, one has

T\ = 4)\/ Volg(B(xo,p))pe_”"’de
0

Pe
> 4)\(1—5)wn/ P e )
0

2 2 2
= 2 (1-— 5)wn/0 t" et dt. (V2Ap =1t)
Now, by (3.15), it yields that
.. TN
>1—-c.
h}gg}f 0 = 1—¢

Since £ > 0 is arbitrary, relation (3.20) holds, so (3.19). This ends the proof of the claim
(3.18).
Step 4. Via (3.15) and the representation of 7, relation (3.18) is equivalent to

/ (Voly(B(z, p)) — wnp™) pe~dp > 0 for all A > 0.
0

Due to (2.3), we have
Vol (B(xg, p)) = wpp™ for all p > 0. (3.21)

Now, let x € M and p > 0 be arbitrarily fixed. Note that by Theorem 2.2(b) the

Voly (B(z,r))

function r is non-increasing on (0, 00). Therefore, we have

Vol, (B(z, p))

R o (see (2.3))
> limsup Vol (B(z, ) (monotonicity)
r—00 T
> limsup Voly(B(zo, r = d{xo, 7)) (B(x,r) D B(xg,r — d(z0,7)))
r—00 T
_ limsa Voly (B(zo, 7 — d(zo,2))) (r — d(zo, )"
r%oop (7” — d(l’o, Q?))n rn

= Wy (see (3.21))
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Consequently, one has
Voly(B(z, p)) = wypp” for all z € M, p > 0. (3.22)

Thus, the equality case in Theorem 2.2(b) implies that the sectional curvature identically
vanishes, which conludes the proof. 0

4. INEQUALITIES RELATED TO THE HEISENBERG-PAULI-WEYL PRINCIPLE ON
CARTAN-HADAMARD MANIFOLDS

4.1. Caffarelli-Kohn-Nirenberg interpolation inequality: proof of Theorem 1.3.
The proof is similar to Theorem 1.1.

(i) Let zp € M and u € C§°(M). By Theorem 2.1, we have d, Ayd,, > n — 1.
Consequently,

P 1 P
Py < —/ C'{“' Aydy,dV, (4.1)
M

q g =
M dzo n—1 zo

1 ul?
o (% (i) e

P ulP~2u
e B =AU AL

n—1 d%ol
/ [uf? B |V, dy [2dV,.

Since |V,d,,| = 1, a reorganization of the above estimate implies that

n—l

n—q [ |uP
p dgo

|uP~2u lulP~2u
dv / dlI—l <v9|u" ng:c0> d‘/g < dq_l IVgu]qu
M 0 M To

By applying the Schwartz inequality, it yields the desired inequality (CKN),_

The proof of the sharpness of (";—2(1)2 in (CKN), works in a similar manner as in

Theorem 1.1, by exploiting the fact that in the Euclidean setting the inequality (CKN),_
has the form

ul2p—2 n—gq 2 2 o
(e (] o) = 2527 ) vee e

which has a class of positive extremals given in (1.3).

(ii) (a)=(c). According to the hypothesis, (";Qq)Q is sharp and there exists a positive
extremal function wy in (CKN), ~for some zo € M. In particular, in relation (4.1) we
should have the equality

/ﬂdv— ! /wOAd v, (4.2)

d, n—1 dis 1

Since wy > 0 and d,,Ayd,, > n — 1, relation (4.2) implies that we necessarily have
dpyAgdy, =n —1, thus Ag(d2 ) = 2n. The rest of the proof is similar to that of Theorem
1.1. U

4.2. Hardy-Poincaré inequality: proof of Theorem 1.4. Before to prove Theo-
rem 1.4, we present a quantitative version of the Hardy-Poincaré inequality on Cartan-
Hadamard manifolds.
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Theorem 4.1. [Quantitative Hardy-Poincaré inequality] Let (M, g) be an n—dimensional
(n > 3) Cartan-Hadamard manifold with sectional curvature bounded from above by ¢ < 0.
Then for every xo € M and u € C§°(M) we have

(n —2)? 2(n—1) u?
/M Voul*dV, > 1 .y 1+ WDc(dm) deV;,. (HP),,
To

In addition, the constant (=2

1 5 sharp and never achieved.

Proof. Let zy € M and u € C§°(M) be arbitrarily and fix v = %52 > 0. We consider
the function v = dJ u. Thus, for u = d,)v one has

Vou = —vd,) "oV ydy, + d 7'V .

0

Therefore, it yields
|Vgu|2 > 72d_27_2v2|vgd10|2 - 27d;027_lv(vgdx0, ng>.

o

Since |V, d,,| =1 a.e. on M, after integrating the latter inequality, we obtain

/ VuldV, >+ / d, 7" **dV, + Ry, (4.3)
M M
where
e 1 _
RO = —27/de027 1v<vgd:v07vgv>dvg = §/M<Vg(v2)7vg(dxo27>>dvg

1
= __/ VA (d)dv,
2Jm

= fy/ de;OZVJ (—2y = 14+ dyyAydy,) dV
M

> (n — 1)2(n —2) /M (duocte(dy,) — 1) U;ZQdV},, (see Theorem 2.1)
 (n=1)(n-2) u(x)?
= 5 /]MDc(dxo)TOd‘/g’

which completes the first part of the proof.

We shall prove in the sequel that v = @ is sharp in (HP),, i.e.,
V,ul?dV,
-9 2 / | g g
- 4 L - o oy 2(M 1) P v 4
ueC§® 0 n — u
1+ ——=D.(d,,) | —dV,
[, (1 2= i) G

Fix the numbers R > r > 0 and a smooth cutoff function ¢ : M — [0, 1] with supp(¢)) =
B(zo, R) and ¥(z) =1 for « € B(xg,r), and for every € > 0, let

ue = (max{e,dy, }) 7. (4.5)

On one hand,
e = [ |9,k
M

= [ v | IV, (uo)av,

B(zo0,R)\B(zo,r)

=7 / dy 72V, + Ii(e),
B(zo,r)\B(z0,e)
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where the quantity

i) = [ IV, ()
B(xzo,R)\B(zo,r)

is finite and does not depend on € > 0 whenever € < r. On the other hand,

ne = [ (102 D) Uay,

n—2 dz,
(Yu.)?
> dV,
> [

>/ 7Y, = (e).
B(zo,r)\B(z0,¢)

By applying the layer cake representation, we deduce that for 0 < ¢ < r, one has

B(zo,r)\B(z0,¢) B(z0,m)\B(x0,¢)

—n

/ Vol,(B(zo, p’%))dp

v

p~tdp (see (2.2))

= nwy(Inr —Ine).

AV
&
3
S
3

In particular, lim,_,o+ I5(¢) = +o0. Thus, from the above relations it follows that

(n — 2)2 / ‘Vgufzdvg
TS oo 2(M 1) ’
weC® 0 n— U
5 /M (1 o Dc(dxo)) 7
- .
< lim _]1(5) < lim i ]2(8) +Il(€)
e—0t [2(5) e—0*t 12(5)
n —2)?
ot

which concludes the proof of (4.4).
If we assume the function ug # 0 is an extremal in (HP),_ , on one hand, due to (4.3)
we have

[ a9 mpav, o (4.6)
M

where vy = d ug. By (4.6) it follows that vy is a constant function, thus ug = cody, for
some ¢g € R\ {0}. On the other hand, similar estimates as above show that

2
| VawPav, = [ Zhav, =i [ drav, =,
M v A3, M
ie., ug ¢ H'(M,dV,) and 22 ¢ L*(M,dV}), a contradiction. O
0o
Proof of Theorem 1./. By the continued fraction representation of the function p —
coth(p), one has
3p?

w2 + p?
Now, the inequality follows at once from this estimate and Theorem 4.1. 0

pcoth(p) —1 > for all p > 0.
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Remark 4.1. (i) Our arguments work also for weighted Hardy-Poincaré inequalities; for
simplicity, we presented (HP),_ in its simplest form.

(ii) Kombe and Ozaydin [28, 29] investigated the sharp constant in the Hardy-Poincaré
inequality on the hyperbolic space H", n > 3. As expected, they claimed that

(n —2)2 / VaeuldVi
— = inf - 5 , (4.7)
4 ueCge (H™)\{0} U
ﬁdVHn
H'n

where the notations come from §3.2. In order to prove (4.7), the authors used as test
functions only those from (4.5) without coupling with an appropriate cutoff function (as
in the proof of Theorem 4.1). Although the functions u. can be approximated by elements
from Cg°(H"), the gap in [28, 29] appears due to the fact that u. ¢ H'(H",dVi.) and
te o L*(H"™, dViga), € > 0. Indeed, simple computations show that for every € > 0,

/ |anu6|2dVHn = (’7+6)2/ d_QW_QE_ZdVHn
n H"™\ B(0,1)

[e.e]

= (y+4¢) nwn/ t~""2(sinh t)"'dt = +o0,
1

and
2 e’}
/ %dVHn > / d=2722q V. = mun/ t*"*%(sinh t)"*ldt = +4o00.
Hn H~\B(0,1) 1

(iii) Similar observation as in (ii) has been already made in Yang, Su and Kong [40]. In
[40], the authors proved sharp Hardy and Rellich inequalities on Riemannian manifolds
with negative sectional curvature. The novelty of our results (Theorem 1.4 & 4.1) is that
improvements appear quantitatively in terms of the sectional curvature.

A similar argument as in Theorem 4.1 leads to the following improvement.

Theorem 4.2. [Double improved Hardy-Poincaré inequality| Let Q be a bounded open
domain with smooth boundary in an n—dimensional (n > 3) Cartan-Hadamard manifold
with sectional curvature bounded from above by ¢ < 0. If xg € Q and R > sup,cq d(x, x¢),
then for all u € C§°(Q),

2 2
201 > M/ 2(n—1) u” 1
/Q|vgu| avy > = (1 S D) d?codvg+4RQ,

Rq = /Q (1 +2(n—1)In (Z—i) Dc(dzo)) %dw

0

where

Proof. Let 29 € Q, u € Cg°(Q) and fix v = 252 > 0. If we consider the function
v = dJ u, one has

Voul* = ¥*d; 770" — 2vd; 0 0(V ydoy, Vo) + d 27 |V gul.

0
After an integration over €2 of the above relation, one can repeat the argument from the
proof of Theorem 4.1 to the first two integrands, obtaining

(n —2)? 2(n —1) u? -
where

R= /Q d, 27|V go[*dV,.



SHARP UNCERTAINTY PRINCIPLES ON RIEMANNIAN MANIFOLDS 17
Due to the fact that R > sup,cq d(z, 7o), the function h = In £ is well defined on Q\ {zo}
0
and h > 1. Let z = h~'/2¢. Since

Vv = —ﬁh*/?vgdm + RV, 2,
xo

it turns out that

25 22
Vv > ——h

Z
=73 — = (Vyday, V2).
x0

Consequently,

R= [P,
Q

1 1
> 4/d 2=2p =124y, — /d 27UV gday, Vg (2%))dV,
Q
1 o,
= Z/le"fh 2quVg——/ 22N, (d27)dV,
1
— Z/d 2h2utdV, +2/ 22d; 27 2(=2y — 1+ dyyAydy, )dV,
Q
> l/dzhzfzfd‘/—i——/D 20) 2722dV
4 Ja
1
= 14+2(n—1)AD
[ (120 = )AD(0) 0%
which concludes the proof. O

Remark 4.2. In the limiting case when ¢ = 0 (thus D.(p) = Dy(p) = 0 for every p > 0),
the inequality in Theorem 4.2 takes the familiar form

—92)2 2 1 2
/ Vv, > 2 / Z Wty / Y,
Q 4 d 4 Qd2 1n (C?R)

z
see Adimurthi, Chaudhuri and Ramaswamy [1] and Filippas and Tertikas [20] in the
Euclidean case, and Kombe and Ozaydin [29, Corollary 2.2 in hyperbolic spaces.
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