
Introduction

Finding groups of species has been recognised by

Austin and Belbin (1982) as essentially different from

grouping stands. Austin (1981), in criticising Dale and

Anderson’s (1973) two-parameter method, identified one

of the sources of such difference with a contrast between

diversity in stands and abundance (commonness and rar-

ity) of species. Others, such as Bruelheide (2000), have

concentrated on the notion of fidelity, which associates

particular species with stands clusters.

Recently there has been emphasis on the functional

role of plants and the notion of guilds. Guilds originally

seem to have been introduced where a common resource

is used differentially by several species, each specialised

to exploit a particular range within the resource availabil-

ity spectrum. Although the notion of a guild thus initially

related to partitioning of resources, it has more recently

been used in phytosociology to mean a group of species

with common functional roles within the community, and

hence a group likely to be strong competitors one with

another. Thus, it might be expected that the presence of

one member of a guild inhibits the occurrence of other

members.

Guilds are also one candidate for the alphabet to be

used in assembly rules for plant communities - each guild

supplying one member to the common pool (Wilson and

Roxburgh 1994). This assumes that every community is

formed by selection from the set of available guilds after

they have been filtered through the local environment and

subject to historical contingency (cf. Austin 1986 and

Wisheu and Keddy 1992, for various models of vegeta-

tion). Some care is needed here, since a guild of epiphytes

could be defined in a tropical rainforest but this is unlikely

to be in any way analogous to a guild of epiphytic hepatics

within a Sphagnum mass except that the plants are physi-

cally dependent for support.

It is an assumption of competition theory that 2 spe-

cies with essentially the same niche will not co-exist, al-

though various mechanisms have been proposed which

do allow co-existence, such as spatial patchiness com-

bined with chance establishment (van der Maarel and

Sykes 1993, Ågren and Fagerström 1984). However,

identifying similarity of niche is difficult because it is not

always obvious what the environmental limitations

bounding the potential niche are. Indeed, Liebovitch

(1995) has discussed a situation where boundaries are sto-

chastic and not fixed at all!

Plants exist in a realised niche defined in part by com-

petition with other species. Perhaps a more detailed clas-

sification of environmental factors as they impinge on

plants, such as that of Lubársky (1969), could assist but

there may be no environmental causes and constraints

where patterns are formed as a result of vegetational proc-
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esses (Dale and Hogeweg 1998, Dale 1999). In such cases

the environmental differences are a result and not a cause

of vegetation patterns, which makes the whole concept of

a niche potentially circular. Does the environmental dif-

ference precede or succeed the vegetation difference? If it

succeeds then the niche is autopoietic but the causal se-

quence will usually be difficult to determine.

Members of a guild are a cluster of species with, in

part, similar niche requirements. If we could identify

guilds without involving environmental attributes then

the specification of niches could be obtained as a union of

the realised niches of all guild members. But can we iden-

tify guilds? Some definitions are based on defining win-

dows in space-time such as the vernal or aestival floras,

others pick environmental factors which are associated

with certain character traits deemed of importance a pri-

ori. Thus, Raunkiaer (1934) concentrated on the position

of perennating buds, although later work on life forms,

such as Ellenberg and Mueller-Dombois (1967) expanded

the concept to other environmental concerns.

Such subjectivity in determining ‘important’ envi-

ronmental factors is unsatisfactory. As Hogeweg and

Hesper (1984) put it: “Mind-mediated methods are not

suitable [for generating interesting alignments] because

minds tend to get stuck in previously recognised patterns

and never confine themselves to a set of explicit criteria

but use implicit information which renders impossible an

evaluation”. This is not to say that the introduction of ex-

pert domain knowledge is useless, only that, wherever

possible, we should seek to avoid subjectivity.

Attempts have been made to cluster character traits to

identify potential functional groups, again called guilds,

starting with Lambert (1972). Most of these attempts use

standard coefficients of similarity or dissimilarity which

reflect co-occurrence of species. It is not obvious that

such a procedure is either necessary or sufficient. Regard-

ing the necessity, shared character traits can have phylo-

genetic rather than functional origins and associated traits

may represent a response to more than one environmental

problem. Nor can co-occurrence be significant because

guild members should inhibit other members. As for suf-

ficiency, Wilson (1999) points out that assembly rules are

supposed to be dependent on competition between spe-

cies and not on common tolerance for environmental fac-

tors. As a result, the co-occurrence or otherwise of two

species in an environmentally heterogeneous habitat can-

not taken as evidence of the existence of guilds. As noted

earlier, environmental differentiation may be both a cause

and an effect of species disjunctions. In this paper, I pro-

pose a method for identifying guilds numerically which

overcomes some of these problems. As with Austin and

Belbin (1982), this involves a definition of a particular

kind of dissimilarity but with some extensions to deal

with the problem of environmental heterogeneity.

A linguistic analogy and two kinds of cluster

I shall first look at a linguistic analogy that will enable

us to establish means for identifying appropriate patterns.

Clustering is a model-building procedure which offers a

means of identifying structure in data and allowing recod-

ing of data in order to compress it (see Wallace and Dowe

2000). With a text we seek to find means of replacing

some parts of that text by symbols capturing the structure.

We can distinguish at least two coding methods. The

first is ‘chunking’ in which we take a substring of the data

(a group of letters or words) and replace it with a special

symbol. In the sentence Der Hund und der Bulle leben

zusammen we might recognise that the word ‘der’ is re-

peated, so that substring can be specially coded. The com-

mon data compression algorithms such as that of Ziv and

Lempel (1977) use precisely this form of coding, examin-

ing the probabilities of particular sequences of symbols.

Note that the meaning of the string ‘der’ is not important;

der can also be a relative pronoun but we can still code it

in the same way

Chunking is what most clustering algorithms applied

to the usual dissimilarity measures in fact do - they dis-

cover chunks which are the same (approximately) and as-

sociate these with a code symbol - the cluster name. But

this behaviour is a function of the properties of the dis-

similarity measure used. If we change what we regard as

‘similar’ then chunking need not result and other forms of

structure can be identified. As an example of clustering

word co-occurrences, Deerwester et al. (1990) developed

Latent Semantic Analysis, which is an efficient indexing

scheme for full text documents, using singular value de-

composition to first reduce the dimensionality.

The second alternative is a form of clustering where

we group words according to their function, that is we de-

rive grammatical classes. Clustering for this purpose,

which I shall refer to as C-clustering, replaces stochasti-

cally equivalent functional classes by symbols, that is the

members of a class share, approximately, the same func-

tion(s). Such classes need not share directly observable

symbols but rather share other properties. Linguistically,

they include synonyms, antonyms, specialisations, as-

pects, semantic classes such as domestic animals, pho-

netic classes such as vowels, graphemic classes such as

punctuation and syntactic classes such as modal verbs.

The important common feature of all these is that they all

require a contextual definition. Their association with a
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class is dependent on the way they function in language

use and this function is exhibited in the words associated

with them.

Members of C-clusters thus function in a similar role

in a sentence. But such C-clustering is not apparent in a

single sentence. Unlike chunking, C-clustering is ob-

tained by examining many sentences and studying the

context in which any specific word is used. To find clus-

ters we must examine the interactions with the other com-

ponents of a sentence. It is as a consequence of observing

many sentences and examining the relationships between

elements that we recognise the importance of C-cluster-

ing. In the sentence Der Hund, die Katze und das

Schwein leben zusammen C-Clustering might identify a

class based on ‘Der, die, das’ all definite articles in the

nominative singular form. In both the exemplary sen-

tences there is further C-clustering based on the concept

of ‘domestic animals’.

This form of C-clustering is illustrated by Lankhorst

and Moddemeijer (1992) who provide an example of cap-

turing combined grammatical and semantic structure, al-

though their method relies entirely on the serial structure

of text and is therefore not immediately applicable to

vegetation data. Their similarity measure is based on the

frequency with which 2 words occur in a particular order

separated by some fixed number of other words - includ-

ing none. The dissimilarity measure is a function of rela-

tionships between symbols.

The notion underlying guilds is that their elements

have a similar role to play; that is species which function

in a similar manner can be regarded as being in the same

guild. This is also a definition of synonymity, so finding

a set of synonyms is analogous to finding guilds. This is

a specialised member of the stochastically equivalent

classes and is not found by Lankhorst and Moddemeijer’s

method.

One possibility of finding synonyms is to use a meas-

ure of dissimilarity that is more appropriate to the ques-

tion being considered. This could then be subject to a nor-

mal cluster analysis procedure to identify C-clusters. The

linguistic analogy again contributes. If 2 species have the

same functional role then they should be interchangeable

just as 2 synonymous words are interchangeable; i.e., the

species should be semantically equivalent when the se-

mantics assigns the species a specific role in a vegetation.

Seeking for synonymous species should provide a means

of identifying guilds.
1

Some words of caution are needed for these are only

partial linguistic analogies and it is not clear how far they

may be drawn. While the procedure given below does

seem to successfully capture some aspects of synonymity,

it does not claim to capture them all. As Berry et al. (1993)

have pointed out, linguistic meaning can be expounded in

many ways and not always in the same words. For exam-

ple, if I search for information on ‘automobiles’ I would

expect to find also information on ‘cars’ although the lat-

ter word may never appear. Similar difficulties could arise

with species. A common environment may be expressed

by several different suites of species, indeed historical

contingency will make this very likely at a world scale.

Words may also be polysemic, having multiple meanings

so that while synonymous in one sense they may be unre-

lated in another; the case of ‘der’ has already been men-

tioned. Analogously, a species may have sufficiently dif-

ferentiated subpopulations that it may serve as an

indication of 2 somewhat different environments and

synonymity with another species could be restricted to

one of these. Michler and Arnold (1996, 1999) have

shown that such differentiation can be identified in geo-

graphically distinct populations. Words and species are

not identical, except in both being human constructions.

Synonymity and functionality

How can we identify species whose roles are inter-

changeable. If we examine linguistic data, it is apparent

that some words are more or less interchangeable. ‘To as-

cend’, ‘to scale’, ‘to clamber up’ and ‘to climb’, for exam-

ple, all mean much the same; indeed we choose between

them less on their meaning than on the pragmatic context

of the communication. Exact replacement may not be at-

tainable - it has been said that the only true synonym in

English is the pair ‘bramble’ and ‘blackberry’! But it is

clear, I believe, that a degree of interchangeability is a

property of many words and such words may still be

termed synonyms. For example, ‘to overcome’ has some

similarity with ‘climbing’, as does ‘to conquer’ but possi-

bly not so much as ‘ascending’.

Lewis et al. (1967) proposed a measure for this pur-

pose in linguistics. They argue that synonyms can be char-

acterised by two properties:

• that the 2 species being considered do not co-occur

(except in special contexts such as dictionaries).

• that the 2 species being compared are found in a

common context of other species.

1 Recently, Das et al. (1998) have also proposed using other attributes to establish similarity but this does not seem to

address the synonymity question.
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Note that neither of these requirements specifically in-

volves the serial order of words and hence they can be

used with vegetation data.

We need to measure the degree with which these goals

are met. Sampling fuzziness (Pillar and Orlóci 1993)

makes it feasible for the 2 species to co-occur by chance

while the contextual species may themselves have syno-

nyms and therefore not always appear. Instead of trying

to identify a single measure for both properties simultane-

ously, we shall instead measure both independently and

then seek to combine them in some way.

Problems

There are some residual problems of importance. The

above definition, linguistically, is not restricted to defin-

ing synonyms, but would also include such categories as

antonyms, specialisations and aspects. Whereas syno-

nyms are alike in meaning, antonyms are opposites. I have

not been able to provide any vegetational meaning to such

opposites, though there may be such. Specialisation is

subsumption where a general category, such as metal can

be replaced by a specialisation such as brass, tin or steel.

Such might be of interest in savannas if the class ‘tree’ is

recognised, but could be replaced by individual species

and it could also be used to represent nested phylogenetic

relationships. Aspects are causal associates so that heat is

an aspect of friction. Vegetational analogues of aspect re-

lationships are not obvious, although epiphytism might be

an aspect of available hosts.

Another problem is the nature of context - especially

where a word can have 2 or more functions e.g., film (ad-

jective, verb and noun) against film (noun and verb only)

which pair also shows distinct meanings - either photo-

graphic or surface cover, especially texture. Obviously

such overt semantic questions are inappropriate to vege-

tation studies, but could perhaps be given meaning in

cases where a species was named sensu lato but in fact

occurred in distinct forms. It might also be pertinent if a

species changed its contextual meaning as the plant ma-

tured; seedling niches may not equate with adult niches.

An important question concerns the impact of envi-

ronmental heterogeneity. Some species have a wide

tolerance, others a narrow one. If the environment is

heterogenous, two narrow-tolerance species may not

co-occur because of environmental differences, but

those of wider tolerance could still be present and

form a common context. Thus, the identification of

synonymity with functional equivalence will only

hold within a vegetation type. I shall discuss later

how this problem might be avoided.

Finally, there is necessarily scale dependence. As part

of the processing we require a limit on the associated

‘words’ which provide the context within which

synonymity can be assessed. Written linguistic material

generally provides obvious means of defining the context

of co-occurrence in the form of units such as phrases, sen-

tences, paragraphs, sections and chapters, each repre-

senting a different scale of observation. Oral linguistic

material also provides sensible means of fragmenting the

utterances though these do not necessarily correspond ex-

actly with the written markers; possibilities include such

as pauses, stress, intonation. Unlike the linguistic case,

there is no obvious natural unit equivalent to the ‘sen-

tence’ for vegetation. Instead the investigator must decide

on the size and shape of the sampling area.

In the present example I have used quadrats. The dif-

ficulty here is that this is fixing the scale based on some

subjective evaluation by the observing ecologist. It is not

so much that the scale might be wrong but that no substan-

tive justification for the selection is made. I suspect that

faced with choosing a quadrat size, the observer makes

some trade-off between the size of the visible local pattern

units and the larger plants and the costs of data collection.

But I would prefer to know what sort of considerations

and constraints were actually used. Yu (1992) suggests

that we have habitual ways of thinking, acting, judging

and responding, which when taken together form our ha-

bitual domain, and sometimes we need to be nudged out

of this mindset. Such habits can have far-reaching effects

(see Carley and Palmquist 1992). I should add that I per-

sonally did not select the quadrat properties in the exam-

ple.

The synonymity coefficient

Lewis et al. (1967) describe several coefficients, of

which I shall discuss only that they called G
11

, This coef-

ficient is defined below for binary (presence-absence)

data.

Let nij= number of co-occurrences of species i and j

Lewis et al. (1967) define a window to limit the range

within which co-occurrence is possible. For vegetation

data, occurrence in the same sampling unit is sufficient.

ni. = number of occurrences of species i,

n..= total number of stands,

µx = set of species which co-occur with species x,

rx = set of species which occur at least p times with species

x,
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ri
j
= set of species which occurs at least p times with i and

<p times with j, and

C, p and t are constants whose values are discussed later.

Co-occurrence component

To compare 2 species a and b, we examine all other

species, k, and calculate the following:

Let hk
ab

= [ if nak>t ∩ nbk>t then 0.5 {max(0, nak –

na.nk./n..) + max(0,nbk - nb.nk./n..}

else if nak>t ∩ nbk ≤ t then max(0, nak – na.nk./n.. )

else if nbk>t ∩ nak ≤ t then - max(0, nbk - nb.nk./n.)

else 0 ]

Now define .

The basis of this measure is a difference between the ob-

served co-occurrence frequency and the expected fre-

quency. However, only certain of these differences are ac-

cumulated, specifically positive values of the difference

which also meet the threshold conditions expressed in the

preceding conditional expression.

Context component and combination

This is calculated from the following expression:

Kij = C | ri
j
- rj

i
|

rj
i
is obviously an asymmetric measure. Such asymmetry

also appears in the first stage of Austin and Belbin’s

(1982) coefficient which might therefore be expected to

show some of the properties of the coefficient developed

here. In the usual (a,b,c,d) formulation for a 2 x 2 contin-

gency table, Austin and Belbin (1982) used a/(a+b) and

a/(a+c) as the asymmetric measure of similarity between

2 species. They then used the Manhattan metric to calcu-

late a similarity measure between the rows of this asym-

metric matrix. Ronkainen (1998, see also Das et al. 1998)

examines this second stage in his discussion of ‘external’

similarity. With such a measure the similarity of 2 attrib-

utes is measured by the differences between their relation-

ship with a probe set, which represents the context. In

Austin and Belbin (1982), the probe set is all other spe-

cies, but Ronkainen argues that this may not be an optimal

choice. It might be expected, then, that the Austin and

Belbin (1982) coefficient would show some relationship

to the synonymity coefficient here defined, since it in-

cludes context in two different ways.

We now have our 2 components and combine them so

that

Gi;j
11

= Gi;j
10

+ Kij

which can be converted to a dissimilarity measure if de-

sired by using

1 – Gi;j
11

/ max (Gi;j
11

)

We have adopted the simplest method of combination,

unweighted summation, although this may not be opti-

mal. If the two components are regarded as independent

dimensions we might better use Gi;j
12

=

{(Gi;j
10

)
2
*Kij

2
}
1/2

.

The choice of constants

There remains only the choice of constants. Without

much experience, either direct or from the literature, I

have accepted the default values suggested by Lewis et al.

(1967) for the constants C, t and p, being 2.4, 0 and 1 re-

spectively.

C is the weight given to contextual information com-

pared to that given to co-occurrence information. The use

of such a large value suggests that for the linguistic mate-

rial studied in Lewis et al. (1967) the context is consider-

ably more important than lack of co-occurrence.

To reduce noise impacts, Lewis et al. (1967) intro-

duce a threshold t and regard any value of nij ≤ t as being

equivalent to zero. Whether this is a necessary transfor-

mation with phytosociological data is not clear, so for

these analyses the threshold t has been set to 0. It would

be desirable to base t on a probabilistic basis involving the

expected co-occurrence perhaps along similar lines to

those used by Grassle and Smith (1976).

Co-occurrence is again the domain of the constant p.

A higher value would emphasise the commoner members

of the contextual group. But while some experiment is

certainly needed, it would not seem sensible to reduce the

common context to ubiquitous species only! Selectivity in

the context group is desirable to more closely bound the

‘niche’.

Clustering and environmental heterogeneity

Clustering the dissimilarities can be carried out using

any clustering procedure which is dissimilarity-based in-

cluding various linkage methods. I have used Lance-Wil-

liams flexible sorting (1967) although it is possible that

Podani’s (1989) homogeneity methods or Sneath’s

(1966) r-linkage methods might be more appropriate.

Wishart’s (1969) mode analysis would provide a non-hi-

erarchical method.

Ga b k
ab

k a b

h
x

;
;

10

1

=
= ≠
∑
µ
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Stand clustering. There remains the usual problem of de-

termining the appropriate number of clusters. For stands

there are several possibilities and for the analyses here

presented it was possible to use the Sandland-Young

(1979) test since the quadrats were paired and the stands

forming each pair can be regarded as replicates. This test

examines the degree to which sample replicates are as-

signed to the same grouping, but it relies on all replicates

of a sample being in the same group. With large numbers

of replicates this results in a lack of power since no ac-

count is taken of the situation where, for example, (n-1)

replicates are assigned to one group with one replicate as-

signed elsewhere. Methods described in Critchlow (1985)

can avoid this situation. However, with only paired sam-

ples there is no benefit to be gained by using the more

general approach.

Species clustering. It is more difficult to arrive at a suit-

able method for fixing the number of clusters of species.

Obviously methods based on spatial coherency or replica-

tion are not available. One possibility is to derive a second

dissimilarity matrix based on character traits of species

and employ Critchlow’s (loc. cit.) method to quantify the

correlation between the two matrices. Methods relying on

Gaussian distributions seem inappropriate, but Panayirci

and Dubes (1983) and Glasbey (1987) provide procedures

which might be applicable. In the analyses here presented

I have relied on subjective choice.

An objective stopping rule is important. Simply clus-

tering species does not overcome the problem of environ-

mental heterogeneity and further analysis is required. To

do this I propose that a clustering of the stands also be

carried out to determine homogeneous vegetation types.

Each species is then associated with one or more of the

stand classes in which it is frequent or assigned to a null

class if it is infrequent in all classes. If we have, say, 3

stand classes (A, B, C) a species will be associated with

one or more classes, so that it can be labelled as being an

A, B, C, AB, AC, CB or ABC depending on its relation-

ships. These class assignments can be regarded as upper

bound approximations to the realised niche widths,

though admittedly somewhat crude estimates. For each

group of species, we regard those which fall into the same

class(es) as synonymous. Species in the same C-cluster

which fall into different stand groups are regarded as rep-

resentative of the same guild but under different environ-

mental conditions.

There remains an underlying problem. Boerlijst and

Hogeweg (1991) have shown that the dynamics of some

chaotic processes can lead to the development of spatial

patterns without environmental variation pre-existing. It

is arguable, for example, that hummocks in bogs are an

example of this although experimental proof has yet to be

provided; I have also seen somewhat similar ‘double-spi-

ral’ patterns in grassland at Hochsheim, near Vienna. This

will inevitably, in the course of time, lead to environ-

mental differentiation and perhaps convergent evolution

within the patches so formed. Is this to be regarded as en-

vironmentally mediated and hence to be disregarded in a

search for guild structures? It is a function of the biota

after all! Since I do not have temporal data, I shall per-

force ignore such autopoietic pattern for the rest of the pa-

per. However, it does illustrate that there is unlikely to be

the neat separation of environmental and competitive as-

pects that Wilson (1999) envisages.

Data and analyses

The data used were of species presence/absence in

225 quadrats placed regularly in woodland communities

on North Stradbroke Island, a large sand mass east of

Brisbane. The data are more fully described in Clifford

and Specht (1978) and have been previously employed in

studies of character traits by Dale et al. (1984). In this pa-

per, the character information has not been used except as

an interpretational aid, although synonymity might be a

useful approach to identifying alternative responses to

some environmental or disturbance conditions.

Importantly for our present purposes, these quadrats

were collected in spatially contiguous pairs, each of 1 m
2

and because of this we can use the Sandland-Young

(1979) test to provide an objective means of determining

the requisite number of clusters in the stand analysis. I am

assuming that environmental variation, and associated

vegetation types, will possess spatial coherency, whereas

competitive or facilitative effects will result in small

patches without coherency at least on the scale of our in-

vestigation. The stand clusters will therefore represent

different environments and this leaves open the possibil-

ity that a common function could be associated with dif-

ferent species in the different stand groups.

The quadrat data were subjected to a hierarchical clas-

sification using the Bray-Curtis (1957) coefficient of

similarity, a SAHN clustering using the Lance-Williams

(1967) flexible sorting algorithm with β=-0.25, followed

by a Sandland-Young (1979) test to identify the number

of clusters present. The coefficient of similarity is of a

common general type. It is the ratio of the amount of over-

lap to the maximum possible amount of overlap, or how

much information is shared by a pair of samples com-

pared to how much could be shared. The maximal shared

amount is determined for the specific pair being examined

so the universe of discourse is local.
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The Sandland-Young (1979) test identifies the

number of classes by determining the degree to which

replicate samples are placed in the same group. The basic

notion is that if large numbers of replicates are being split

between groups then we have likely produced too many

clusters. The test examines the clusters to determine if the

replicates (here pairs) are being segregated more than

would be expected by chance. It is thus a measure of local

spatial coherency. Of course, it is possible to test for the

number of clusters in other ways if replicates are not

available - Krishna-Iyer (1949), Critchlow (1985) and

Wallace and Dowe (2000) all provide methods which

would be applicable for the purpose of objectively deter-

mining the number of stand clusters.

The data were further subjected to an inverse analysis

using the synonymity coefficient. No formal test for the

number of groups was made here but 5 were recognised.

They are shown in Table 2, together with their total pres-

ence in each of the 3 stand groups. We then examine

where the most frequent occurrences of the species are

situated within the 3 stand clusters.

In addition, two other inverse analyses were per-

formed, one based on the Austin and Belbin (1982) ap-

proach, the other a straightforward application of the

Lance and Williams (1968) divisive information analysis.

The synonymity and other clusterings could be compared

through a contingency table which indicates if there are

grounds for assuming that similar results are being ob-

tained by the several methods.

Synonymous species and their traits

Pillar (1999) has argued that trait-defined plant types

are preferable to species and presented a procedure for

identifying optimal traits from which the types are con-

structed. Here we can better proceed in the opposite direc-

tion since we identify species clusters which hopefully

have a common function, and can use these to identify

traits which are associated with such function. This may

be preferable because there might be several alternative

sets of traits which indicate the same function.

Some species-trait data were available, although very

limited in range being dominated by seed properties.

These data were clustered using Wallace and Dowe’s

(2000) Snob program and in addition the synonymity

analysis clusters were imposed on the trait data to see if

any obvious correlations were apparent. Snob implements

a fuzzy non-hierarchical mixture separation procedure

with an objective test for the number of clusters present

based on the minimum message length principle (see Dale

2000, for a more extended description in an ecological

context)

Results

Stand grouping

For the normal analysis of stands, the Sandland-

Young Test indicated that 3 groups were present; Clifford

and Specht (1978) had previously suggested that 3 or 4

communities were recognisable. Group A represents the

ridge top, Group B east- (and to some degree north-) fac-

ing slopes and group C west- (and to some degree south-)

facing slopes. This tripartite pattern reappeared in several

other analyses using different clustering methods. Dale et

al. (1984) showed the spatial distribution of the clusters.

Species grouping: comparison

Inspection of the results suggested that 5 clusters were

present. Comparisons of the several inverse analyses (Ta-

ble 1) showed no strong relationship between the

synonymity clusters and those of the alternatives. A G-

test indicated probabilities of 0.1 and 0.5 with information

and Austin and Belbin (1982) results, respectively.

Clearly, whatever the synonymity analysis is doing, it is

not reproducing the results obtained by the other methods.

Nor does it seem that whatever context is captured by the

Austin and Belbin (1982) coefficient is sufficient to intro-

duce a relationship with the synonymity coefficient. The

introduction of the criterion for lack of co-occurrence pre-

sumably has a large effect, especially as it is down-

weighted by the value for constant C used.

The two-way table set intersection/Bray-Curtis

The five species groups are shown in Table 2. We

have still to remove environmentally mediated pattern,

but it is clear that, in many cases, the species have their

highest frequencies in different combinations of the stand

groups. I have emphasised the peak frequencies, although

this was a somewhat subjective selection in some cases.

In order to remove the environmental effects, I have

proceeded as follows. By examining the frequency of

each species in each of the stand group, we can identify

those groups where it is of high frequency and hence an

important component of the vegetation; these have been

emphasised in Table 2. In the present example the results

can be represented using a kind of Venn diagram showing

the overlap of the stand groups and the species associated

with all the possible combinations. The results are pre-

sented for 4 of the species groups in Figures 1-4 . Group

4 has no very frequent species and has been ignored in the

interpretation.
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Table 1. Contingency tables for comparison of inverse analyses. Zero entries omitted.

Table 2. Synonymity species groups: species frequency in stand groups.
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Character traits and synonymity groupings.

Life form categories are not associated with the

groupings identified with these data; synonymous spe-

cies, which presumably have a similar functional status,

are apparently not correlated with life form within this

small region. The groupings of species from the

synonymity analysis were imposed on the character data

(Table 3) and a minimal message length evaluation made.

This indicated that the null hypothesis of a single cluster

was acceptable. The 1-cluster message length = 243.7

nits, the 4 cluster message length 289 nits with a differ-

ence of 45.3 nits which indicates odds in favour of the null

hypothesis of c. 4 x 10
19

:1!

The analysis does indicate that some shifts in the

group composition were advantageous and these are

shown in Table 4. These might strengthen the ‘myr-

taceous’ qualities of the first group, but otherwise pro-

vides no further clarification of the nature of the group-

ings. The traits are not related to the synonymity groups.

The small number of both species and traits makes the dis-

covery of any structure extremely difficult, so perhaps the

lack of relationship is not surprising even if we are ‘opti-

mistic’ in our induction, as Fisher (1992) recommends.

Discussion

The combination of an appropriate dissimilarity

measure and the coupling of normal and inverse analyses

appears to succeed in identifying clusters. However,
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Figure 1. Group 1 frequent species and stand groups. Each

circle represents one of the 3 stand groups. Species are

placed in those groups or intersections of groups in which

they have high frequency.
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Figure 4. Group 5 frequent species and stand groups. See

Fig. 1 for explanation.
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Austin and Belbin’s (1982) coefficient does not appear to

be capturing the same relationship information. It is pos-

sible that altering the set of species used in defining the

context could improve matters. It is possible, too, that the

context required is variable and might be better captured

in terms of neighbour relations than co-occurrence within

quadrats of some fixed size. This needs further investiga-

tion.

High synonymity values between species in distinct

communities should not be taken as indicative of guild

structure but rather of shared or opposed responses to the

physical environment. Such environmentally mediated

patterns are not evidence for assembly rules (Wilson

1999) where patterns are due to inter-specific interac-

tions. However, where the similarity is shared with spe-

cies in the same stand group, then we can be confident of

some functional equivalence. The stand groups distin-

guish environmental heterogeneity, so within clusters we

can expect much greater environmental homogeneity and

increasing importance of biotic interactions. The only

subjectivity in the analysis is in the selection of important

species using the frequency maxima and this could cer-

tainly be modified.

The assignment of species to stand types was some-

what ad hoc. Harter (1975ab) might provide a better

method of determining the stands with which any species

is associated. His underlying notion is that a species has 2

distributions, both Poisson. One is for casual occurrences,

the other for stands where it is of significance - an ‘elite’

group. By identifying such elite groupings it might be

possible to ’’de-noise’’ the situation somewhat. Byers and

Raftery (1997) have demonstrated the effectiveness of

such an approach.

Temporal changes in the guild membership

The present analysis relies on data from a single snap-

shot, and does not include any information on the onto-

geny of the species. It is reasonable that a plant will oc-

cupy different niches, and hence pertain to different

guilds at various stages in its life cycle. Thus, it may be

preferable to use character set types (Lambert 1972, Or-

lóci 1991, Pillar 1999) in place of species.

One problem with the use of character traits is that

they can be the result of a common phylogeny rather than

a local functionality. There is some limited evidence for

Table 3. Character traits.

Table 4. Changes to group content indicated by trait analy-

sis.
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this in the results, for one of the groups was primarily

composed of members of a single family, the Myrtaceae.

Yet other members of that family joined other groups so,

whatever the phylogenetic constraints, they are by no

means necessarily dominant. There can also be contingent

effects, for Myrtaceae are a dominant component of the

Australian flora and hence easily available members of

any grouping. The introduction of exotic taxa might con-

siderably change the composition of the guilds.

The empty cells

Why are there empty cells in the Venn diagrams? Two

possible reasons can be advanced. First, the required

niche may not be available in the vegetation type either

because of environmental constraints or because the par-

tition of the environment by other species leaves no gap

in the specific location. The other alternative is that no

suitable occupant species is available. If this latter alter-

native is true, then this provides a means of indicating

available niches which can potentially be occupied by in-

vading species. It is not obvious how these two situations

can be differentiated without detailed specification of the

niche boundaries for occupying species and for potential

invaders. Our data are a snapshot of the vegetation. We

only know that a species is present or absent but we have

no knowledge of when it arrived, if present nor if it has

arrived but later vanished, or could survive but has not yet

arrived, if absent (cf. Anderson and Rann 1995).

Using quantitative data

Even for binary data the coefficients defined by Lewis

et al. (1967) may not be a suitable measure. The authors

themselves indicate some dissatisfaction with the coeffi-

cient they originally used and developed the G
11

coeffi-

cient to overcome some of them. It is possible that still

better alternatives can be found. For example, Biberman

(1994) has also reported a context similarity measure

which might prove more appropriate.

One outstanding problem is to expand the coefficient

to accept ordered category and numeric data (cf. Heitjan

1993), these being the commonest forms of phytosoci-

ological data. Ordered category data can be coded in vari-

ous ways as binary data, while numeric data could be

quantised to give a similar result but it is desirable that the

coefficient itself be generalised. I do not propose to inves-

tigate this here in any detail. Measures based on fuzzy sets

(Roberts 1986, 1987) could substitute for the G
10

compo-

nent and various correlation measures based on subsets

defined by single species presence might be manipulated

to provide the context similarity measure.

Multiple matrix interpretation

The coefficient Gi;j
11

is a combination of two distinct

measures, specifically Gi;j
10

which represents the co-oc-

currence excluding the specified pair, and Kij which

measures the commonality of context. It would be possi-

ble to maintain these as two separate matrices. Such meas-

ures have also been discussed by Tversky (1977), who

distinguishes overlap and difference components of simi-

larity. Simultaneous analysis of such multiple dissimilar-

ity matrices has been discussed in Dale and Dale (1994)

with special regard to the use of the Pareto alternative

(Ferligoj and Batagelj 1992), the present case providing a

10
th

situation where multiple matrices are of potential in-

terest. We might also look toward various Mantel statis-

tics (Smouse et al. 1986) if we seek to relate dissimilarity

to external factors.

In fact, most dissimilarity measures involve a combi-

nation of individual contributions from several species.

This has been noted by Faith and Belbin (1986) and Gode-

hardt and Hermann (1988), and earlier by Weir (1972). In

most cases, the components are simply summed although

Weir did consider possibilities of weighted summation

and Ross et al. (1986) provided a weighted summation op-

tion in the TAXON ‘MATWAD’ program. In fact, com-

bining dissimilarity components is in some ways analo-

gous to voting on decisions, so that methods like those of

Kacprzyk (1985, 1986; see also Fuller and Carlsson 1996)

might prove useful.

Rather more important is the principle which has been

invoked here. We have designed a similarity measure for

a specific purpose by combining two different notions of

similarity. A final merger into a single number may or

may not be necessary. What is clear is that we can extend

this methodology to other situations. For example, I have

recently found some similar work by Gefeller and Pralle

(1997) which introduces a similar notion for situations

where multiple outcomes are possible in an experimental

situation.

In vegetation studies one possibility is to introduce

several definitions of context. If the species are divided

into various subsets, then each could supply its own con-

textual information. This could be an advantage in studies

of savannas where arboreous and herbaceous components

may need to be separated. A similar separation might be

appropriate with bog data, with the Bryophytes distin-

guished from other plants.

Alternatively, following Ronkainen (1998), several

sets of species could be used to define different probe sets

and distinct external similarities calculated. This would

result in several dissimilarity matrices each reflecting dif-
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ferent relationships between the various subsets. The ex-

act vegetational implications of analysing such data re-

main unexplored, although it should be useful in examin-

ing inter-synusial relationships.

Conclusion

I have shown that by appropriate definition of dissimi-

larity and by combining normal and inverse analysis, it is

possible to derive clusters of species that can reasonably

be expected to share a common functionality. Such spe-

cies may be regarded as part of a guild. The example sug-

gests that links to taxonomic and character trait syn-

dromes may occur but they do not seem strong. By

manipulating the multiple matrix approach, various other

dissimilarity coefficients can be envisaged which should

be useful in several ways. Improvements to the present

procedure can be envisaged, but it does seem to provide a

viable means of establishing guild structure without un-

due subjectivity encroaching.

Acknowledgment: To H. T. Clifford for assistance with the

character trait descriptions.
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