
The conceptual universe

Pattern in general

Broadly speaking, pattern is arrangement, concept al-

lied with the notions of regularity, order, repetition, and

scale. Since natural arrangements are dynamic, natural

pattern is best regarded as a manifestation of complex dy-

namic processes at work. As for disciplinary interests,

pattern is a main concern to all fields of natural science.

Why? Much about Nature cannot be reasoned out from

first principles. Patterns, physical or biological, have to be

discovered by observation and described in precise terms

before an understanding of natural phenomena can begin.

Newton’s answer to the puzzle “what is keeping planets

in their orbit” could not have been given without access

to a precise description of planetary motions. The seeing

of an exact pattern came slowly through ages of cumula-

tive experience — from the ancients through the Moors

8th -15th c., Copernicus 15th-16th c., Brahe 16th-17th c.,

and Galilei 16th-17th c. — until finally Kepler (16th-17th

c.) got the thing right and Newton (17th-18th c.) could

pinpoint the cause, gravity. The Darwin–Wallace theory

of evolution (Darwin 1859) came from observation of re-

occurring patterns in nature, and not just by themselves.

Mendel’s deduction of his statistical rule of particle-based

inheritance (1870s) rested on observations that revealed a

reoccurring pattern in his numbers. And Kerner’s (1863)

conception of the doctrine of plant community develop-

ment by facilitation sprang from his discovery of reoccur-

ring patterns in the ground arrangement of vegetation

communities.

Pattern objects

Pattern objects define the nature of the pattern uni-

verse. Two extreme cases merit discussion:

1. An engineer’s universe

In this, the objects are sharply drawn, and a blueprint ex-

ists. The blueprint makes perception and judgement un-

ambiguous and independent of scale, facilitates reliable

cost analysis in comparative terms, and allows accurate

duplication. Such are not to be the characteristics of pat-

tern universes at the other extreme, like those in the ecolo-

gist’s case.
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2. The ecologist’s universe

This universe is populated with fuzzy objects (Feoli and

Zuccarello 1988 and references therein). Object fuzziness

implies the lack of sharp demarcation and the arbitrari-

ness of defining extent. An individual such as a plant of

the rhizomatous sedge, Carex arenaria, or a vegetation

stand within an area unit of arbitrary size are specific ex-

amples. Fuzziness imparts a unique characteristic to the

ecological approach. E. C. Pielou called it “soft” and M.

E. D. Poore described it “successive approximation”. Fur-

thermore, object fuzziness imprints fuzziness upon the

expert’s conclusions about pattern. The conclusions can

never be a final utterance, but the outcome of synergistic

growth through scale changes and information feedback.

Process sampling (Orlóci and Pillar 1993) and flexible

gradient analysis (Wildi and Orlóci 1991) are typical ex-

amples. In these, the conclusion emerges through contin-

ued expansion of the sample with the addition of new

units or with changes in sampling unit size in steps. Sam-

pling stops when some target structure, monitored every

step of the way, reaches stability within arbitrarily set

thresholds.

Scale and effect

“Ecology and plant geography are largely concerned

with the causes of pattern at all scales” writes Peter Greig-

Smith (1983, p. 54). This emphasises the importance of

scale. It is not difficult to go along with the proposition.

One may even be justified to take a step farther, like Man-

delbrot (1977) has done in his ponderings of form, and

land surveyors has known all along, and accept that what

is measured is a scale-dependent perception. If pattern is

such a thing, it will have no more reality at one given scale

than at any other. One thing must not be overlooked

though. While each scale may present a different percep-

tion, the base-matrix of pattern, such as the patchy vege-

tation in a sand dune slack, is the same unique thing re-

gardless differences in its perception.

Examples will help further to elaborate the scale effect

and its manipulations:

1. How long?

Mandelbrots (1967) puts a simple question: how long is

the British coastline? He concludes: it depends on the cal-

liper width used to measure it. It appears longer when the

calliper width is set smaller.

2. How detailed?

While length measurements gain precision with reduced

calliper width, the reduction of sampling unit (pixel) size

in an ecological survey may not guarantee clearer inter-

pretations. The Africa map of Tucker, Townshend and

Goff (1985) is a case in point. Reduction of detail by mov-

ing up to coarser scale is exactly the reason why we see

the life-zones in the Africa map lined up like waves in a

perfect cross-Africa pattern. Cartographers discuss the

problem of how to get from too much detail to the right

amount of detail to facilitate interpretation. The Africa

map is obviously optimised for correlation with the con-

tinental climate and with the vegetation pattern the car-

tographers have known to exist. As for the life-zones, the

“waves” analogy is quite appropriate, considering that

these formations are in perpetual motion, assembling-dis-

sembling-reassembling in a phenomenally synchronous

manner with the changing environmental conditions, but

with some considerable time lag. The changing composi-

tion and geographic position, or more specifically,

changes in the state variables of the life-zone pattern, con-

stitute pattern dynamics on the continental scale. This be-

comes apparent by simultaneous monitoring of dynamics

at many pixels in time-precise interconnections.

3. Éclat examples

Perception of vegetation pattern is bound to be scale de-

pendent. Good examples of this come from early treat-

ments of the vegetation process (see Orlóci 2000 and ref-

erences therein). These are generalisations largely

concerned with the epidemiology of the process at spe-

cific levels of resolution:

a. Dominance sorting. The observer who uses narrow

time steps within a short time period, a common research

mode in site-level studies of dynamics and its controlling

mechanisms, is more than likely to arrive at the

epidemiological conclusion that the core vegetation proc-

ess is local dominance sorting. It is pre-ordained that tol-

erance and inhibition (Connell and Slatyer 1977), life his-

tory type (Grime 1977), cohort senescence

(Mueller-Dombois 1992), reproductive strategies (Harper

1977), and propagule bank composition (Egler 1954)

come to the fore of attention as main causal mechanisms.

b. Facilitation. When the time step is left wide, and the

period length does not exceed the longevity of an essen-

tially stable climate, facilitation (also known as action-re-

action feedback) will appear as the dominant causal

mechanism. Facilitation is typically the level at which

community development is interpreted by Kerner (1863)

and by all the ecological throngs that came after him in

the early parts of the 20
th

Century. The interpretations rely

largely on surrogate time series. Such series are con-

structed on the basis of what is called space-for-time sub-

stitution (Wildi and Schütz 2000).
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c. Precession dynamics. Community dynamics has as-

pects that only a one-way response to planetary climate

change could explain under celestial causes. One of these,

the precession of the equinoxes (Milankovitch 1941),

contributed to the coining of the term “precession dynam-

ics” to identify a high-level vegetation process. Preces-

sion effects can be detected when the process is viewed in

the reflections of paleopollen spectra where the period

length is very wide. The set of measured (not the interpo-

lated) points in the Lagoa das Patas spectrum (Figure 1)

is a good example. The picture that Delcourt and Delcourt

(1987) have drawn about vegetation dynamics (Figure 2)

is rich in indications. Zonal vegetation shifts are the result

across latitudes north and south.

It should be emphasised that dominance sorting, fa-

cilitation, and precession dynamics are not isolated kinds

of processes. They are different perceptions of a single,

unified process under changes of magnification. Their

isolation is analytical and an entirely arbitrary manoeu-

vre, but not superfluous. Through isolation of compo-

nents vegetation dynamics can be measured.

Order in chaos or chaos in order? – a question put to
G. P. Patil

Bartlett (1975, p. viii) contrasts pattern with what he

calls “complete random chaos.” But questions arise when

one tries to translate Bartlett’s phrase into an operational

Figure 1. The De Oliviera paleopollen spectrum copied from website: http://www.ngdc.noaa.gov/cgi-bin/pa-

leo/poldgma.cgi?handle=DASPATAS Site Name: Lagoa das Patas Contact: De Oliveira, P.E.; Place: BRA, Amazonas;

Lat/Lon: 0.3
o

N / 66.7
o

W ; Altitude (m): 300; Samples/Variables/Dates: 49/179/12; Age Range: 0-42210. Legend to taxa

and groups of taxa: a - Alchornea/Aparisthmium; b - Aquifoliaceaec; c - Arecaceae (excluding Mauritia); d - Caesal-

piniaceae undiff.; e - Cassia; f - Cecropia; g - Combretaceae/Melastomataceae undiff.; h - Copaifera; e - Mauritia; j - Myr-

taceae; k - Podocarpus; l - Tapirira; m - Urticaceae/Moraceae; n - Fabaceae; o - Poaceae; p - Other trees and shrubs; r -

Other herbs.

Figure 2. Global attractor migration in the Late Quaternary

on latitude ~85
o

W in eastern North America. Graph after

Delcourt and Delcourt (1987, Fig. 1.4, p. 20), modified.

Vertical scale: northern latitude. Horizontal scale: time be-

fore present.
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definition intended for use in studies of vegetation. This

fact warrants the following discourse.

1. What to include?

If the individual terms in Bartlett’s phrase are taken in

their colloquial sense, first definition that comes up in in-

terpretive dictionaries, then it is justified to exclude ar-

rangements from under the concept of pattern that are

lacking contagion or contiguity. In other words, pattern

could mean that chance does not rule. But this is not the

meaning that standard ecological texts use. Greig-Smith

(1983) takes the complete random arrangement as a type

of “pattern” and uses it as a reference arrangement to

which observed cases of are compared.

2. The “chaos” confusion

As regards the term “chaos”, the discrepancy with collo-

quial usage is often very acute. In the technical jargon of

the Art, things deteriorated to the point that the common

sense meaning of “chaos” as “complete disorder” or

“complete confusion” is replaced with something quite

different. This started probably as an accidental glitch in

the usage of the English language that forced upon

“chaos” the totally unnatural meaning “… an apparent

disorder owing to apparent random changes as a result of

extreme sensitivity to small differences in initial condi-

tions …”. The reader, exclaiming “What a gobbledy-

gook!” is forgiven.

Ambiguities to be avoided, I am returning to the col-

loquial meaning of terms in the essay when I speak of

“chaos infested determinism”, “random distorted Markov

chain”, “convolution of chaos and determinism”, initial

conditions", or just simply use “chaos” or any of the oth-

ers on their own.

3. Examples

The following narrative should throw further light on the

notions while further highlighting to the reader the termi-

nological dilemma:

a. Perrin’s Brownian trajectories. Each irregular line in

Figure 3 is the tracking of a colloidal particle (radius 0.53

µm) in stable fluid as seen in a portion well inside a mi-

croscope’s viewing field. The particle’s position is

marked at every 30 seconds. A direct interpretation of the

tracks in the 20x25 grid would make little sense, consid-

ering the certainty that they would look totally different if

recorded on film with a fast rolling camera over the same

period of time. On film, the colloidal particle would most

likely appear zigzagging the entire field of view. Each

grid cell would be visited by the particle with increasingly

equal frequency. After hours of recording the particles to-

tally unconstrained motion would be generating a fre-

quency distribution for which Rényi’s (1961) entropy of

order one (8.965… bits) would signal that Bartlett’s

“complete random chaos” is reached. But the plan of mo-

tion lacking any particular rule, except the equal prob-

ability law, “complete random” or “complete disorder” is

quite sufficient as a characterisation. If one puts it this

way: the next cell to be visited is indefinite, while the

probability of every cell is definite, then one sees that one

described a case of “stochastics”. In still other words, or-

der in the form of an equidistribution is imposed on chaos,

for whatever epidemiological reasons.

b. E. C. Pielou’s L-mosaic. The mosaic in Figure 4 is con-

structed with lines drawn at random points in random di-

rections. Shades indicate cells that are occupied or left

empty by a given species. I added the heavy line to emu-

late an east-west “vegetation transect”. Although the lines

are drawn at random, the presence of order is striking. It

appears in the form of a stochastic regularity, the prob-

ability distribution of which is given by

f(d) = λe-λd

(see Pielou 1977, p. 188; also Bartlett 1975, pp. 47-48).

Symbol d represents cell width (inter point distance on

transect). λ is the regularity constant, i.e., the number of

intersection points per unit length of line transect. What

would happen if line density were increased? Surely, cell

size would shrink, and in the extreme d would tend to

zero. This is another case of stochastics, and once again

chaos is producing order.

Pielou�s (1964) work on the L-mosaic is in part an exercise in
pattern identification. How was the sampling done? Circular quad-
rats (diameter 2 cm) were laid in a transect in pairs at s=2, 4, �, 12
cm apart and the quadrat types were recorded in the manner of Ta-

Figure 3. Brownian trajectories. Grid size: 3.2 µm (after

Perrin 1913).
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ble 1. Having had such data, Pielou computed the autocorrelation

coefficient in the manner of Rts = (a11 - a1
2
)/a1a2. In repeated trials

with quadrat pairs at the given distances apart, the estimator Rts

turns out to be tending in value in order terms to the exponential e
-

λs
(see Table 2). The question arises: is it reasonable to suggest that

pattern at the given scale is an L-mosaic? It could be that, but to be

convinced the same expectation should hold true for the autocorre-

lation in any transect laid down at random anywhere in the site. If

pattern is in fact an L-mosaic then the generating process is Mark-

ovian (see Bartlett 1975, p. 49) with constant probability p1 when

switching from vegetation patch to bare ground, and with constant

probability p2 when switching back. Obviously, the model is not

very practical and probably it is never fulfilled to satisfaction in na-

ture.

b. Perturbed Markov trajectory. It is clear that order arises

in chaos intrinsically in the form of stochastic regularities.

It is easy to shown that chaos can infest order. Some refers

to this the case of the “fractal”. To see this point, it should

be sufficient to think of May’s (1976, May and Oster

1976) experiments with the logistic equation, or even sim-

pler, to consider the trajectories portrayed in Figure 5. In

the latter, random perturbation is applied to the transition

probabilities in sweeps through the entire transition prob-

ability matrix at every step in the process as the chain is

computed. The level of perturbation is 0 to 1% at any step.

The level and sign, whether positive or negative, depends

on a flat probability law
2
.

Further comments are in order. The 1st dimension in Figure 5
accounts for 98% of the total variation. The trajectory length is 19
years. The fitted Markov chain�s period length is 500. It is seen that
severe occlusion develops at about the 13th Markov step (7th year
into the real process). At that point the sites carrying capacity is
reached and the trajectory enters a stage of turbulent oscillations. It
will be seen in the sequel that this pattern mimics nature well. Ob-
serve Figure 5a in which a portion of the trajectory is enlarged, and
note the alternating linear and non-linear phases. Orlóci and Orlóci
(1988, Orlóci, Anand, and He 1993, Anand and Orlóci 1997) sug-
gest on this basis that syndynamics in the site is probably a ran-
dom-perturbed (chaotic) Markov chain. Some may rejoice hearing
this in the hope of possible Markov predictions. But that may not
work out, as expected. The uncertain time of entrance into and exit
out out of turbulence, and the uncertain direction in which the proc-

Figure 4. L-mosaic. After Pielou (1977, p. 183).

Table 1. Data recording in Pielou’s L-mosaic (see the text

for explanations.)

Table 2. Pielou’s data. See the text for details and also Bar-

tlett (1975, p. 48).

Figure 5. Eigenmap of the random-perturbed Markov chain

fitted to the Atlantic Heathland data in Table 3. Left graph

of 5a is drawn to scale. In right graph of 5a and in the

stereogram image (5b) ranges are set equal on the axes for

clearer viewing.

2 Here referring to pseudo random numbers with equal

probability.

a

b
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ess will be heading upon exit will make any prediction a chancy
proposition.

Another point takes the reader back to Perrin�s graphs. The
graphs of Figure 5 have similarity with Perrin�s (Figure 3), but
there is a big difference. The process in the Atlantic Heathland
plays itself out in nature under severe biological and environmental
constraints. This is unlike the colloidal particle�s homogeneous sta-
ble fluid environment.

4. Corollaries

There are three main points to be made to round out what

has already been said about the basic character of pattern:

a. Bartlett’s complete random chaos. Vegetation pattern

cannot exist in a state that Bartlett called “complete ran-

dom chaos”. The vegetation trajectory cannot be

Brownian. This is because the causes that make for order

and directedness are always present intrinsically and ex-

trinsically. The reader should find A. S. Watt (1947) good

reading on a related topic.

b. Pure order. Vegetation pattern cannot exist in a state of

pure order. This is because the causes that tend to under-

mine order and promote chaos are also present. This is the

basic mechanism that drives variation and evolution.

c. Chaos infested order. Vegetation pattern must exist in

a mixed state, but mainly as a “chaos infested order”. This

is a potent way in its consequences that make the imme-

diate future very uncertain, but leaves the “long run” still

predictable with some confidence from past events on

scales that I am considering here.

5. A practical consideration

Whatever way one looks at it, chaos is an integral part of

nature. It cannot be removed from pattern analytically by

simply removing portions of the total variation that does

not fit some stipulated model of order. Two things are im-

portant:

i) The residuals that do not fit a given model of order

most probably contain components that would be judged

orderly under some other model of order.

ii) What happens when residuals are thrown away as

is normal practice in technician level biometry? The

analysis will do no better in consequence than giving the

interpretation of a mutilated data structure.

Making sense of pattern

Analytical scenario

A specific analytical scenario may be built about any ob-

jective, yet the main steps in the analysis will remain the

same: pattern detection, pattern description, epidemiol-

ogy. Two extreme cases are mentioned that set broad lim-

its on the scenario:

1. Type of pattern specified

A specific kind of spatial pattern is expected, specific to

structures blurred by the interference of noise. This is

Table 3. De Smidt’s cover estimates (Lippe et al. 1985) from annual surveys of an Atlantic Heathland site. Explanation of

symbols: BG - bare ground; EN - Empetrum nigrum; CV - Calluna vulgaris; ET - Erica tetralix; MC - Molinia caerulea;
RA - Rumex acetosella; JS - Juncus squarrosus; CP - Carex pilulifera; OS - other species (as per original records).
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typical in military operations where the objects to be iden-

tified are items in the enemy’s arsenal, infrastructures,

and like things, intentionally camouflaged. Enhancement

of the target image is accomplished by way of taking the

raw image apart and stripping it of components that could

not perceivably be part of the object whose presence is

suspected. Success may be measured by, for example, the

intensity of secondary explosions under attack.

2. No a priori fixed shapes or dimensions

This is typical in ecological studies. The object to be re-

vealed is some unspecified regularity. “Noise” takes on

forms that cannot be just simply identified and repealed.

What should be a measure of success under these circum-

stances? It may be nothing more elaborate than a definite

sense that the outcome is consistent with facts and reason.

A very simple example is Kershaw’s correlation/block

size graph (Figure 6). From the simple graph one is justi-

fied to draw the remarkable conclusion that soil depth has

multi-scale effect upon species pattern. Effect peaks at

block size 32 in this blocking scheme.

State variables, scale variables

Pattern is described by its state variables and scale

variables. State variables are primary variables such as

species performance, or functions of primary variables

such as entropy. Scale variables have to do with sampling

unit size, embedding dimension, redundancy, tolerance

limit, etc. Table 4 contains examples.

Trajectory mapping

I am considering next the description of vegetation

pattern dynamics known to the phytosociologist as “syn-

morphogenesis”. This dynamics is perceivable as a trajec-

tory through time, at each point of which is located a past

state of pattern in nature. Although states are arranged in
Figure 6. Kershaw’s correlation/block size graph.

Table 4. State variables and scale variables.
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the continuity of time, in practice the states of pattern are

described at discrete time points, like at specific depths in

the pollen-bearing sediment, and around a set of isolated

points in the landscape from where the paleopollen or

other time series data originate.

Figure 7 shows the phase space mapping of an ideal-

ised trajectory at a single landscape point. The axes rep-

resent state variables X1, X2, …, Xp. The trajectory line is

the time-dimension. The apices (points on the connected

straight lines) represent past vegetation states. I use “pa-

leorelevé” to designate the record set (X, X2 ... Xp) that

fixes a vegetation state as a point in phase space directly

or through some transformation such as in components

analysis (Orlóci 1978). The zigzag line is intended to in-

dicate synmorphogenesis infested with the seeds of chaos,

the sources of unpredictability. Chaotic oscillations are

superimposed on an imaginary Markov chain (connected

straight lines in Figure 7), intended to indicate the type of

determinism expected under ideal conditions. In fact, un-

der this expectation the process moves rapidly at the be-

ginning, indicated by long inter-point distances, and then

it slows down gradually. At one uncertain point in time,

cumulative effects bearing down upon the transition prob-

abilities gain sufficient momentum to cause the process to

change its direction. The greater is the cumulative effect,

the sharper the directional change.

Note that the phase space shown in Figure 7 is linear.

Because of this, the curvier the trajectory’s mapping, the

higher the level of non-linearity in the process. The com-

plex of conditions that limit the trajectory to a specific

compartment of phase space is called the attractor (A).

Figure 7 displays the graph of a trajectory that origi-

nates from one point in the landscape. In spatial pattern

analysis, many trajectories have to be handled simultane-

ously that originate from neighbouring points, forming a

trajectory surface. The Anand and Kadmon 2000) trajec-

tory set in Figure 8 is of this kind.

Analysis of pattern dynamics

The data

The analysis of pattern dynamics requires site-spe-

cific data. Typical data types include records of perma-

nent plots (e.g., Table 3), paleopollen spectra (Figure 1),

or surrogate time-series constructed in the manner of

space-for-time substitutions simply like Kerner’s (1863)

use of this technique, or more sophisticated like the case

that Wildi and Schütz (2000) describe. The data sources

of the Essay are identified in Table 5.

Outstanding questions, some technical tasks

Concrete manifestations of pattern dynamics are

found in the morphology of the trajectory’s graph in phase

space mapping. Three questions come to mind that a study

of pattern dynamics should attempt to answer:

(a) What was the past pattern like? (b) What made it

evolve into the state actually observed? (c) In what kind

of state will pattern exist at some future point in time?

Figure 7. Sketch of an idealised process trajectory in phase

space, showing a chaos infested deterministic process.

Figure 8. Anand-Kadmon graph of periodic change in

vegetation along transect in the Sinai desert 30
o

56’ N; 34
o

23’E. Graph dimensions as labelled.
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Three broad categories of technical tasks loom high,

arising from these questions, in addition to the acquisition

of a suitable data set:

(a) Mapping the trajectory into phase space .(b) Descrip-

tion of trajectory morphology. (c) Epidemiology, i.e., the

identification of causal mechanisms, etc.

Phase space axes are conveniently constructed in

component analysis. Eigenanalysis, the algebraic core of

component analysis, is the better term to use here. Why?

- because of the connotations from statistics that compo-

nent analysis does have, but irrelevant in analytical ma-

noeuvres whose only objective is to create a parsimonious

reference system for trajectory mapping. Eigenanalysis

does exactly this, passing from the original linearly corre-

lated variables of the raw data to linearly independent (or-

thogonal) synthetic variables that then can be used for

phase space co-ordinates. Reference is made to Orlóci

(2000 and references therein) for other details.

It is true, as S. Bartha writes in his review of the Essay,

that the structure of the phase space is very sensitive to the

actual species composition and to sampling/scaling er-

rors. He suggests as a remedy the Juhász-Nagy method

(cf. Table 4) which uses “state space” structures, possibly

steps removed from the actual field data. Bartha sees an

advantage in this amounting to direct comparability of

trajectories of very different origin. It will be seen in the

sequel that trajectory comparison can be freed from the

mentioned constraints by other a posteriori manipula-

tions.

Characterisation of the dynamic process

What remains for the Essay to cover in the allotted

space is a closer characterisation of the dynamic process.
Since the trajectory’s morphological characteristics are

the basis of this, the characterisation is that of synmorpho-

genesis. The characteristics that appear to define broad

classes, within which all descriptors could be accommo-

dated, include phase-structure, determinism, dimension-

ality, periodicity, attractor movement, and parallelism.

1. Phase-structure

The case to be discussed uses the data set from Table 3.

The trajectory mapping is seen in Figure 9. First inspec-

tion reveals a definite two-phase process: an early linear

phase (1963-1970) followed by an intensely turbulent

phase (1970-82). The latter begins with occlusion in the

form of carrying capacity suddenly put in the way of the

process (see Orlóci and Orlóci 1988, Anand and Orlóci

1997, Orlóci 2000). A striking feature, similar to the ran-

dom-perturbed Markov chain (Figure 5), is the reappear-

ance of bursts of linear motion (more or less straight line

multipoint segments in map) between sharp directional

turns. But the process plays itself out within the confines

of an ecological attractor that does not allow the trajectory

to develop in the manner of a pure Brownian model.

2. Determinism

When the trajectory has directed components, more or

less straight multi-point line segments, like in Figure 9,

the term “determinism” is appropriate to characterize it.

Table 5. Site locations and other information about data in the examples.

Figure 9. Eigenmapping of the Atlantic Heathland trajec-

tory based on the data in Table 3. Left graph: map of total

period length at uniform scale. Right graph: enlargement of

last 12 years, distorted to show more details. 99% of total

variation in the data is retained in the Eigenmap.
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Determinism implies that the attractor conditions in the

site are forcing the process on a short path ever closer in

the direction of the target. The target, a potential vegeta-

tion state, may change before it is reached.

Representation of the attractor as a single point (A in

Figure 2) is, of course, not quite correct. The attractor

should rather be conceived as a point oscillating within a

region in phase space to which it is confined by ecological

laws. The notion of the attractor as potential vegetation,

the type that could be reasonably expected in a site under

natural circumstances, is quite familiar, not necessarily

under the same name, to cartographers of the vegetation

(see Küchler 1990).

There are different ways to depict determinism. Some

methods are qualitative while others are quantitative. Two

examples should clarify this point:

a. Qualitative method. A vegetation type from the region

is selected that fits the phytosociologist’s reasoned crite-

ria of the vegetation attractor’s state. In the St. Lawrence

lowlands, for example, the attractor state is considered to

be an Aceretum. In Dansereau’s (1957, p. 175) scheme,

the Aceretum can develop through an allogenic hydrosere

or autogenic xerosere. Considering Dansereau’s xerosere,

it begins with an Oenotheretum that gives way to Dantho-

nietum → Festucetum → Solidaginetum → Crataegetum

→ Pinetum → Aceretum. The xerosere is a perception

based on Kernerian space-for-time substitutions. The re-

occurrence of the same vegetation sere in different sites in

the region is offered as evidence that the sere depicted a

universal tendency in community development towards

the Aceretum. There could be, of course, other attractor

states identified locally, say a Pinetum, Pineto-Picetum,

or all together something else, to which the Oenotheretum

sere may be tending with varying probability. The higher

is this probability for a specific sere, the more determined

is the long-term direction of the Oenotheretum.

b. Quantitative method. While the qualitative method is

definitely predictive, the quantitative method to be de-

scribed is definitely postdictive. It answers the question

“how smoothly a trajectory (temporal coenosere) has run

its course up to a selected time point”. If there is much

turbulence, directionless movement, determinism will be

undermined. If it is smooth sailing right through, the ap-

pearance of determinism will be enhanced. Of the many

methods available to measure determinism, two are self-

evident: “autocorrelation” and “matching-structures cor-

relation”. I consider the latter. I use the rank correlation

coefficient, symbolically r(Dc;Dt), as my scaler. The ele-

ments of Dc are the compositional distances of pa-

leorelevès (paleocoenostates). The elements of Dt are the

same paleorelevés’ chronological differences. All distinct

comparisons are made, n(n-1)/2 in total. The number of

paleorelevès is n. Actual correlation values are given in

Table 6.

Inspection of Table 6 reveals that in the RND case and

within the turbulent phase, such as in the Atlantic Heath-

land trajectory during the last 12 years, determinism all

but vanishes. The trajectories of Lagoa das Patas and

Jackson Pond, and the first phase of the Atlantic Heath-

land trajectory incorporate statistically significant and in

two cases numerically very high linear determinism.

3. Dimensionality

The dimension of a trajectory can be the number of taxa,

a lesser number that counts the non-zero Eigenvalues, or

something else that is not even an integer number. A spe-

cific case from the family of fractals helps to make some

interesting points. The source reference is Mandelbrot

Table 6. Trajectory determinism, measured as a rank correlation of distance structures. RND designates a simulated trajec-

tory based on the assumption that vegetation dynamics generates random compositional transitions (see Orlóci 2000). In this

sense RND trajectory is a random permutation of the observed vegetation states. Expectations and probability (P) values

were determined based on 1000 RND trajectories. P expresses the probability of an at least as large correlation value as the

observed, occurring under random compositional transitions.
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(1967, 1977). A good reference for technique is Schroeder

(1991).

What did Mandelbrot do? He was interested in irregu-

lar and fragmented shapes — like Perrin’s Brownian tra-

jectory, the perimeter of a soap flake, or the coastline of

Britain — and developed a new geometry that helped him

to describe these. At the core of Mandelbrot’s scheme is

the relation L(r)=LO r1-D or L(r)~ r1-D. In this, L(r) is

length measured with calliper width set at r and D is the

length-related fractal dimension. When shape is invariant,

that is to say, when no new detail is gained or detail lost

under changing magnification, LO = L(r) and D = 1.

One method that helps to approximate the value of D
relies on the regression coefficient b which is related to D
in the manner of b=1-D. The regression line is the best

fitting straight line through the point swarm {log L(r), log

r} over a wide range of r values. I selected an example

from Scheuring’s (1993) to illustrate this (Figure 10). To

the reader, fractal dimension need not mean anything

more complicated than a decimal number, such as 0.642

in Figure 10.

Another kind of fractal dimension is the so-called cor-

relation dimension D2 which I use in trajectory descrip-

tion and about which my terminology follows, in part,

Schroeder (1991, pp. 220-224). The example to be pre-

sented is taken from Orlóci (2000). The regression coef-

ficient b gives a direct approximation of D2. The regres-

sion set-up is shown in Figure 11a. The trajectory

involved is computed from the Lagoa das Patas pa-

leopollen spectrum. Variable r represents, in turn, the

Euclidean distance, I-divergence information, or inner an-

gle for pairs of paleorelevé vectors. C(r) is the relative fre-

quency of r in a q x q matrix. Symbol q is the number of

Figure 10. Determination of a length-related fractal dimen-

sion D of an irregular line. The fractal dimension in this

case is approximately 0.642. See Scheuring (1993) and the

main text for details.

Figure 11. States of trajectory descriptors in relation to embedding dimension n. See Orlóci (2000) for details. a: r and C(r)

— descriptor variable (distance, information, or angle) and its relative frequency; b, a, R2

, e — regression coefficient (D2),

intercept, coefficient of determination, and the error term. b: values of the above over embedding dimension. A descriptor’s

value at which its graph starts levelling off is a fractal dimension of the trajectory.

a

b
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paleorelevés, and n is an embedding dimension (Figure

11b). The embedding dimension in the example is a count

of the phase space axes, so that n=1, 2, 3, … . The conse-

quences of order in which the axes are counted is dis-

cussed by Orlóci (2000).

It is quite obvious that different structures can have

intense self-similarity. This is seen in the shape of the re-

spective graphs, that is, in the tendency to level off past

some critical embedding dimension. The same structures

do not show self-similarity with the RND trajectory. The

RND trajectories are constructed on the basis of the as-

sumption that the process is ruled by random composi-

tional transitions.

Self-similarity in the manner of the example implies

redundancy of taxa. Interesting to mention the suggestion

that the DNA sequence of the chromosome does does not

have self-similarity. If true, it should imply high parsi-

mony of the genetic code, in a very mechanistic sense.

4. Attractor migration

The Delcourt and Delcourt (1985) diagram, reproduced in

Figure 2, provides us with a real example of attractor mi-

gration on the continental scale. Migration at this scale is

forced by climate change, and broad vegetation shifts are

the result. The velocity of shifts in temporal or geographic

terms, taking the period from 14 to 6 thousand years be-

fore present as an example, is 300 km/1000 years or 600

km per one degree Celsius rise in the global average tem-

perature. What kind of thermal flux rates could possibly

cause the persistent and sometimes violent changes? Ta-

ble 7 displays estimates.

5. Periodicity

Compositional entropy and process velocity are two ex-

amples of variables undergoing irregular periodic change.

Figure 12 gives the relevant graphs for Atlantic Heathland

and Lagoa das Patas (after Orlóci 2000). Periodicity is not

haphazard. In fact, this is quite apparent on first inspec-

tion of the graphs. Entropy and velocity are inversely re-

lated. In the Atlantic Heathland, entropy drops to the low-

est point after the onset of logistic occlusion around 1973.

Entropy is high following fire around 1963 and after a

short drought period around 1977. In Lagoa das Patas, en-

tropy appears to increase during global cooling and de-

crease when the climate is warming. Another repre-

sentation of cyclic change, as in Figure 8, combines the

spatial dimension of change with the temporal.

6. Parallelism

The idea that there is a tendency toward global parallelism

of paleopollen spectra comes from van Post (1946). The

example in Figure 13 takes the van Post suggestion a step

further in a significant way. For worked example and al-

gorithmic references, the reader is directed to Orlóci

(2000, He and Orlóci 1998).

Three trajectories are compared: Lagoa das Patas

(LdP), Jackson Pond (JP), and a random trajectory (RND)

in Figure 13a, and random vs. random in Figure 13b. The

RND trajectories are constructed as explained above. The

Table 7. Conditions at the lower latitude/elevation limit of vegetation zones as identified. Data and method after Orlóci

(1994). Values underlined are extrapolations based on TFR = -2.57538 +0.12749X. Variable X is the decimal equivalent of

a locality’s northern latitude. The value of the coefficient of determination is 0.97. Regression is based on the data from the

first 5 sites in the table. Abbreviations: Prec. – mean precipitation; Temp. – mean annual temperature; LTFR – local ther-

mal flux rate; LTRI - local temperature increase; ELT - expected local mean annual temperature. All temperatures are

given in Celsius degrees. Data in rows 3, 4 are from Walter et al. (1975), except the last two columns that were obtained

from Krajina (1963).
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Figure 12. Evolution of compositional entropy in relation to process velocity at two sites.

Figure 13. Trajectory parallelism. See details in the text and detailed explanations in Orlóci (2000).

a

b
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top (unlabelled) curve in first row of first graph in Figure

13a displays the similarity of trajectories LdP and JP in

relation to given tolerance limits. Tolerance limits, an en-

gineering concept and not the same as the statistical con-

fidence limits (see Orlóci 2000, for explanation), compen-

sate for the uncertain position of trajectory points in phase

space on the count of stochastic variation. Tolerance lim-

its are arbitrarily expanded in small steps. As for the other

curves in the first graph, label E identifies expected val-

ues, U the upper bound, and L the lower bound of the 95%

statistical confidence interval. The graphs in Figure 13b

are interpreted the same way. It is immediately obvious

that the similarity curve in Figure 13b runs completely

within the confidence limits. This is to be expected, con-

sidering that RND trajectories cannot be parallel.

Parallelism in any trajectory pair can be characterised

by the entire similarity graph. Only graph portions outside

the confidence limits are considered statistically signifi-

cant. The maximum level of parallelism is proportional to

the similarity value where it deviates most from random

expectation. The curves in the second row of Figure 13a

show the deviations.

Closing remark

In the Essay I described briefly my understanding of

the concept “pattern” and the study scenario that I would

see fit to follow in pattern analysis. I defined an ecological

pattern universe whose main characteristics are object

fuzziness, chaos-infested determinism, and scale depend-

ent perception. In my scheme, descriptions of momentary

pattern states provide input into the construction of proc-

ess trajectory mappings. I used the characteristics of the

trajectories to describe synmorphogenesis at given land-

scape points. These descriptions lay foundations for trac-

ing pattern dynamics by establishing connections be-

tween trajectories from neighbouring landscape points. I

brought up the question of pattern epidemiology, but I

leave the detailed exploration of this topic for a more ad-

venturous reader.
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