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Yeast protein sequence-based homology search for glutathione (GSH) meta-
bolic enzymes and GSH transporters demonstrated that Aspergillus nidulans has a
robust GSH uptake and metabolic system with several paralogous genes. In wet
laboratory experiments, two key genes of GSH metabolism, gcsA, and glrA, encoding
γ-L-glutamyl-L-cysteine synthetase and glutathione reductase, respectively, were
deleted. The gene gcsA was essential, and the ΔgcsA mutant required GSH supple-
mentation at considerably higher concentration than the Saccharomyces cerevisiae
gsh1 mutant (8–10 mmol l−1 vs. 0.5 μmol l−1). In addition to some functions known
previously, both genes were important in the germination of conidiospores, and both
gene deletion strains required the addition of extra GSH to reach wild-type germi-
nation rates in liquid cultures. Nevertheless, the supplementation of cultures with
10 mmol l−1 GSH was toxic for the control and ΔglrA strains especially during
vegetative growth, which should be considered in future development of high GSH-
producer fungal strains. Importantly, the ΔglrA strain was characterized by increased
sensitivity toward a wide spectrum of osmotic, cell wall integrity and antimycotic
stress conditions in addition to previously reported temperature and oxidative stress
sensitivities. These novel phenotypes underline the distinguished functions of GSH
and GSH metabolic enzymes in the stress responses of fungi.
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Introduction

Glutathione (γ-L-glutamyl-L-cysteinyl-glycine, GSH) is the most abundant
thiol in aerobic prokaryotic and eukaryotic organisms, which plays essential roles
in many biological processes, e.g., in the defense against harmful xenobiotics,
heavy metals, and reactive oxygen species as well as in the redox stabilization of
membranes, membranous cellular structures like mitochondria and the nuclei
[1, 2]. GSH also fulfills important redox-independent functions like in the
maturation of iron–sulfur clusters [3, 4] and also serves as an important nitrogen
and sulfur reserve under starvation [1].

The synthesis of GSH is catalyzed in two consecutive steps by
γ-L-glutamyl-L-cysteine synthetase (γ-GCS, or glutamate–cysteine ligase) and gluta-
thione synthetase [1, 5]. In the baker’s yeast Saccharomyces cerevisiae, the disruption
of γ-GCS resulted in GSH auxotrophy [6], which could be rescued by dithiothreitol,
cysteine, β-mercaptoethanol, and N-acetylcysteine [7, 8]. γ-GCS deficiency also
results in severe clinical symptoms in humans including hemolytic anemia [9].

Besides de novo biosynthesis, the regeneration of GSH from its oxidized form
glutathione disulfide (GSSG) by the NADPH-consuming enzyme glutathione
reductase (GR) is also of pivotal importance in the stabilization of the GSH/GSSG
redox balance within the cells [1, 5]. In S. cerevisiae, the GR-encoding geneGLR1 is
not essential [10] but it is a key element of the oxidative stress defense system of
yeast [7]. Importantly, the GR-encoding gene pgr1 was essential in the fission yeast
Schizosaccharomyces pombe to maintain growth and spore viability [11]. Although
the deletion of glrA coding for GR in Aspergillus nidulans resulted in a temperature-
sensitive phenotype it was not essential [12] and, hence, the overall view on the role
of GR in A. nidulans was more budding yeast-like than fission yeast-like. It is
noteworthy that reductions in growth, oxidative stress defense, and cephalosporin C
production caused by the disruption of the GR-encoding gene could be reversed by
the addition of exogenous methionine [13].

Although the anabolic and catabolic pathways as well as the transport
processes influencing intracellular GSH concentrations are well understood
[1, 5, 14], future studies may shed light on the fine-tuning of cellular (and
sub-cellular) redox control by GSH and also on further, not-yet-known biosyn-
thetic, physiological, and developmental functions attributable to this sulfur-
containing tripeptide [1, 3, 4]. For example, more recent studies demonstrated
the involvement of GSH in the biosynthesis of the important Aspergillus
fumigatus virulence factor gliotoxin [15].

Hence, to gain a deeper insight in the importance and functions of GSH in
the stress defense and development of A. nidulans, we deleted the genes glrA and
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gcsA in this filamentous fungus model organism and phenotypically characterized
theΔgcsA andΔglrA strains. In this study, we collected and discussed new data on
the important roles played by GcsA and GlrA in supporting germination of
conidiospores and also in the defense against various types of environmental
stress, e.g., hyperosmotic stress, cell wall integrity stress and exposures to
antimycotics. The foreseeable biomedical and industrial significances of the new
observations are also discussed in this paper.

Materials and Methods

In silico reconstruction of GSH metabolic pathways and identification of putative
GSH transporters in A. nidulans

Putative elements of the GSH metabolic pathways as well as presumptive
GSH transporters were identified in A. nidulans by extracting information from
the Aspergillus Genome Database (AspGD, http://www.aspgd.org/) and by
homology search following the protocols previously described by Miskei
et al. [16]. Concisely, homology search was carried out with the sequences of
S. cerevisiae GSH metabolic proteins and GSH transporters (downloaded from
the Saccharomyces Genome Database, SGD, http://www.yeastgenome.org/)
using the BLASTP search program in AspGD. Following that another round
of BLAST homology search was carried out in SGD using the sequences of the
candidate A. nidulans proteins. If the highest homology yeast protein was
identical to that we started the homology search with the A. nidulans protein
was regarded as part of the GSH metabolism and transport of the fungus and was
discussed [16].

Strains, culture media, and production of conidia

The following strains were used in our study: rJMP1.59 (pyrG89; pyroA4;
veA+), rRAW16 (pyrG89; yA2; veA+), THS30.3 [17], ΔglrA (pyrG89; ΔglrA::
AfupyrG+; veA+), and ΔgcsA (pyrG89; ΔgcsA::AfupyrG+; veA+). For cultivation
of the A. nidulans strains, minimal nitrate medium (MNM) was used with
appropriate nutritional supplements [18]. The GSH supplementations of the ΔglrA
and theΔgcsAmutants were optimized (Supplementary Figure S1) and, as a result,
culture media (both MNM agar plates and MNM liquid media) were supplemented
with 10 mmol l−1 GSH unless otherwise indicated, which was in line with the
protocol of Sato et al. [12]. Conidiospores were also produced usually on MNM
agar supplemented with 10 mmol l−1 GSH, and these sporulation cultures were
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incubated at 37 °C for 6 days [19]. All cultures were supplemented with GSH
dissolved in sterile distilled water at temperatures lower than 50 °C.

Construction of the ΔglrA and ΔgcsA gene deletion strains

Two genes encoding key players in the maintenance of the intracellular GSH
concentration and the GSH/GSSG redox balance, glrA (encoding GR, locus ID:
AN0932, AspGD; [12]) and gcsA (coding for γ-GCS, locus ID: AN3150, AspGD),
were deleted by the DJ-PCR method of Yu et al. [20] using the primers listed in
Supplementary Table S-I [18, 20]. The amplified deletion cassettes were used to
transform RJMP1.59 strain using the Vinoflow FCE lysing enzyme [21]. Single
copy transformants were selected after Southern blot analysis and crossed with
rRAW16 to get prototrophic strains. All progenies of the independent crosses
proved to be single-copy deleted mutants by Southern analyses.

Growth studies with the ΔgcsA strain on MNM agar plates in the presence of
various nutritional supplements

A series of MNM agar growth assays were carried out to screen for possible
nutritional supplement(s) complementing GSH auxotrophy in the ΔgcsA mutant.
The following supplements were added at the concentrations indicated: 24 mmol l−1

Na-glutamate (Na-Glu), 4 mmol l−1 cysteine (Cys), 20 mmol l−1 glycine (Gly),
20mmol l−1 methionine (Met), 24mmol l−1 Na-Glu+ 4mmol l−1 Cys+ 20mmol l−1

Gly, 24 mmol l−1 Na-Glu+ 20 mmol l−1 Met+ 20 mmol l−1 Gly, 0.5% yeast
extract, and 2.0% (58 mmol l−1) lactose [15, 22]. In these assays, agar plates were
point-inoculated by pipetting 105 freshly grown (6 days) conidia suspended in 5 μl
aliquots of 0.9% NaCl, 0.01% Tween 80 solution onto MNM agar plates, and were
incubated for 5 days at 37 °C [19].

Determination of germination rates in submerged liquid cultures

To determine germination rates, 108 freshly grown conidia were inoculated
into 100 ml MNM without any nutritional supplements, or supplemented with
10 mmol l−1 GSH or the mixture of 20 mmol l−1 Met, 20 mmol l−1 Gly, and
4 mmol l−1 Na-Glu as required. All submerged cultures were grown at 37 °C with
shaking at 3.3 Hz frequency for 6, 10, and 24 h incubation times [19]. Germination
rates (number of germinated spores/total number of spores) were determined via
counting conidia and also germinated conidia under a phase contrast microscope
(Euromex, Arnhem, The Netherlands).
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Production of reactive species (RS) and determination of specific intracellular
enzyme activities

In these experiments, the strains were sporulated either on GSH-free MNM
agar (the THS30.3 control strain) or on MNM agar supplemented with 10 mmol l−1

GSH as required (all tested strains including the THS30.3 control strain). Following
that all strains were pre-cultured in 100 ml aliquots of MNM with (the THS30.3
control and both the ΔglrA and ΔgcsA gene deletion strains) or without (only the
THS30.3 control strain) 10 mmol l−1 GSH supplementation. All culture media were
inoculated and incubated as described above for 20 h. Mycelia were always
harvested (filtered and washed on sintered glass) and were transferred to 100 ml
aliquots of freshly prepared MNM without any GSH supplementation. The intra-
cellular RS levels were characterized by the formation of 2′,7′-dichlorofluorescein
(DCF) from 2′,7′-dichlorofluorescin diacetate according to Yin et al. [23]. Changes
in the specific activities of antioxidant enzymes were also recorded in separate
experiments as described before by Emri et al. [24].

Stress sensitivity studies

To study the stress sensitivity of the ΔglrA mutant, the agar plate assays of
Balázs et al. [19] were adapted with small modifications. The following stress-
generating agents were tested: hyperosmotic stress: 1.0 mol l−1 KCl, 1.0 mol l−1 NaCl,
2.0 mol l−1 sorbitol; cell wall integrity stress: 54 μmol l−1 Congo Red; antimycotic
stress: 200 μg ml−1 fluconazole and 75 μg ml−1 amphotericin B. Stress plates were
also point-inoculated with 105 conidia and were incubated at 30 °C for 5 days [19, 23].

Statistical analysis of experimental data

All experiments were performed in three independent sets, and mean ± SD
values were calculated and are presented. Statistical significances were calculated
using Student’s t-test, and p-values less than 0.05 were considered as statistically
significant.

Results

GSH metabolic enzymes and GSH transporters in A. nidulans

As summarized in Figure 1 and Supplementary Table S-II, all elements of
GSH metabolism and GSH transport, which are well-characterized in budding
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yeast [1], are also present in A. nidulans. These proteins are associated with the
biosynthesis and degradation of GSH, the maintenance of redox balance within the
cells, the detoxification of toxic endogenous and exogenous metabolites as well as
the uptake and intracellular transport of GSH (Figure 1, Supplementary Table S-II;
[1]). Importantly, this filamentous fungus seems to possess two putative homologs
of the following S. cerevisiae proteins: Prx1 peroxiredoxin (AN3973, AN10223),
Ure2 glutathione peroxidase/glutathione S-transferase (GPx/GST; AN3255,
AN4905/GstA), and Opt1 cell surface GSH transporter (AN7597, AN7188).

Optimization of the GSH supplementation of the ΔglrA and ΔgcsA mutant strains

Both strains required GSH supplementation when they were grown on MNM
agar at 37 °C for 5 days, and optimal growths were recorded at 8–10 mmol l−1 GSH
concentrations in both cases (Supplementary Figure S1). It is worth noting that the
temperature sensitivity of the ΔglrA strain observable at 37 °C [12] was fully
complemented by the addition of 10 mmol l−1 GSH. Nevertheless, the supplemen-
tation of MNM agar with 8–10 mmol l−1 GSH still resulted in a high but still partial
(75%–80%) complementation of the no growth phenotype of the ΔgcsA strain,
which was observed at lower GSH concentrations (Supplementary Figure S1).

Growth of the ΔgcsA strain on MNM agar supplemented with various nutrients

As shown in Supplementary Figure S2, the GSH auxotrophy of the ΔgcsA
mutant could not be complemented with any nutritional supplements tested
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Figure 1. A schematic model of GSH metabolism in A. nidulans. Locus IDs were exported from the
AspGD (http://www.aspergillusgenome.org/). Note that enzymes marked with dashed lines have not

been characterized yet in A. nidulans. For further details, see Supplementary Table S-II
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including yeast extract, lactose, or the amino acids Na-Glu, Gly, Cys, Met, and
their combinations.

Germination of the conidiospores of the ΔglrA and ΔgcsA mutants

As expected, both mutants germinated well in GSH supplemented MNM
culture medium (Figure 2). The ΔglrA mutant also germinated in MNM medium
supplemented with 20 mmol l−1 Met, 20 mmol l−1 Gly, and 24 mmol l−1 Na-Glu
instead of GSH owing to de novo GSH biosynthesis. Not surprisingly, the
germination rates of both mutant strains were rather low in the absence of GSH
(10.7% for the ΔglrA and 8.1% for the ΔgcsA strains) because these spores could
only rely on their intracellular GSH reserves, and theΔgcsAmutant was not able to
use the combination of the amino acids Met, Gly, and Glu for de novo GSH
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Figure 2. Germination rates of conidiospores produced by the control THS30.3 and the gene deletion
mutant ΔglrA and ΔgcsA strains under various culture conditions. Freshly grown (harvested after
6 days incubation) conidia (108 spores in each experiment) were inoculated into 100 ml aliquots of
MNM, and the submerged cultures were grown at 37 °C and at 3.7 Hz shaking frequency for 6, 10, and

24 h. In Parts A–C, the THS30.3 control strain was sporulated on MNM without any GSH
supplementation. In all other cases (the THS30.3 control strain in Parts D–F, the ΔglrA strain in
Parts G–I and theΔgcsA strain in Parts J–L), conidiospores were produced onMNM supplemented with
10 mmol l−1 GSH. Conidia were inoculated into one of the following culture media: MNM (Parts A, D,
G, and J), MNM supplemented with 10 mmol l−1 GSH (Parts B, E, H, and K), andMNM supplemented
with 20 mmol l−1 methionine, 20 mmol l−1 glycine, and 24 mmol l−1 Na-glutamate (Parts C, F, G, and
L). Note that the germination rates reached 100% after 24 h incubation in all cases with the exception of
Parts G, J, and L. In this figure, mean± SD values calculated from three independent experiments are
presented. Asterisks indicate significant differences in comparison to the appropriate controls
(Part A) at p< 5% (*), p< 1% (**), and p< 0.1% (***) as calculated by the Student’s t-test
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synthesis either (Figure 2). Importantly, the addition of 10 mmol l−1 GSH toMNM
hindered considerably the germination of THS30.3 conidia (6 h incubation time;
Part D in Figure 2) when the control strain was sporulated on GSH-free MNM
agar. In addition, when conidia of the control strain were produced on GSH-
supplemented MNM agar the sporulation rates measured in GSH-free or in
Met–Gly–Glu supplemented MNM media (Parts D and F in Figure 2) were
significantly lower than those found in the appropriate controls, where THS30.3
conidia were produced on GSH-free MNM agar (Parts A and C in Figure 2).

RS productions and GSH-dependent and GSH-independent antioxidant enzyme
activities

To characterize the nature of stress sensed by A. nidulans cells pre-cultured
in the presence of 10 mmol l−1 GSH and transferred to GSH-free MNM in liquid
cultures, increases in DCM, changes in RS levels (given by specific DCF
productions) as well as alterations in the specific activities of some antioxidative
enzymes were measured at 6 and 12 h incubation times (Table I).

Unexpectedly, the growth of the THS30.3 control strain was almost compl-
etely inhibited during pre-culturing in MNM supplemented with 10 mmol l−1 GSH
(Table I). When the physiological conditions of THS30.3 control cultures pre-
cultured in the presence and absence of GSH were compared, mycelia from the
GSH-supplemented cultures possessed decreased specific GPx and GR activities
(3.9 times and 2.6 times lower, respectively) with remarkably high (about 100 times
higher) RS levels although the specific catalase activity was about eleven
times higher (Table I). After 12 h incubation in GSH-free MNM, biomass gains
by the GSH pre-cultured control were approximately 7-fold with improving
physiological parameters and recovery from oxidative stress (e.g., RS levels
decreased 150-fold concomitantly with a 6.5-fold increase in the specific GPx
activity). Meanwhile there were no significant differences left in specific RS
productions and GPx activities of the GSH-MNM and MNM pre-cultured mycelia
the differences between the specific GR and catalase activities remained still high,
approximately 3.7 times lower and 7.8 times higher for the GSH pre-cultured
mycelia, respectively (Table I).

As far as the gene deletion mutants are concerned, the ΔglrA and ΔgcsA
strains grew considerably better in the presence of 10 mmol l−1 GSH than the GSH
pre-cultured THS30.3 control strain (Table I). Nevertheless, the mycelia of the
ΔglrA mutant with no GR activity accumulated 2.5 times more RS than those of
the ΔgcsA strain although the specific catalase activity in the ΔglrA strain was
3.8 times higher (Table I). Importantly, the oxidative stress was completely
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eliminated in the ΔglrA cultures after 12 h incubation in the absence of GSH (RS
production decreased 18.8-fold) similar to the THS30.3 control strain. Meanwhile
an accumulating oxidative stress was clearly observable in theΔgcsA cultures with
increased RS productions (a 2.4-fold increase between 0 and 12 h incubation
times) and specific catalase activities (increased 1.35-fold) as well as with
significantly decreased specific GPx and GR activities (decreased 36.7-fold and
7.7-fold, respectively) (Table I).

Stress sensitivity phenotypes of the ΔglrA mutant

Temperature sensitivity and oxidative sensitivity phenotypes of a ΔglrA
gene deletion mutant have been reported before by Sato et al. [12]. The ΔglrA
mutant constructed and characterized in this study by us also showed increased
temperature and oxidative stress sensitivities similar to those described previously
(data not shown; [12]). In addition, we also demonstrated for the first time the
increased hyperosmotic stress (1.0 mol l−1 KCl, 1.0 mol l−1 NaCl, and 2.0 mol l−1

sorbitol), cell wall integrity stress (54 μmol l−1 Congo Red) and antimycotic
(200 μg ml−1 fluconazole and 75 μg ml−1 amphotericin B) sensitivity of the ΔglrA
strain (Figure 3).

Discussion

GSH possesses a number of redox-dependent and redox-independent func-
tions in eukaryotic organisms including fungi [1, 3, 4]. It is important to note that
the elucidation of the remarkably versatile physiological functions of GSH needs
further research. In this study, we primarily aimed at screening for new GSH-
metabolism-related phenotypes especially concerning conidiospore germination
and also for GSH-dependent stress defenses. Any new information on the
physiological and developmental functions of GSH and GSH metabolic enzymes
in fungi may help us to gain a deeper insight in the pathogeneses of human
pathogenic fungi [15], to set up new antifungal drug development strategies
[25, 26] and also to develop new GSH overproducer [27–29] as well as more stress
tolerant and more stable [1, 2, 17, 30] industrial fungal strains.

A. nidulans possesses a robust GSH uptake and GSH metabolic system

The aspergilli, which represent an outstandingly important group of fila-
mentous fungi, have a complex and robust stress response system, which is
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Figure 3. Stress sensitivities of the THS30.3 control and the ΔglrA gene deletion mutant strains
exposed to various types of stress. (A) Typical stress sensitivities observed in surface cultures on
MNM agar plates are shown. (B) and (C) Mean colony diameters of the control (black columns) and
the mutant (gray columns) strains are presented with SD values calculated from three independent
experiments. In Part B, cultures were exposed to ionic (NaCl and KCl) and non-ionic (sorbitol)
hyperosmotic stress, meanwhile in Part C, growth inhibitions caused by cell wall integrity stress
(Congo Red) and antimycotics (fluconazole and amphotericin B) are shown. Conidiospores (105 in
5 μl suspension) were point-inoculated on MNM agar and the agar plates were incubated for 5 days.
Since growth of ΔglrA was comparable to the control strain without GSH supplementation at 30 °C,
all plates were incubated at this temperature. Because amphotericin B was dissolved and added in
DMSO, suitable controls for this antifungal were always prepared. The concentration of DMSO
in these MNM agar plates was 2% (v/v). Asterisks and plus symbols indicate significant differences
in comparison to non-treated controls (treated THS30.3 vs. non-treated THS30.3 and treated ΔglrA
vs. non-treatedΔglrA) and to treated control strain (treatedΔglrA vs. treated THS30.3), respectively,

at p< 0.1% (***, +++). p values were calculated using the Student’s t-test
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suitable to cope with a wide spectrum of environmental stress [23]. In good
accordance with this, some genes encoding important GSH metabolic enzymes in
S. cerevisiae like Prx1 mitochondrial peroxiredoxin (possessing thioredoxin
peroxidase activity and its regeneration requires thioredoxin reductase and GSH
in yeast [22]) and Ure2 protein with GPx activity (but also can mutate to gain GST
activity [31]) as well as Opt1 cell surface GSH transporter (also known as
Gsh11 or Hgt1 [32]) each brought up two paralogs in A. nidulans (Figure 1,
Supplementary Table S-II).

Although A. nidulans is a widely used filamentous fungus model organism
with its whole genome sequenced and annotated [33] the number of functionally
characterized proteins related to GSHmetabolism and transport is surprisingly low
(Figure 1, Supplementary Table S-II). For example, the GlrA enzyme with GR
activity plays an important role in the oxidative stress defense system of the fungus
[12] and also in the reduction of cytotoxic elemental sulfur [34]. Interestingly,
meanwhile GstA and GstB GSTs take part in the degradation of various toxic
xenobiotics [19, 34] and even in the detoxification of metals (GstA, [35]), GgtA
γ-glutamyl transpeptidase is not necessary for the bulk degradation of GSH [36].
Instead, the DUG pathway relying on Dug1–3 proteins is likely to be responsible
for the cytosolic degradation of GSH [34]. It is worth mentioning that some genes
coding for important GSH metabolism-related enzymes have only been charac-
terized through transcriptional (dug1-3 [36]; gpxA [37]) or translational (gst3 [38])
changes. Therefore, a deeper characterization of GSH metabolic enzymes and
GSH transporters (Figure 1, Supplementary Table S-I) using molecular genetic
tools are urgently needed in A. nidulans.

A. nidulans needs high concentration of GSH for growth and germination of
conidia

In this study, the deletion of gcsA encoding γ-GCS resulted in a lethal
phenotype unless culture medium was supplemented with exogenous GSH
similarly to previous observations with the ΔGSH1 mutant of S. cerevisiae
[6–8]. Unlike in the case of budding yeast [7, 8], the ΔgcsA mutant required
exogenous GSH at much higher concentration (at 8–10 mmol l−1 at least) than
GSH-depleted S. cerevisiae Δgsh1 cells (0.5 μmol−1 [8]). These findings indicate
that GSH may possess further crucially important physiological functions in
A. nidulans other than the stabilization of the redox milieu of the fungal cells [7, 8].
The essential redox-independent functions of GSH, e.g., in the maturation of iron-
sulfur clusters, have been summarized more recently by several authors [3, 4]. Of
course, we cannot underestimate the significance of the versatile redox-dependent
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functions played by GSH either, e.g., in the stabilization of various cellular
membranous structures [1–3]. It is remarkable that other attempts to rescue the
growth of γ-GCS-deficient A. nidulans cells e.g., by sulfur-containing amino acids
like Cys or Met and by their combinations with Na-Glu and Gly, or by the addition
of yeast extract or lactose (a carbon source, which stimulates GSH-synthesis in
Penicillium chrysogenum [24]) also failed in this filamentous fungus. These
observations shed light on the minimal GSH requirements of filamentous fungi,
which seem to well exceed those of saccharomycetes yeasts [7, 8].

The maturation, survival during storage, stress tolerance, and germination of
conidiospores highly depend on the availability of antioxidants like catalase [39],
mannitol [40], GSH [41], and also osmolytes like trehalose [42]. The remarkable
importance of GSH in germination of A. nidulans conidiospores was demonstrated
in this study by the decreased germination rates of the ΔglrA and ΔgcsA strains,
although the GR deficient mutant was able to re-synthesize GSH effectively from
the combined amino acids of Na-Glu+Met+Gly (Figure 2). Any disturbances
of the GSHmetabolic system of the aspergilli seem therefore suitable tools to control
the germination of the asexual spores of these ascomycetous fungi, which include
well-known opportunistic fungal parasites of humans like A. fumigatus [43–45].

Overdosing GSH is toxic for A. nidulans

Interestingly, the germination of the THS30.3 control strain was delayed by
exogenous GSH added at 10 mmol l−1 concentration, and the same strain showed
decreased germination rate at 6 h incubation time, when conidiospores produced on
GSH-supplementedMNM agar were inoculated into GSH-free or Na-Glu+Met+Gly
containing MNM (Figure 2). On the other hand, the same spores germinated
better in GSH-supplemented MNM than those which were produced in the
absence of exogenously added GSH (Figure 2). These observations together with
the findings that the THS30.3 and the ΔglrA strains pre-cultured in MNM in the
presence of GSH accumulated high concentrations of RS suggested that GSH
added at high, 10 mmol l−1 concentration was toxic for A. nidulans cells (Table I).
The severe toxicity of GSH on the THS30.3 control strain (almost no gain in
biomass after 20 h incubation at 37 °C) was attributed to the profoundly decreased
specific activities of GPx and GR. Meanwhile significant increases in the specific
GPx and catalase activities helped A. nidulans THS30.3 and ΔglrA strains,
respectively, to eliminate residual oxidative stress fast after transferring mycelia
to GSH-free MNM (Table I). In the ΔglrA strain, the reduction of GSSG by the
thioredoxin–thioredoxin reductase–NADPH system [12, 39] may also contribute
to the neutralization of RS. Increases in the specific catalase, thioredoxin reductase
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and cytochrome peroxidase activities in the ΔglrA strain were regarded as parts of
the compensatory mechanisms being set into operation by the deletion of glrA
[12]. All these observations may be valuable in the biotechnologist’s point of view
when the reduction of the toxic effects of GSH on GSH-overproducer industrial
fungal strains [26] is aimed at in future strain development projects.

After transferring ΔgcsA mycelia into GSH-free MNM, the depletion of the
GSH reserves stimulated RS production with the concomitant decreases in the
specific GPx and GR activities (Table I). Under these conditions, compensatory
mechanisms like a significant increase in the specific catalase activity could not
hinder the onset of oxidative stress in the fungal cells (Table I).

GSH is needed for general stress tolerance in A. nidulans

GR enzymes regenerate GSH by reducing GSSG at the expense of NADPH
[1, 5]. The elimination of GR-encoding genes resulted in various phenotypes in
fungi including reduced growth [13] or even lethality [11], temperature sensitivity
[12] as well as decreased oxidative stress [10–13, 46] and sulfur [22] tolerances.
Lee et al. [11] reported on the role of GR in the heat and hyperosmotic stress
defense systems of S. pombe and, in this study, we demonstrated the importance of
GlrA in the osmotic, cell wall integrity, and antimycotic stress responses of
A. nidulans (Figure 2). It is important to note that a series of tert-butyl hydroper-
oxide stress tolerant mutants of Candida albicans was developed by Fekete et al.
[47, 48], and each mutant possessed significantly increased specific GR, GPx, and
glucose-6-phosphate dehydrogenase activities. A more recent study by Jakab et al.
[49] demonstrated that a selection of these mutants also showed decreased
sensitivities to 19 different stress conditions including various types of oxidative,
hyperosmotic, heavy metal, cell wall and membrane integrity, unfolded protein
response, pH, and thermal (heat and cold) stress. These observations strengthen
the view that “altruistic” GSH and GSH metabolic enzymes play a distinguished
role in the general stress tolerance of fungi, which is of primary importance when
these microorganisms are employed in various bioprocesses [1, 2].

Conclusions

A. nidulans has a robust GSH metabolic and transport system, the elements
of which need a thorough functional analysis (Figure 1). GSH itself and GSH
metabolic enzymes play a crucially important role in the germination of con-
idiospores, which observation may be useful when future strategies for the
development of new-type antifungals are designed and elaborated. On the other
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hand, any overdose of GSH can be disadvantageous during both spore germination
and vegetative growth of hyphae, which should be considered in the development
of high-GSH-producer industrial fungal strains. Experimental data collected in this
study and also in various fungal species by others have shed light on the
remarkable contribution of GSH and GSH metabolic enzymes to the general
stress tolerance of fungi, which may be equally interesting for experts working on
different fungal growth control and fungal strain development projects.
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19. Balázs, A., Pócsi, I., Hamari, Z., Leiter, É., Emri, T., Miskei, M., Oláh, J., Tóth, V.,
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