
Introduction

The decline of biological diversity is of grave concern
to humanity. While the loss of our natural heritage is rea-
son enough for concern, ecologists are increasingly ex-
ploring whether vital ecosystem functions depend on bio-
diversity (e.g., Naeem et al. 1994, Tilman et al. 1996,
Tilman et al. 1997b, Hooper and Vitousek 1998). Al-
though it is fairly clear that species richness is more com-
monly a function of ecosystem processes than vice versa
(Palmer 1994, Huston 1994, van Andel 1998), there may
be some subtle effects of richness on communities and
ecosystems (Tilman et al. 1997a, Dukes 2001).

A fairly traditional view is that high diversity can lead
to increased resource specialization, efficiency of re-
source use, niche saturation, and limits to the invasibility
of communities (Whittaker 1975, Giller 1984, Palmer
1994, Rejmánek 1996, Stachowicz et al. 1999, Stohlgren
et al. 1999, Naeem et al. 2000, Prieur-Richard and La-
vorel 2000, Symstad 2000, Dukes 2001). An alternative
view is that communities are more open, and that a high
diversity can enhance immigration of new species - in
other words, ‘diversity breeds diversity’ (Palmer 1994,
Lamb 1998, Levine and D’Antonio 1999, Smith and

Knapp 1999). Diversity can breed diversity due to several
mechanisms. Trivially, the diversity of dependent com-
munities, such as parasite, predator or epiphyte commu-
nities, is typically correlated with the diversity of host or
prey organisms because host diversity equals resource di-
versity (Murdoch et al. 1972, Rosenzweig 1995, Green-
berg et al. 1997, Symstad et al. 2000). However, it is theo-
retically possible that diversity can breed diversity even
within a trophic level. Since each species potentially in-
fluences the environment in different ways, diverse com-
munities will have a more heterogeneous environment
than depauperate ones. This heterogeneity can lead to op-
portunities for new species to become established. An-
other mechanism for ‘diversity breeding diversity’ is
through ‘diversity promoters’, or species that encourage
high diversity. If diversity promoters exist, diversity can
breed diversity due to a “sampling effect” (Parrotta 1995,
Palmer and Maurer 1997, Loreau 1998, Wardle 1999,
Huston et al. 2000): a diverse system is more likely to con-
tain a diversity-promoting species than a species-poor
system.

In an experimental agroecosystem, Palmer and
Maurer (1997) demonstrated that the initial richness of
crop species was positively related to the richness of weed
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species that eventually emerged. However, this ‘diversity
breeds diversity’ pattern defied explanation, and was not
likely due to environmental heterogeneity or ‘diversity
promoters’. The authors speculated that the enhanced
richness might be due to some complex interaction among
crop species. Other authors (e.g., Crockett 1995, Gomez
and Gurevitch 1998, Lamb 1998) have also found that the
initial richness and/or species combinations affect the na-
ture and number of other species that colonize.

In this study, we perform an experiment with simple
crop-weed microcosms and address the following ques-
tions:

• Does initial plant (or ‘crop’) diversity increase the
diversity of ‘weed’ species emerging from the soil
seed bank?

• Do plants perform better in polyculture than in
monoculture (Hector 1998)?

• Does the initial species composition affect weed di-
versity or biomass?

• Does the initial species composition affect the com-
position of weed species?

• Do the initial species have interactive effects on
weed species composition?

Methods

Crop species

In this paper, we distinguish between our experimen-
tally planted species (crops) and the species we expect to
respond to the crops (weeds) – even though the ‘weeds’
may not be agronomic weeds. We chose basil (Ocimum

basilicum), borage (Borago officinalis), cabbage (Bras-

sica oleracea cv. capitata), lettuce (Lactuca sativa), mari-
gold (Tagetes patula), soybean (Glycine max), tomato
(Lycopersicon esculentum) and zinnia (Zinnia violacea)
to provide eight crop species for this experiment. Hereaf-

ter, we will use the common English names for the crop

species, in order to distinguish them from the weed spe-

cies, for which we will use scientific names. A pilot study

confirmed that these crop species germinated and grew

reliably under standard greenhouse conditions, and had

similar sizes, growth rates, and lifespans. The pilot study

also indicated an appropriate time to sow each of the eight

species’ seeds in order to have similar-sized crops at the

beginning of the experiment, so that there would not be

large effects of initial dominance. The times before trans-

plantation were 24 days for basil, 21 days for tomato, cab-

bage, and lettuce, 18 days for marigold and zinnia, 17

days for borage, and 10 days for soybean.

We established combinations of 1, 2, 4 and 8 crop spe-

cies. In richness gradient studies such as this one, it is cru-

cial that we test the effects of richness per se, rather than

the effects of particular species (Huston 1997, Allison

1999). We therefore constructed combinations of species

in such a way that we used each species the same number

of times (Table 1). There were 10 replicates of each

monoculture. Each of the 26 possible two-species combi-

nations was represented twice. We had 32 replicates of the

8-species polyculture. The 4-species treatments were

problematic, because there are so many potential combi-

nations. We therefore randomly chose (without replace-

ment) 32 different combinations, with the constraint that

each species was selected an identical number of times.

Our design is substitutive rather than additive (Harper

1977). We placed the eight individuals regularly within

pots, and assigned the locations of species within polycul-

tures randomly. Huston (1997) argued that most richness

gradient studies confound the effects of richness and spe-

cies composition. We agree with, and overcome most of,

his arguments in this study, but we also note we only have

one possible species combination for our richest mixture,

and hence there may be a slight confounding of richness

with composition.

Table 1. Experimental design for the experiment. The identities of the crop species are listed in the text.
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Table 2. �Weed� species present in the artificial seed bank. Seven species were obtained from the Stillwater Agricultural

Supply (�Supply") while the rest were obtained from two canisters of Sam�s Choice Wildflower Farms Cutting Garden mix

(�mix�). Two unidentified species may have been part of the seed rain within the greenhouse, contaminants in the seed sup-

plies, contaminants in the soil medium, or atypical seedlings of the other weed species.
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We transplanted the eight individual crops into each
of 200 26 x 25 x 6 cm plastic pots containing a seed bank
mix (see below) on October 9-12, 1995.

Planting medium and seed bank

The pots were filled with a standard greenhouse soil
mix into which an artificial seed bank was added. We
added seeds of known identity of 37 species into the soil
mix (Table 2). We selected initial seed densities such that
there would be at least 70 seeds per pot. This ensured rela-
tive homogeneity of treatment.

Culture and harvest

In the greenhouse, we randomly located the pots in
grids with gaps of at least 25 cm between adjacent pots,
and randomized the sequence of transplanting. We ran-
domly rotated the pots to new locations every two weeks.
We fertilized crop seedlings weekly before transplanting
them into the microcosms; all pots were fertilized on the
first day of the trial with a standard 1N:2P:1K greenhouse
fertilizer. Two of the cabbage monocultures were inad-
vertently destroyed, and hence the sample design is
slightly unbalanced. We harvested both crops and weeds
at ground level on January 9-12, 1996, sorted the plants
by species, dried them, and weighed them.

Analysis

We compared the richness of weed species to the
logarithm of crop richness by means of least squares re-
gression (Sokal and Rohlf 1995) as well as by Poisson re-
gression using generalized linear models (Crawley 1993,
Pausas 1994) and randomization tests (Manly 1992) but
as the results from the three methods were similar only the
least squares results are presented here. We compared
weed and crop dry biomass to the logarithm of species
richness by means of least squares regression.

We performed a weighted least squares regression
(where the weights were initial crop density) on mean
crop biomass, by species, as a function of the logarithm
of crop richness, in order to determine whether crop rich-
ness enhances the performance of individual species. This
tests whether species do better in polyculture than in
monoculture. The choice of weighted least squares is cru-
cial, because the variance in biomass will depend on the
number of individuals within a replicate, leading to high
heteroscedasticity.

After performing the above tests on crop richness, we
performed exploratory multiple regressions, with the in-
itial densities of crop species as independent variables,
and weed richness and weed biomass as dependent vari-

ables. This was to determine potential effects of particular
crop species, and to reveal whether any crop species are
‘diversity promoters’.

We employed redundancy analysis (RDA) to examine
relationships between crop species and weed species
composition. RDA is a direct gradient analysis technique
that is ideal in cases of low beta diversity (ter Braak and
Prentice 1988), as might be expected from short-term ex-
periments such as this one. RDA selects a linear combi-
nation of explanatory variables (in this case, crop richness
or density) that maximally explains variation in species
abundances. We applied a square root transformation on
weed dry biomass in order to dampen out the influence of
abundant weed species. We also performed a partial RDA
(pRDA) in which the effects of potentially confounding
variables (covariables) can be factored out. We assessed
the significance of crop-weed relationships by means of
Monte Carlo permutation tests of the RDA first axis as
well as the sum of all RDA axes (ter Braak and Šmilauer
1998). In cases where there is only one variable, there is
only one RDA axis and hence only one statistical test.

Most of our multivariate analyses are straightforward
applications of RDA or pRDA. However, we also per-
formed a rather unusual pRDA in which the initial crop
densities are covariables, and the 2nd-order interactions
between crop species (i.e., the multiple of the initial crop
densities) are explanatory variables. There are 28 pair-
wise combinations of crop species, and hence 28 vari-
ables. The purpose of this analysis is to test whether dif-
ferent crop species interact in determining the
composition of weed communities - as Palmer and
Maurer (1997) speculated. We did not test higher-level in-
teractions (e.g., 3-way, 4-way, etc.), as this would create
too many variables.

We used SPSS (1994) for weighted least squares re-
gression, SYSTAT (Wilkinson et al. 1992) for least
squares regression and stepwise regression, and
CANOCO (ter Braak and Šmilauer 1998) for Redundancy
Analysis.

Results

Per capita biomass

Mean individual biomass was positively correlated
with crop richness for each of the crop species, and in sev-
eral cases significantly so (Table 3). Mean biomass (and
hence total biomass) of crops of all species combined was
significantly positively related to richness. The mean
biomass for several species, as well as for all species com-
bined, appeared to increase beyond 2 species. The crop
richness effect is therefore more than just a distinction be-
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tween polycultures and monocultures (Huston et al.
2000). These results are difficult to compare to other stud-
ies, however, because in this study weed species were al-
lowed to achieve high biomass.

Weed species richness

Seventeen weed species emerged from the artificial
seed bank (Table 2), with Vicia sativa achieving the high-
est frequency and biomass. The species richness of weeds
was not significantly related to crop richness (r=0.096)
nor to the logarithm of initial crop richness (r=0.025).
Weed richness was not significantly related to crop rich-
ness when the effects of weed biomass, crop biomass, or
both were factored out as covariables.

Although our primary a priori interest was in the ef-
fects of crop richness on weed richness, we also explored
other possible correlates or determinants of weed richness
and biomass. Because these a posteriori analyses are ex-
ploratory, we do not correct for multiple comparisons and
therefore interpret ‘significance’ cautiously.

A multiple regression of weed richness with the initial
density of each of the crop species as explanatory vari-
ables was not significant (p=0.099) although the coeffi-
cient for tomato was significantly positive (p=0.047). A
similar regression using weed biomass and crop biomass
as additional variables was significant (p=0.012), with
weed biomass (p=0.006) and tomato (p=0.009) both hav-
ing significantly positive coefficients. The significance of
weed biomass is not surprising, as it probably represents
a sampling artifact (Oksanen 1996). The significance of
tomato implies that this species promotes weed diversity,
above and beyond the effects on biomass.

A multiple regression of weed biomass with the initial
density of each of the crop species as explanatory vari-

ables was significant (p=0.001), but only basil had a sig-

nificant coefficient (p=0.011). Since this coefficient was

negative, we can infer that basil suppresses weed biomass.

We obtained similar results when crop biomass was in-

cluded as an additional explanatory variable; the effects

of crop biomass were not significant.

Effect of crop richness on weed composition

Weed species composition was not significantly re-

lated to crop diversity, as assessed by RDA with crop rich-

ness as the only explanatory variable (p=0.3280). There

was also no significant effect of richness when weed and

crop biomass were factored out (pRDA; p=0.8000).

Effect of crop species on weed composition

The species composition of weeds was significantly

related to the species composition of crops, as assessed by

an RDA including the initial densities of each of the crop

species as environmental variables (trace statistic:

p=0.0015; first axis=0.0015; these results remain signifi-

cant after correcting for multiple comparisons). The

biplot with species scores and “environmental” (i.e., crop)

arrows (Figure 1) reveals that Vicia, the most abundant

weed species, was negatively related to basil density, and

positively related to the densities of borage and the three

crop species in the Asteraceae (zinnia, marigold, and let-

tuce). It is notable that the three Asteraceae point in the

same direction; this implies that related species impact

weed communities in similar ways. The three leguminous

weeds (Trifolium, Kummerowia, and Vicia) all point

away from the sole leguminous crop (soy), hinting that

competition with closely related species may be stronger

than with other species.

Table 3. The mean biomass in grams (± standard deviation) per individual at the end of the experiment. Means were calcu-

lated over all planted individuals, living and dead, with dead individuals having a biomass of zero. Correlations are between

the mean biomass and the logarithm of crop richness; observations are weighted by the number of individuals per pot.
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A parallel RDA with weed and crop biomass as co-
variables was also significant, but less so (p=0.0279 for
first axis, p=0.0798 for trace statistic; nonsignificant after
correcting for multiple comparisons). This implies that
the effects of crop composition on weed composition are
not mediated through differences in yield, or overall dif-
ference in weed response. The biplot was similar to Figure
1 and is hence not shown here.

Effect of interactions between crop species

An RDA with initial density of crops as covariables,
and pairwise interactions of crops as variables, revealed
no significant effects of interactions (p=0.8263 for the
first axis, p=0.8563 for the trace). An RDA that also in-
cluded crop and weed biomass as covariables was also not
significant (p=0.3713 for first axis, p=0.6238 for trace).
Thus the effects of crop composition on weed composi-

tion appear to be rather simple, and are direct effects of
the crops on the weeds.

Discussion

We found that overall performance for all species was
positively (though not always significantly) related to
crop richness. This better performance in mixture implies
that species have complementary resource use (Hector
1998, Hooper 1998) and may explain why productivity
sometimes increases along richness gradients (Tilman et
al. 1996).

We were not able to repeat the observation of Palmer
and Maurer (1997) that ‘diversity breeds diversity’. It is
possible that the small pots in the current study are asso-
ciated with limited numbers of individuals, hence inter-
fering with the analysis of species richness (Condit et al.

Figure 1. Redundancy Analysis of �weed� communities, using initial crop density as explanatory variable (bold face; thick

arrows). Although all weed species (genus name in italics; thin arrows) were included in the analysis, we only display labels

if the average biomass is greater than 0.01 g per pot. Arrows for weed species point in the same direction as arrows for crops

for which they are positively correlated (and in opposite directions from crops for which they are negatively correlated).

Eigenvalues of the first two axes are 0.1022 and 0.0047, explaining 91% and 4%, respectively, of the joint variation between

weed species and crop species.
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1996, Oksanen 1996, Palmer et al. 2000). The high abun-
dance of one weed species (Vicia sativa) may also have
made inferences concerning weed communities difficult.
In addition, there are many limitations to microcosm ex-
periments that limit their application to field situation
(Drenner and Mazumder 1999, Carpenter 1999). Before
seeking detailed explanations, we propose more field and
greenhouse studies to assess whether ‘diversity breeds di-
versity’ is a general pattern.

Although we did not find that weed diversity re-
sponded to crop diversity, we did uncover a mechanism
by which diversity could breed diversity: different crop
species harbor slightly (but significantly) different weed
communities. Such species-specific (or even variety-spe-
cific) effects of crop species are fairly well known (e.g.,
Callaway 1992). We did not find any evidence that crop
species interacted in their effects on weed communities.
This result is consistent with that of Parrotta (1995), who
found that the species composition of colonists under
polycultures of tropical trees was intermediate between
that of the component monocultures. However, it is not
consistent with the result of Palmer and Maurer (1997),
who found that polycultures did not have intermediate
weed composition.

The opposite scenario from ‘diversity breeds diver-
sity’ is that crop richness inhibits the colonization of new
species. This could arise from niche saturation (Giller
1994) or niche limitation (Wilson and Gitay 1995). Alter-
natively, it could result from the ‘priority effect’ of Case
(1991), who speculated that strongly interacting resident
species could repel invasion by colonizing species. How-
ever, we neither found evidence for a negative effect of
crop richness on weed richness, nor for any strong inter-
active effects on invasion.

Our observation that one crop species (in our case, to-
mato) was a diversity promoter should be treated cau-
tiously, since it was uncovered during an exploratory
analysis (see Hallgren et al. 1999). Nevertheless, the ob-
servation is provocative. Since such a diversity effect is
not mediated through crop or weed biomass, it is probably
not a direct effect of (or response to) competition. Since a
diverse weed community is capable of reducing the load
of insect pests (Schellhorn and Sork 1997) it is hypotheti-
cally possible that ‘diversity promotion’, if heritable, is a
trait that can be selected for. If it can be demonstrated that
diversity promoters exist in natural or even semi-artificial
conditions, their identification could have important im-
plications for restoration ecology. Indeed, Parrotta (1995)
found that fast-growing tropical plantation trees differed
in their promotion of species richness, and therefore sug-

gested that some species are more useful than others in the
restoration of tropical forests.

Many of the limitations of this study are obvious, but
raise important implications for future research. For ex-
ample, the species do not typically coexist in the field.
However, this raises a question worthy of further study:
are richness effects so commonly reported in the literature
a function of the coevolutionary history of the study or-
ganisms, or are they inevitable responses to richness per

se? A second concern is that crop species have limited
value for ecology. We disagree, because agroecosystems
are perhaps the most common vegetation type on earth.
Nevertheless, we agree that crops, bred to be genetically
uniform and to do well in monoculture, may differ in fun-
damental ways from wild plants (though we note that the
crops typically did better in polyculture than in monocul-
ture). A third concern is that the species involved do not
form a stable community. However, if we restricted our-
selves to stable communities, we would be left with few
examples indeed. Furthermore, the ‘diversity breeds di-
versity’ phenomenon, if it exists, would describe a situ-
ation which is intrinsically unstable, and in which diver-
sity is only limited by the size of the species pool (Pärtel
et al. 1996). We should not restrict our investigation of
richness effects to stable communities.

In colonization experiments along richness gradients,
it is crucial that the ‘weed’ species be different than the
‘crop’ species (c.f. Palmer and Maurer 1997). When po-
tential colonists are from the same species pool as the in-
itial species, it is possible that there will be a built-in (ar-
tifactual) negative correlation between initial and weed
richness, such as was found by Tilman (1997). However,
this strict distinction between the experimentally manipu-
lated species and the ‘target’ species does obscure possi-
ble complex feedbacks and nonlinear interactions be-
tween the two groups.

We agree with Naeem et al. (2000) that an experimen-
tal approach manipulating species richness is indispensa-
ble for understanding diversity effects. This study illus-
trates that microcommunities emerging from soil seed
banks have value as ‘lab rats’ for the study of biodiversity
effects, since they are very easy to replicate and control
(c.f. Palmer and Hussain 1997). However, richness gradi-
ent experiments remain extremely controversial (Huston
1999, Kaiser 2000), and the lack of realism in such experi-
ments makes extrapolation to real communities challeng-
ing. Therefore, we need to couple highly artificial experi-
ments such as this one (which removes confounding
factors) with more realistic field experiments consisting
of naturally coexisting species (e.g., Hector et al. 1999),
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and with pure field observations (e.g., Stohlgren et al.
1999).
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