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ABSTRACT 

 

Microscopic inclusions have been observed in 7 out of 106 European eel (Anguilla anguilla 

L.) sagittae using polarizing microscope and scanning electron microscope meanwhile the 

annual increments were studied to characterize the age structure of the population living in 

Lake Balaton. The presence of vaterite, a rare calcium carbonate polymorph was observed in 

these inclusions using Raman spectroscopy. Vateritic sagittae in wild fish are usually 

considered as symptom of physiological stress. The observed fusiform inclusions represent a 

new morphological type of vaterite inclusions in eel otolith. Two alternatives are 

hypothesized to explain their formation: 1) metabolic disorder, such as erroneous protein 

synthesis; 2) introduction of an alien protein into the eel’s inner ear. The origin and 

physiological significance of this new morphological type of vateritic inclusions is still an 

open question. Same as whether it can be found in other species or specific only to eel 

otoliths. 
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INTRODUCTION 

 

The inner ear of teleost fishes includes three semicircular canals and three otolithic organs 

(sacculus, utricle and lagena). Each contains three pairs of small carbonate structures (sagitta, 

asteriscus and lapillus, respectively), the so-called otoliths [28]. The largest of these, and 

consequently the most frequently studied, is the sagittal otolith, which is located in the 

sacculus of the membranous labyrinth. The dominant substrate of these biomineralized 

products is CaCO3 which is deposited onto a few percent of organic matrix, including proteins 

(e.g., otolin-1, OMP-1, otoconin 90) and collagen [5, 34, 45]. This organic matrix is thought 

to play a definite role in the process of biomineralization. Recent studies of biominerals 

(particularly carbonates) showed that an amorphous gel phase is deposited first, which is later 

crystallised to form a particular polymorph in the desired crystallographic orientation. This 

process is supposedly coordinated by the organic matrix included within the gel [3, 8, 9]. 

The dominant mineralogical phase constituting teleost sagittae is aragonite. The occurrence of 

different CaCO3 polymorphs in teleost otoliths, however, is well documented [15]. Most 

notable is vaterite, a rare CaCO3 polymorph. In contrast to orthorhombic aragonite the crystal 

structure of the vaterite polymorph still remains puzzling [6, 25]. 

A recent study found very high acid soluble protein content in vaterite pearls compared to the 

aragonitic ones  [30] that together with earlier results [12, 49], suggest that acidic amino acid 

rich proteins play an important role in the polymorph selection during calcium carbonate 

biomineralization supposedly due to more abundant Ca
2+

 ion bonding sites provided by the 

carboxyl group of aspartic and glutamic acids. 

Earlier observations described characteristic external features of vateritic otoliths as spherical 

or finger-like aggregates (so-called botryoidal surface) with glassy appearance [4, 15, 16, 29, 

33, 38, 47]. These make them easily distinguishable from normal sagittae. Vateritic otoliths 

were identified in anguillid eels as well and polymorphic replacement appeared as vateritic 

sectors and mosaics in polished otolith transects [23, 24, 50]. 

Vateritic sagittae are usually considered as a stress symptom. Physiological stress associated 

with elevated water temperature [14], increased population density [42] or a habitat transition 

[29] have been addressed as potential factors in abnormal otolith development. 

We present a new morphological type of vateritic inclusion in this brief report. This new type 

of vateritic inclusion was observed while studying microtexture of sagittal otoliths from 

European eels captured from Lake Balaton in Hungary. 

 

MATERIAL AND METHODS 

Sample collection and preparation 

The microstructure of sagittal otolith of European eels (Anguilla anguilla) (n=8) from the 

2010 electrofishery in Lake Balaton, has been studied. Eels were anaesthetised by using clove 

oil (Syzygium aromaticum (L.)) in the water (10 drop / 10 L) and then euthanized by 

decapitation and their otoliths were removed. Following the realization of the unusual 
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morphological type of inclusions, further samples (n=98), captured in 2002 and 2003, still 

available from an earlier study [11] were also scrutinized. 

Three samples were selected to illustrate the presentation of our results. Table 1 provides the 

basic information about the specimens. 

Sagittae were embedded in epoxy resin. Embedded samples were ground until primordia were 

visible. Petrographic thin sections (~30 μm thickness) or “thick” sections grinding only one 

side of the embedded sagitta were prepared. A sequence of water based diamond suspensions 

(9, 6, 3, 1 μm; METADI
®

) was used for grinding and alumina (0.05 μm, Gamma 

Micropolish
® 

II) was used for polishing. Prior to analysis, samples were placed in distilled 

water and cleaned for 15 minutes using a (Badelin Sonorex DT-100) ultrasonic cleaner. 

 

Table 1. Biological information on three selected European eels (Anguilla anguilla) used for 

otolith microtexture examination by scanning electron microscope and/or phase identification 

by Raman spectroscopy. 

 

Date of capture Weight (gr) Length (mm) 

17.06.2010 948 760 

30.05.2003 305 568 

30.05.2003 339 590 

 

Analytical Methods 

Polished surface of thick sections were analysed by scanning electron microscopy (SEM) 

using a FEI Quanta 3D FIB/SEM instrument (beam: 15 kV, working distance: 10 mm). For 

detailed descriptions of the instrument see [18, 22]. Micromorphological and optical 

properties were investigated using a petrographic microscope (Nikon Eclipse E600 Pol and 

attached Spot insight camera), under both normal and polarized illumination to observe 

microstructural and crystallographic differences between inclusions and host material. 

Raman microspectroscopy is a routinely used technique to study small-scale mineralogical 

properties, also in fish otoliths [17, 48, 50]. Raman spectroscopic analysis was conducted 

using a HORIBA JobinYvon LabRAM HR dispersive, edge-filter based confocal Raman 

spectrometer (focal length: 800 mm) equipped with an Olympus BXFM microscope and a 

thermoelectrically cooled CCD detector. Spectra were taken using the 785 nm emission of a 

diode laser, a 100× (N.A. 0.9) objective, a grating with 600 grooves/mm and a confocal 

pinhole of 100 µm, which acted also as the entrance slit to the spectrometer. The Rayleigh 

line was used for the spectral calibration of the spectrograph. Net counting times were 

between 30 and 60 s. Analysis spots were selected in such a way that the analyzed inclusions 

were not exposed to the polished surface. Contamination due to sample preparation or 

analysis therefore can safely be ruled out. 

 

RESULTS  

Scanning electron microscope (SEM) analysis revealed porous inclusions as compared to the 

host matrix in some sagittae. A distinct core region can be observed at most of them. Random 
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sections cut through the inclusions and exposed in the polished surface clearly indicate that 

the objects have a spindle-like shape that is wider and circular in the middle and tapers at both 

ends when seen in cross-section (Figure 1). Largest observed axis is ~30 μm and the largest 

section perpendicular to this axis is <20 μm in diameter. These fusiform inclusions have been 

observed in 7 out of the studied 106 sagittae. 

Figure 1. Microscopic view of a polished eel sagitta with abundant inclusions. (MT1 in Tab. 

1) A: Inclusion-rich zones appear as dark clouds within the transparent host matrix as viewed 

in transmitted light. B-D: Magnification series of scanning electron micrographs showing the 

(micro)texture of the new morphological type of inclusions. Secondary and backscattered 

electron images are shown in the top and bottom, respectively. Dashed squares indicate the 

magnified area. 

 

Observed basic optical properties are the following:  

-the extinction of these inclusions under crossed polarisers is uniform and they usually show 

extinction in a phase opposite to the otolith background; 

-they are highly birefringent: the interference colour varies between third order blue (in the 

centre of the inclusions) and magenta (near the rim) (Figure 2). Considering that the thickness 

of vertical sections of these inclusions varies between 5-10 μm due to their small size a 

fourth-order interference colour is expected for a 30 μm thick section.  

We established using the Becke line method that , regarding their current orientation, the 

refractive index of the inclusions is smaller than that of the surrounding aragonite. 

As expected, the Raman spectra of the host material correspond to the aragonite phase [51], 

however, spectra obtained from the fusiform inclusions show additional bands (Figure 3). 

These bands do not match those of aragonite, and unambiguously identify vaterite [13, 31] in 

the fusiform inclusions (Figure 3). Note that the confocal selectivity of the Raman instrument 

with the applied settings and the small size of the inclusions prevented acquiring pure vaterite 

spectra, but the spectral subtraction of the host spectra yielded pure vaterite spectra for 

identification. 
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Figure 2. Micrographs show the optical properties of the fusiform inclusions observed in eel 

(MT15 in Tab. 1) sagitta and their host material. Top: Full view under transmitted light. 

Dashed rectangle show the field enlarged below. Middle: Zoomed to the inclusion rich 

marginal field (single nicols), Bottom: Same view with crossed nicols. 
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Figure 3. Raman spectra obtained from inclusions and host aragonite. Analyses performed on 

inclusions and adjacent, inclusion-free control spots at two selected sectors of an eel otolith 

(MT18 in Tab. 1) (A, B). Investigated sectors with numerous fusiform inclusions viewed in 

transmitted light are shown as inset image above the corresponding Raman spectra. For better 

visualization, the spectra beyond 1,000 cm
–1

 are scaled to 0.2× in intensity. Analysed spots 

are marked with circle (inclusion) and star (host aragonite) in the images. Characteristic 

Raman bands for vaterite, marked by dashed vertical lines, and corresponding wavenumbers 

are indicated. The vaterite signal was only observed from the inclusions. Note that the Raman 

spectra from inclusions show bands of both vaterite and aragonite because the confocal 

settings and inclusion dimensions did not allow a complete elimination of the host aragonite 

signal. 

 

DISCUSSION 
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Vateritic inclusions have already been identified in eel otoliths [23, 24, 50]. However, the 

observed fusiform inclusions represent a new morphological type of vaterite inclusions in eel 

otolith compared to the earlier reported vaterite mosaics. 

Bands of inclusions nicely fit to the increment zones and incompletely enclosed 

(semi)inclusions have been observed at the otolith edge in some specimens (Figure 2). This 

situation clearly indicates that the fusiform objects had been formed separately and attached 

later to the aggrading otolith surface. This suggests the coexistence of the fusiform objects as 

vateritic otoconia in the sacculus near the aragonitic sagitta. 

The co-occurrence of vateritic otoconia and aragonitic sagitta in the sacculus have been 

already reported for a few fishes [16], although not for anguillid species. 

Traditionally two driving forces may be identified within the endolymph to promote 

carbonate deposition: the ionic and organic states of the endolymph [36]. However, fish 

endolymph is usually considered as a highly supersaturated fluid [44] so it is unlikely to pose 

any obstacle in crystallization.  

Since biomineralized aragonite and vaterite are characterized by a distinct protein matrix [12, 

30] two possibilities can be explored: 1) the non-normal protein was produced by the eel, 2) if 

the eel’s endolymphatic organ was properly functioning, what is the origin of the vaterite-

related protein and, in general, the fusiform vateritic aggregates. 

Normally, the proteins of the endolymph, making-up the protein matrix as well, are secreted 

by ionocytes, which are a small class of saccular epithelial cells [37]. Based on in vitro 

experiments employing recombinant otoconial matrix proteins it was shown that an 

incompletely folding variant of protein matrix of aragonitic otoconia resulted in vaterite 

biomineralization [46]. Deprivation of certain amino acids might cause misincorporation of 

another amino acid and results recombinant protein [35]. This type of protein coding error has 

already been addressed earlier to interpret the co-existence of polymorphs in otoliths [15].  

It is also possible that the formation of the vaterite inducing protein and presence of the 

fusiform inclusions in the sagittae is a genetically determined trait, typical only for a smaller 

fraction the eel population. The relatively low occurrence rate might support this explanation. 

A comparative genetic analysis could provide direct evidence in this respect. 

For the alternative scenario (i.e. the vaterit-forcing protein was not secreted by the epithelia 

cells) first we need to understand the vaterite mineralization in the aragonite producing 

environment. Most fishes with aragonitic sagittae have asterisci entirely made of vaterite [7, 

26, 32], indicating that different polymorphs can be precipitated simultaneously, despite the 

shared endolymph [15]. This indicates that highly localized saturation conditions may exist 

within the endolymph allowing a change in biomineralization within a very small distance 

[47]. 

In addition, we note that the porous structure, the vateritic mineralogy and the distinct core of 

these inclusions resemble to the characteristics described from bacterially mediated 

biomineralized spherulites [19, 39]. Based on these observations it can be suspected that 

bacterial (or viral) production might introduce an alien protein into the eel’s endolymph. 

Assuming that the fusiform vateritic objects are linked to bacterial (or viral) activity the 

relatively low occurrence rate (6-7%) does not necessarily reflect the proportion of infected 
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specimens in the population. For instance, the effect could escalate to such a degree which can 

cause disturbed biomineralization in the endolymph only in the specimens with weakened 

health status. As noted above explanatory ecological and environmental factors frequently 

accounted for the usual mosaic vaterite replacement in otoliths are elevated water temperature 

[14], increased population density [42], and habitat transition [29]. Elevated water 

temperature, increased population density can be ruled out in the case of Balaton. The average 

water temperature was relatively constant (between 10 and 12.5 °C) during the past decades, 

and population density of eels tended to decline during the 2000s [41]. However, the 

attributes of the habitat were changing during the past decades owing to the reduced nutrient 

loading to the lake [20, 21]. The changed trophic state of the lake induced a serious feeding 

stress regarding the eel population of Lake Balaton due to the drastic reduction in 

Chironomids, representing their important food resource [41]. Food deprivation can play a 

role in the formation of vaterite inclusions. On the one hand it could obviously cause 

decreased health status, on the other hand some eels could not intake sufficient amounts of 

essential amino acids and it might indirectly cause the co-existence of CaCO3 polymorphs in 

otoliths.  

At this stage it is difficult to make a clear decision which is the main determinant factor, or 

how these effects are combined. However, a potential bacterial infection in the eel’s 

endolympathic organ surely deserves future consideration since eel populations have 

precipitously declined over the last couple of decades and the reasons are not clearly 

understood [10]. 

Although inclusions from otoliths of European eel bearing a fusiform shape have never been 

reported formally earlier, similar features can be clearly seen beside the much larger mosaic 

inclusions in SEM images of otolith section from European eels (Fig. 2f in [50] ) and to a 

lesser degree in light microscopic section (Fig. 2a in [40]; Fig. 5b in [27]) of specimens from 

the same species caught in the Baltic Sea. Moreover, strikingly similar objects have been 

documented in otolith sections of shortfin eel (Anguilla australis), Tarawera River, New 

Zealand [1]. It suggests that this new type of vaterite inclusion might be more widespread and 

not restricted to the eels from Lake Balaton. 

Microchemical analyses of anguillid otolith transects have commonly been used to evaluate 

their residence and migratory history between habitats of different salinity [2, 23, 43]. 

However, as vaterite and aragonite have a different trace element substitution due to their 

distinct crystal lattice structure the new type of vateritic inclusions, obviously, also requires 

caution to avoid misidentification in the specimen’s migration history, similarly to mosaics of 

vateritic inclusions [24, 50]. It means technically, that one should also pay attention to avoid 

fusiform inclusions and maintain the mandatory homogeneous mineralogy [38, 52] when 

designating laser ablation paths, for instance, to track trace element profiles. 

The origin and physiological significance of this new morphological type of vateritic 

inclusions found in eel otoliths is still an open question. Their fusiform shape, porous 

structure, characteristic core and the vateritic mineralogy, however, recall the characteristics 

described from bacterially mediated biomineralized calcium carbonate spherulites [39]. 
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Further studies are needed to verify whether similar inclusions are present in otoliths of other 

eel populations or other teleosts. 
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