
Introduction

In attempts to discover the evolutionary and ecologi-

cal forces structuring plant and animal communities, a

common approach is to test for texture convergence.

‘Texture’ in this sense describes the set of values in par-

ticular characters across the species in a community, es-

pecially characters thought to be related to the niche of the

species (Barkman 1979). The term ‘ecomorphological

convergence’ has also been used (Blondel et al. 1984).

For example, we might ask whether the set of values of

body sizes in the avifauna of a semi-arid shrubland in

Australia is similar to the set in comparable avifauna in

North America (Wiens 1991).

The evolutionary concept of adaptation and the eco-

logical concept of competition are the theoretical bases of

the texture-convergence approach, and these are the con-

cepts that the approach tests. Antecedents of this approach

are attempts to find look-alike but unrelated species on

different continents, for example the marsupial mole of

Australia and the placental mole, or the shark, the ich-

thyosaur and the dolphin (Hildebrand 1974, Young

1981). This has been described as ‘species-to-species

matching’ (Schluter 1990). The assumption is that similar

physical environments on different continents have pro-

duced similar selection pressures, and hence similar-look-

ing species.

This process will occur at the whole-community level

as well as at the level of individual species, because the

species will react not only to the physical environment but

also to each other, through competitive exclusion and co-

evolution. The result should in theory be texture conver-

gence, i.e., greater similarity between the character values

in different sites than expected under a null model. The

competitive processes that produce co-adaptation in evo-

lutionary time will also act, via competitive exclusion of

some members of the species pool, to produce conver-

gence between sites in ecological time. The sites can be
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areas on different continents, or patches within a commu-

nity, or samples at an intermediate scale, depending on the

ecological question. The appropriate null model is one in

which:

• the species, or rather their character values, are as-

signed at random to sites,

• the species richness of each site is kept as in the ob-

served data, and

• the number of occurrences of each species is kept as

in the observed data.

The opposite phenomenon, of texture divergence, is also

of interest (e.g., Campbell and Werger 1988).

Like all attempts to demonstrate community structure,

investigations of texture convergence have been contro-

versial. Many early investigations had no comparison

with a null model (Barbour and Minnich 1990). It has

even been suggested that no null model is possible

(Keeley 1992). However, Schluter (1986) was able to

frame a null model in a way that allowed application of

the analysis of variance, using a two-tailed F-test and

seeking a value less than 1.0, and Wilson et al. (1994) gen-

eralised the approach by using a randomisation test, al-

lowing a wide range of null models.

However, there has been little consideration of what

methodology is appropriate and valid. In any randomisa-

tion test there are two components: null model and test

statistic. We consider one outstanding problem in each

component:

• the appropriate null model when there is species

overlap and the species occurrence data are in terms

of species abundance, and

• a test statistic that captures information additional to

the mean.

There are two statistical questions to be answered, as with

any test: size and power (Gonzalez and Manly 1998). Size

indicates whether the test is valid, in the sense that it does

not give spurious significances. We can define size by the

percentage of times that the method yields a significant

result when analysing random data, i.e., when the null

model is true. It should equal alpha, e.g., in 5% of random

datasets P should be 0.05 or lower. A test with size greater

than this will give spurious significance (Wilson 1995).

Power is the ability to detect real effects. It is the percent-

age of times that a significant result is given when the null

model is false, i.e., when there is non-random structure in

the data of the kind that the method is seeking. For a given

degree of departure from the null model, the greater the

power the better.

The appropriate null model when there is species

overlap and abundance data

The simplest comparisons are those between areas

with entirely distinct species pools. Even with inter-con-

tinental comparisons, this is rarely achievable, because of

the existence of cosmopolitan species and because of the

spread of species as exotics. Investigations of ecological

rather than evolutionary sorting must use within-commu-

nity comparisons (e.g., Smith et al. 1994), which inevita-

bly involves overlap in species composition. When tex-

ture is measured using species presence/absence (i.e.,

binary) data, it is easy to ensure that species overlap does

not cause spurious convergence (Wilson et al. 1994,

Smith et al. 1994). It is necessary only to ensure that in

each randomisation each species occurs in the same

number of sites as in the observed data (and without any

one species being assigned twice to the same site). So long

as this is done, although there is species overlap in the ob-

served data, there is the same overlap in the randomisa-

tions. Therefore any conclusion of convergence is safe

against objections that the ‘convergence’ found is due to

the presence of some species in common between sites.

However, it is desirable to take into account the abun-

dance of each species. Sites are hardly convergent that

have complements of species that match species-for-spe-

cies in the values of a particular functional character, but

in which abundances of matching pairs of species are very

different. Texture calculations should therefore use abun-

dance values (ideally of biomass or density for animals,

biomass for plants) to produce a weighted mean value for

each character over the species present. When abundance

weightings are used, and those are randomised across all

species, another problem arises. In a randomised dataset,

an occurrence of a species may become associated with

any abundance value from the observed site. Species that

occur several times in the observed dataset, and in each

occurrence with high abundance, will on average be as-

signed lower abundances in the randomised data. As a re-

sult, such species will influence texture more in the ob-

served data than in the randomised data. Abundant

species common to more than one site, having similar

characters and being heavily weighted, would cause the

sites to be similar in the weighted mean value for any

character, and thus lead to a low variance in texture

among the observed sites. However, their net effect on the

among-site variance in the randomised datasets would be

much lower. As a result, observed sites would tend to be

more similar than most randomised ones, even if there

were no overall convergence. In the example of Table 1,
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the observed sites are similar in weighted-mean character

value (74.7 vs 69.5) because of the dominance of species

‘3’ with a consistent leaf width, but because of the ran-

domisation of abundances the randomised sites are not

similar (31.3 vs 5.7). This will give a spurious indication

of convergence when there is really none. Smith et al.

(1994) saw this problem, but could see no way to over-

come it.

A possible solution is to not randomise the abundance

values, thus avoiding the problem of splitting up the abun-

dances originally belonging to one species. But would this

solve the problem, or would the method still give spurious

significance? Would such a method be able to detect tex-

ture convergence?

There is also the issue of randomising the character

values of species that occur in more than one site. Clearly,

the number of occurrences of each species (i.e., each char-

acter value) should be kept in the randomisations the same

as those observed. When the value of one of their charac-

ters is randomised, should the value be allowed to associ-

ate with any species, only with a species that occurs in the

same number of sites, or only with a species that occurs

in the same sites?

We especially bear in mind in our investigations the

worst-case situation of a collection of samples from one

area, with considerable species overlap, though compara-

ble situations arise for any set of samples with appreciable

species overlap.

A test statistic that captures information additional to

the mean

Most convergence work has based the measurement

of convergence in the mean value of each character in the

different sites, calculating as test statistic something like

the variance of these means between sites, or the mean

absolute deviation (MAD). Convergence is then identi-

fied as greater similarity in mean than expected at ran-

dom, i.e., low variance or MAD. Evolutionary and/or eco-

logical convergence would tend to produce an identical

distribution of species values in character space (Wiens

1989), and as a test statistic the mean represents only a

fraction of this information. It is possible that communi-

ties might converge in the shape of the distribution of

character values without converging in mean (Fig. 1). If

there is a difference in the external environment of the

communities being compared, which is inevitable to some

degree, it is quite likely that this would affect all the spe-

cies similarly and thus affect the mean, but perhaps retain

the shape of the distribution.

In the presence/absence case, the shape of the distri-

bution could be seen simply by ranking the species in or-

der, and basing the test statistic on the shape of the graph

(Fig. 2). When the contributions of species are being

weighted by their abundance (perhaps transformed), the

calculation of difference in the distributions needs to take

this weighting into account. We suggest this could be

done by ranking the species at one site on a histogram in

order of their character values (the latter adjusted for the

overall mean in that site), and making the width of the

histogram columns equal to the weight for that species

(i.e., its abundance or transformed abundance; Figs 3, 4).

Then the difference between two sites can be calculated

as the area between the histograms (Figs. 3, 4). The test

statistic is obtained by adding these differences over all

possible pairs of sites. We examined the test statistic by

testing it on the random communities.

Methods

Random datasets, to determine size

Generation of random datasets. 100000 simulated

datasets were generated, each with:

• 10 or 30 sites,

• 30 species.

Each species received:

Table 1. A demonstration of spurious evidence for convergence, due to an inappropriate null model which randomises the

abundances between species. Sites �1� and �2� are more similar in weighted mean in the observed data than in the random-

ised, because in the latter the effect of species �3�, with high abundance, is dissipated. The units are arbitrary.
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• a random character value in the range 1 to 100, with

a rectangular distribution, the same value over all the

sites in which the species occurred.

• a mean abundance (A) in the range 1 to 10000, with

a geometric distribution (Wilson 1991), i.e., A = exp

(Random (ln(1), ln(10000))), where ‘Random’ re-

turns a random value with a rectangular distribution

between the two limits given.

The occurrence of each species in each site was at ran-

dom, with a 0.8 chance of occurrence. If it did occur, its

abundance was determined at random (with a geometric

distribution) in the range A × 0.75 to A × 1.33. That is,

abundance = exp (Random (ln (A × 0.75), ln (A × 1.33))).

The rather narrow range was chosen to provide a strong

test of the ability of the method to cope with species of

consistently low or high abundance.

Testing for convergence. Each simulated dataset was an-

alysed by a randomisaton test as if it were an ‘observed’

dataset. The analysis was based on that of Wilson et al.

(1994) and Smith et al. (1994), and was performed sepa-

rately for each character. The test statistic being used (see

below) was calculated on the ‘observed’ data. Three hun-

dred and fifteen randomisations were then performed (the

number was selected to minimise boundary problems be-

tween P-value categories). In these randomisations, the

pattern of species occurrence across sites was always held

the same as in the observed. The values for the character

were then randomised as specified under the null model,

by replacing the value of each species with that of another

species, selected at random without replacement, using

one of three variants:

• Character values matched freely: the character value

of a species in a random dataset was selected from

any of the observed species,

Figure 1. Comparison between means and distributions. We can look for convergence both in the mean value of, e.g., leaf

width over the species, and in the shape of the distribution across species. Suppose we arrange species in order of decreasing

leaf width. a: Three communities convergent in mean, but not in distribution. b: Three communities convergent in the shape

of the distribution, but not in mean.

Figure 2. The shape of the distribution of character values

in two sites, expressed in terms of presence/absence of the

species.
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• Character values matched by frequency: the charac-

ter value of a species in a random dataset was se-

lected from a species of equal frequency (i.e.,

occurring in the same number of sites), or

• Character values matched by pattern: the character

value of a species in a random dataset was selected

from a species with the same pattern of occurrences

across sites (i.e., occurring in the same set of sites).

The abundance values were used in one of two ways:

• Abundance values left undisturbed: the abundance

values for each species were left as in the ‘observed’

data, only the character values were randomised.

• Abundance values randomised: the abundance val-

ues for each site were kept with that site, but were

randomised among the species present at that site.

The test statistic (TS) was calculated on each random-

ised dataset. As is usual in randomisation tests, the value

of the test statistic calculated from the ‘observed’ dataset

(observed TS) was compared with the expected TS, cal-

culated as the mean of the TS values from the randomised

datasets. The probability of the observed TS was calcu-

Figure 3. Method for comparing the shape of the distribution of the values of a character in the two sites (see Fig. 4). The

overall vertical position of the two sites is adjusted additively so the weighted mean character values for the two sites are

equal.
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lated as the proportion of randomisations in which the TS

value was equal to, or more extreme than, the observed

TS, multiplied by 2.0 to effect a 2-tailed test. In such ran-

domisation tests, the TS from the randomised dataset can

sometimes be equal to that from the observed. Such cases

must be counted in both tails. This can sometimes give a

P value greater than 1.0. Such values were counted as 1.0.

Two test statistics were used: (1) the sum over the

sites of the absolute difference of the site mean from the

overall mean for the character (the formula given as D in

Wilson et al. 1994, with p = 1.0), and (2) the area between

the abundance-weighted distributions, after the character

values in the two sites had been additively adjusted to

bring them to the same weighted mean (Figs. 3, 4).

Structured datasets, to determine power

In order to test the power of the six method variants,

additional datasets were created with some degree of tex-

ture convergence built in. The same process of dataset

construction was used as described above. However,

whenever a species was due to be added, the method cal-

culated:

• the overall mean value of the character over all the

species,

• the mean value over the species that had already

been entered into the random community, weighted

by their abundance in the community,

• the mean value that the random community would

have were the next species added, with its character

value and its abundance determined at random, as

above.

The species was rated ‘unsuitable’ if the deviation of the

mean character value in the site (weighted by abundance)

after addition of the new species would be further from

the mean over all species than it was before (e.g., ecologi-

cally if a broad-leaved species was trying to enter a com-

munity that already consisted mainly of broad-leaved spe-

cies, or if a large-bodied bird was trying to enter a

community that already consisted mainly of large-bodied

birds). When the next species to be entered was unsuitable

by this criterion, the probability of entry of that species

was reduced from the standard 0.8 (see above) to 0.8 C,

where competitive exclusion parameter C indicates the

strength of competitive exclusion (from 0.0 meaning that

a species with unsuitable characters could never enter, to

1.0 meaning that there was no effect of character unsuit-

ability).

Results

Simulated datasets, to determine size

When the abundance values were randomised, signifi-

cant ‘convergence’ in the mean was seen much more

often than the 5% of datasets in which it should (i.e., the

size of the test was too high; Fig. 5b, d, f). When abun-

dance values were left undisturbed, and species were

either Matched-freely or Matched-by-frequency, the dis-

Figure 4. The shape of the distribution of character values

in two sites, expressed in terms of quantitative abundance.

The data are those of Fig. 3.

Table 2. Size of randomisation tests using the shape of the

distribution (Fig. 4) as the test statistic, i.e., the proportion

of random datasets that give results significant at P = 0.05.

An ideal test would give a size of 0.05.
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tribution of P values was very close to rectangular (Fig.

5a, c), with only an excess of P values close to 1.0. How-

ever, with abundances left undisturbed and species

Matched-by-pattern, the percentage of P values < 0.05

was somewhat lower than 5%, with a considerable excess

of P values close to 1.0 (Fig. 5e).

Results in the same direction were found using the

shape of the distribution as the test statistic (Table 2).

Structured datasets, to determine power

When convergence was built into the simulated

datasets (Fig. 6), the Matched-freely and Matched-by-fre-

quency methods gave a considerable excess of values

<0.05, as they should do (Fig. 6a,c). Power was only about

0.35 with 10 sites, and the power of Matched-by-frequency

was slightly greater than that of Matched-freely. When

there were more sites, the power of the Matched-freely

method increased, and that of Matched-by-frequency in-

creased, becoming equal to Matched-freely (Fig. 6b, d).

The Matched-by-pattern variant gave a high P value

(>0.95) in more than half of the analyses, and practically

never gave the a significant result (i.e., P < 0.05).

Discussion

The results make it clear that the appropriate test for

convergence in texture/ecomorphology with abundance

Figure 5. The size of the tests for convergence of the mean: frequency distributions of P values obtained analysing random

datasets by six methods. For a valid test, the distribution should be approximately rectangular, and especially the proportion

of significances (black column: n) should be 0.05 (as indicated by . . . . . . . . . . . . .).
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data involves leaving the abundance values as in the ob-

served data. This does not comprise building texture con-

vergence from the observed data into the null model, be-

cause texture is defined in terms of the species’

characters, and those are still being randomised. What it

does is to retain the rank consistency (Watkins and Wil-

son 1994), i.e., if there is in an observed dataset one spe-

cies that is dominant in all sites, that feature will be re-

tained in the randomisations (be it associated with a

different value of the characters), as will more subtle ef-

fects of this type. Since the method is not intending to test

for rank consistency, this amounts to following the dictum

of Tokeshi (1986) that the null model should include

every feature of the observed data except the one it is de-

sired to test.

Not to retain the abundance structure amounts to an

error of the Jack Horner type (Wilson 1995), i.e., demon-

strating an obvious feature by failing to build it into the

null model, and thus failing to investigate the feature of

interest. Here the obvious feature is that some species are

consistently more abundant and others less abundant.

This becomes especially obvious in a forest, when no

filmy fern could possibly have the biomass typical of for-

est trees. If the character of a species is more or less con-

sistent across sites (as it must be), this will give less simi-

larity between sites in the randomisations than in the

Figure 6. The power of the tests for convergence of the mean: frequency distributions of P values obtained analysing, by

three methods, datasets with 10 and 30 sites, structured to contain texture convergence. For a powerful test, the proportion of

significances (black column: n) should be as high as possible.
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observed data. All these intuitive arguments are con-

firmed by the close-to-rectangular results of Figs. 5a, c

and the far-from-rectangular results of Figs. 5b, d.

No validity is lost in the Matched-by-frequency and

Matched-by-pattern methods (Figs. 5c, e). However,

there is a dramatic loss of power using Matched-by-pat-

tern (Fig. 6e). As the number of sites increases, the

number of possible patterns increases greatly, so when

trying to swap the characters of a species it is difficult to

find any species with an identical pattern, and thus eligi-

ble for swapping. The problem is even worse with larger

numbers (Fig. 6f). In the worst case, there might be no

pairs of species with identical patterns, and thus no ran-

domisation possibilities. When the number of species is

large relative to the number of sites, there is little such

constraint in Matched-by-frequency. However, the

number of possible frequencies is the number of sites, so

as the number of sites increases, opportunity for species

matching decreases.

The recommended method of randomisation is simi-

lar to, and thus confirms the validity of, the test used by

Pillar (1996). It has been used here with a univariate quan-

titative measure, but it could be used with other types of

data and other test statistics. Although the example of spe-

cies-level convergence has been used here, the method

could be used with any taxa above or below this level

which can be described by characters.

The simulations have involved quantitative data, but

presence/absence data are just a special case, with all

abundances 0 or 1. Therefore, all the methods with appro-

priate size in these tests will also have appropriate size

with presence/absence data. Our simulations were fo-

cused on the worst-case situation of a set of samples from

one community, with consequentially very considerable

overlap in species occurrences between samples. Because

this is the worst case, demonstrations of validity will ap-

ply also to cases with less overlap. However, in between-

continent comparisons an additional problem arises that it

is not possible to find 10 or 30 samples, as used in the

simulations here, because there are too few continents.

Nested sampling of sites in continents would introduce

further power questions.

The method for comparing distributions allows us to

use more of the information in the data. An additional,

potential advantage of analysing the distribution is coping

with environmental differences. All texture work seeking

texture convergence is bedevilled by the problem that it is

impossible to exactly match environments between con-

tinents or other areas. Since texture also responds to envi-

ronmental gradients (e.g., Campbell and Werger 1988),

environmental differences can lead to divergence in tex-

ture between the areas being compared, obscuring any

texture convergence that may be occurring. If samples

along environmental gradients are available, matching in

one environmental factor would be possible by some kind

of interpolation even if no actual samples match (Pillar

1999), but with multiple environmental factors more

often the same combination cannot be found anywhere in

another area. The hope in our adjustment to equal overall

means is that the physical environment will affect all spe-

cies, leading to consistently higher or lower values of a

character across the species of a community, so the adjust-

ment will remove the effect. However, if preferred, our

method of comparing distributions can be used without

the adjustment to equal overall means. The allowance will

not be perfect, but it is another step on the way to remov-

ing environmental effects when seeking assembly rules

(Wilson 1999).

Conclusions

Randomisation methods should always be validated

by running them on random data, to check both the con-

cept and the algorithm. This is not always done. Some

dramatic exposures have been made in ecology by taking

methods that had been used to reach ecological conclu-

sions, and showing that they gave significant results with

random data (e.g., Simberloff 1976, Connor and Simber-

loff 1979, Wilson 1987, 1995, Manly 1996).

A valid test for texture convergence can be obtained

using either presence/absence or quantitative data, so long

as the abundance values are not randomised, i.e., the val-

ues for one species are kept together. Species’ character

values can be randomised freely, without loss of validity.

Restricting random swapping to species with the same

pattern of occurrences, and to a much lesser extent re-

stricting it to species with equal frequency, is not neces-

sary, and can lead to loss of power in the test.
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