
Introduction

An important area in exploratory data analysis (Ben-

zécri et al. 1973-82, Orlóci 1978, Lebart et al. 1984, Le-

bart et al. 1995) is the rearrangement of the rows and col-

umns of data matrices, in order to depict their underlying

structures (Bertin 1977). An advantage of this approach is

that the investigator directly and conveniently interprets

the results, even if he is not aware of the technical details

of how rearrangements were made. It is not surprising

therefore that ecologists often call for these procedures.

The rearrangement may involve reordering of columns

and rows, the fundamental approach in seriation (Kendall

1971) and, in general, in ordination. For the purpose, Cor-

respondence Analysis (CA, Benzécri et al. 1973-82, Hill

1973, 1974) has been used most extensively, although

other scaling procedures capable of rearranging both the

objects and the variables may apply. The other major ap-

proach intends to maximise separation among blocks of

data values in the matrix, through simultaneous classifi-

cation of the rows and the columns, and is often referred

to as block clustering. There is a sharp division within this

group of procedures: the first group optimises blocks di-

rectly (see e.g., Hartigan 1975, Podani 2000), whereas the

second group of methods involves clustering the variables

and the objects separately. In this second group, further

distinction should be made between partitioning methods

(such as the k-means procedure, MacQueen 1967, see also

Diday 1971) and hierarchical clustering (HC, see e.g.,

Anderberg 1973). Partitioning strives for optimality more

directly than hierarchical clustering, with the drawback

that assumptions about the number of groups are to be

made a priori (Orlóci 1967). On the other hand, HC meth-

ods generate dendrograms which provide more details on

the association structure among objects than do non-hier-

archical classifications. Cutting the hierarchy at any par-

ticular hierarchical level gives a partition, so that a hierar-

chy can be conceived as a series of partitions. Joint use of

partitioning and HC has been considered by Lebart et al.

(1995), who proposed to derive hierarchies from parti-

tions or to optimise by rearrangement a partition obtained

through HC. André (1988) criticises the classical di-

chotomic use of HC, suggesting polythetic hierarchies as

more adequate representations of community data struc-

tures. In general, no a priori assumptions on the number

of groups are available, therefore a HC is suggested to get

a first impression on group structure. Regardless whether

the classification of rows or the columns is completed via

hierarchical or non-hierarchical methods, the data matrix

is subsequently rearranged according to the new group-

ings and then the resulting blocks examined to mutually

interpret row-wise and column-wise classifications.
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Such rearrangements are termed cross-classifications

in the literature and can be condensed into contingency

table format. In such a contingency table, there are as

many rows as the number of row groups, whereas the

number of columns equals the number of column groups

in the rearranged matrix. Each cell of this table is the sum

of the original values in the corresponding block of the

rearranged data matrix. For presence-absence data, for ex-

ample, the cell frequency is the number of occurrences in

the given block. An obvious requirement for an optimal

matrix rearrangement that some blocks should contain

many values, whilst other blocks should be as empty as

possible, all depending on the actual problem, of course.

A crucial question is then to measure how sharp these

blocks are. A table may be called well-structured if the

blocks are much (significantly) sharper than blocks

formed from the data by chance. Based on this concept,

we introduce new tests for the evaluation of group struc-

ture in hierarchy-based cross-classification tables. Given

a hierarchical classification of the rows (r-hierarchy) and

another of the columns (c-hierarchy), the idea is to inves-

tigate the interaction between the nodes of these hierar-

chies. Each node corresponds to the fusion of a pair of

groups, so that given a node of the r-hierarchy and another

from the c-hierarchy, a corresponding 2 × 2 contingency

table may be constructed. This may be used to detect sig-

nificant associations among the groups considered. In this

way, the mutual influence of each node of the r-hierarchy

on the nodes and groups of the c-hierarchy may be re-

vealed, and vice versa. The generation of statistical distri-

butions of the derived association and interaction indices

provides a test for significance. In this paper, first the

theoretical background of the problem is discussed and

then the new method, incorporating indices based on par-

ticular χ2
components, is introduced. The procedure is il-

lustrated using Ellenberg’s grassland data (Müller-Dom-

bois and Ellenberg 1974, see also Gauch and Whittaker

1981), already used by Camiz (1994) for demonstrating

the data rearrangement procedure itself.

Background theory

Analysis of concentration

Camiz (1988, 1991, 1993) reviewed methods cur-

rently available for vegetation scientists to detect inherent

structure in data tables and proposed (Camiz 1994) a

semiautomatic procedure available through the Mulva-4

package (Wildi and Orlóci 1990). This method relies

upon analysis of concentration (AOC) suggested by Feoli

and Orlóci (1979) to evaluate sharpness of blocks in rear-

ranged data matrices. Although differently formulated by

the authors, AOC is in fact a correspondence analysis of

a contingency table in the sense of Benzécri (1973-82)

and Hill (1973, 1974) with the only difference that each

cell, for presence/absence data, is normalised to the

number of its entries. AOC yields a joint ordination of row

and column groups, and the resulting χ2
value and the

mean square contingency coefficient quantify the strength

of correspondence between the two classifications. In ad-

dition, the square roots of eigenvalues (the canonical cor-

relations) can be used to express the overall relation be-

tween the row and column groups of the table. The

canonical correlations are informative on the number of

background gradients responsible for the hidden data

structure. When there is a non-random block structure,

then the underlying gradients influence both the rows and

the columns, so that their meaning should be comparable

for both the columns and the rows. This may be true only

for eigenvectors with high associated eigenvalues, i.e.,

highest canonical correlations. Thus, AOC can play a cen-

tral role in decisions regarding the number of CA axes to

display and the cut-levels of dendrograms to get optimum

classifications.

The ability of AOC in partitioning the χ2
of the con-

tingency table is helpful for identifying the influence of

environmental factors through lattices (Orlóci and

Kenkel 1987), i.e., the contingency tables built by partial

reconstruction of the original table, considering the χ2
ex-

plained only by individual AOC axes. This may also be

obtained through Principal Components Analysis on In-

strumental Variables (Rao 1964, see also Non-symmetri-

cal Correspondence Analysis, Lauro and D’Ambra 1984).

Nevertheless, some limits have to be taken into account

when its application is contemplated:

i) AOC has a meaning only when the table contains pres-

ence/absence data, though Podani and Feoli (1991) sug-

gest procedures for other types of data;

ii) no distribution-based significance test of the indices is

possible, apart from the χ2
-test, so that their evaluation

remains within the domain of rules of thumb or experi-

ence;

iii) the choice of the number of meaningful eigenvalues

remains subjective. In fact, attempts to use eigenvalue

distributions in Principal Components Analysis and CA

(Lebart et al. 1977) or the theoretical Wishart’s distribu-

tion (Hirotsu 1983, Greenacre 1988) never became prac-

tical;

iv) the overall picture on the association between groups

may be visualized by CA joint plots. However, this ap-

proach is not sufficient to explain precisely all individual

associations among pairs of groups from the rows and col-

umns: in fact, the proximity between the positions on or-
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dination planes of of a species and a relevé group does not

always reflect true closeness or high association.

Optimal cut levels in dendrograms

Several methods are suggested in the literature for the

identification of the optimal cut-levels of a hierarchy.

Camiz (1994) proposes some rules of thumb, based on ex-

amining the fusion level sequence and its first and second

discrete derivatives. The procedure looks for fusion levels

followed by significant increases, since they potentially

indicate that in the following step the two groups to be

merged may be thought statistically different and should

not be clustered together. In this paper, we shall use Mo-

jena and Wishart’s (1980) moving average quality control

rule, based on the same principle but with a well-estab-

lished statistical background. The method relies upon

moving statistics: given a sequence of values, a moving

average is the mean of m adjacent values. Let us consider

the sequence of fusion levels corresponding to the ascend-

ing sequence of nodes in a hierarchy. Having m predeter-

mined by the investigator, for every node the quantity

µj + lj + sj + kjdj

is computed. In this, µj is the moving average of the m

fusion levels to νj; lj is the correction for trend lag at node

j, so that µj + lj is the expected value of νj; sj is the moving

least squares slope at node j, so that µj + lj + sj is the

expected value of νj+1; dj is the moving unbiased estimate

of the population standard deviation at node j; and kj is the

standard variate kj=(νj+1 - µj ) / σi, where σi is the standard

deviation of νj. Beyond the threshold tj, the fusion level

increases are considered significant. Thus, all nodes j such

that νj+1 > tj are candidates for a cut-point. They are then

ordered according to their significance.

More recently, other methods have been suggested.

Gordon (1998) selects the five best methods among the

many reviewed by Milligan and Cooper (1985). Hardy

and Deschamps (1999) compare them with their new

technique which is based on the variation of the sum of

Lebesgue measures of the hyper-volumes corresponding

to each group. In addition to Feoli and Orlóci’s (1979)

AOC method, the cross-classifications have already been

considered in the literature. Both Govaert (1984) and Po-

dani and Feoli (1991) generalised k-means by rearranging

both rows and columns to groups, thus optimising objec-

tive functions. Greenacre (1988) generates two hierar-

chies with Ward’s (1963, see also Orlóci 1978), minimum

increase of sum of squares clustering criterion. Then fol-

lows Hirotsu’s (1983) suggestion to choose the cut-levels

according to fusion levels considered significant based on

the distribution of the largest eigenvalue of a Wishart ma-

trix (Anderson 1984). Its use is very difficult and time-

consuming, especially for many dimensions.

Interpretation of classifications

Many classification studies comprise four steps: i) hi-

erarchical clustering of objects; ii) a partition of objects

derived by cutting the dendrogram at some suitable level;

iii) each group is characterised to reveal the differences

among objects belonging to the different groups; and iv)

the relations are summarised for a complete explanation.

The latter could lead to the identification of a possible de-

pendence structure in the data table: in case of vegetation,

this may help to reveal ecological gradients.

For the interpretation of the groups of objects, their

differences are depicted by considering the within-group

distribution of characters. Each variable-group is ex-

plained by examining the behaviour of its members in the

objects and vice versa. The vegetation tables may be seen

in this context: groups of relevés may be attributed to the

plant associations corresponding to the group of species

present in the relevés.

For the explanation of the groups in a partition of

units, Lebart et al. (1979) developed a complete set of

tests to identify typical characters whose distributions are

significantly different over groups. The tests are based on

the statistical distributions of characters, in case of fre-

quencies, the hypergeometric law is used. For each group

of relevés, all species with frequency significantly higher

or lower than a threshold for a given significance level

(5%, 1%, or 1‰) may be listed, then sorted in order of

significance. Although very accurate in the identification

of the typical characters, especially in small tables, the ap-

plication of these methods to very large data sets showed

its limitations. Characters with very different behaviour

may happen to be typical for some group, others may be

typical of several groups but with a different average fre-

quency, so that interpretation becomes difficult. In case of

a cross-classification, Lebart et al.’s (1979) method is still

applicable, but neither direct comparison is possible

among groups of either partition, nor typical characters

may be arranged according to a partition or a hierarchy.

This requires further development of methods and tests,

specifically tailored for the cross-classifications of con-

tingency data tables.

The interest of clustering both rows and columns

leads to cross-classification techniques, where some

problems arise. In fact, the choice of optimal cut-levels

and the interpretation of group structure should not be

done separately for each hierarchy, since the search for a

dependence structure between rows and columns be-
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comes the primary goal. For this reason, an integrated ap-

proach calls for implementation.

In the following we shall deal with the last two steps

of clustering procedures and we propose indices for the

interpretation of cross-classifications. Such indices were

first introduced by Denimal (1997) for the mutual inter-

pretation of hierarchy nodes and partitions. Camiz and

Denimal (1998ab) found the indices suitable for charac-

terizing the reciprocal relationships between nodes and

proposed a graphical representation of the association

strength. Applying a grey scale to the indices themselves

or to the corresponding statistics, the cells of the contin-

gency table are shaded and the most evident associations

between the corresponding row and column groups be-

come clear. To complete this representation, the r- and c-

dendrograms may be drawn beside the data table, as usual

in quantitative ecology.

The new method

Notation and example

We consider a contingency table K for two sets of

categories I and J (usually species and relevés). A general

element of the table will be kij, i ∈ I, j ∈ J and row, col-

umn, and grand totals will be ki. = Σj∈J kij, k.j =Σ i∈ I kij,

and k.. = Σ(i,j)∈I x J kij, respectively. So, given two subsets

p ⊆ I, q ⊆ J, we denote accordingly the partial sums kpj =

Σi∈p kij, kiq = Σj∈q kij, kp. = Σj∈J kpj, k.q = Σi∈I kiq and kpq

= Σ(i,j)∈pxqkij. Then, we suppose that two hierarchies H
I

and H
J

pertain to I and J, respectively, so that we can rep-

resent the data as in Table 1. In this example, the contin-

gency table has 6 rows and 4 columns, and from the hier-

archies we consider 5 and 3 nodes, respectively, denoted

by p1,…, p5, and q1,…,q3. For node p3 = (p2, i5) of H
I
,

we may want to look for the nodes of H
J

whose associa-

tion with p3 can be regarded as statistically significant

(Denimal and Camiz 2001). Here, we considered every

node as the couple of the component groups (in the exam-

ple, q3 = (q1, q2) or p3 = (p2, i5)), but it may be seen as

well as a group where two subgroups merged (as in the

example, q3 = q1 ∪ q2 or p3 = p2 ∪ i5). Two kinds of

association should then be investigated. In the first case,

the nodes are seen as pairs p = (p1, p2) and in the second

as groups p= p1 ∪ p2 of H
I
. In both cases, we look for

the pairs q = (q1, q2) from H
J
, to explain them. Note that

here and in the following we omit the reference to the no-

tation of the elements in Table 1.

Exact conditional tests

In Cases 1-2 that follow, the absence of relations be-

tween elements of H
I
and of H

J
will be tested using the

multiple hypergeometric law proposed for categorical

data (Agresti 1990). In fact, the hypergeometric law is de-

Table 1. A sample contingency table with two hierarchies.
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fined on the set of contingency tables having fixed dimen-

sions and fixed margins.

Case 1. Here we consider the nodes as pairs: p = (p1, p2).

The 2 × 2 tables for groups p1 and p2 with q1 and q2 will

be expanded to 3 × 3 tables. More precisely, writing the

set complement of p in the total population, the 3 × 3 ta-

bles are obtained by crossing p1, p2 and p1 ∪ p2 with q1,

q2 and q1 ∪ q2 , as shown in Table 2. The table margins

are supposed to be fixed and derive from the a priori

known values k.., kp1., kp2., k.q1, and k.q2 . It is well known

that the multiple hypergeometric law is defined on the set

of these tables and only depends on the values kp1q1, kp1q2,

kp2q1, and kp2q2 (Agresti 1990).

We define the association of p and q, by the ratio

Apq = k.. kpq / (kpkq)

between observed and expected frequencies. It leads to

the statistic V = ((Ap1q1- Ap2q1) - (Ap1q2 - Ap2q2))
2

that can

be used to explain the reciprocal influences among nodes

p = (p1,p2) and q = (q1,q2). Given Vobs, the observed V,

and a significance level α, a significant interaction be-

tween the nodes p and q will result once the probability of

the event {V > Vobs} is smaller than α under the multiple

hypergeometric model. Note that in this case the interac-

tions are symmetric according to both hierarchies.

Case 2. Here we consider the nodes as groups: p = p1 ∪
p2. In this case, by merging p1 and p2, the table reduces

to the size 2 × 3, as shown in Table 3, whose fixed margins

derive from the values k.., kp., k .q1, and k.q2 . Therefore,

the hypergeometric law depends on the values kpq1 and

kpq2. Here we get the statistic U = (Apq1 - Apq2)
2

that can

be used to explain the influence of the pair (q1,q2) on p.

Given Uobs, the observed U, and α, if the probability of

the event {U > Uobs} is smaller than α under the multiple

hypergeometric model, one may attribute a significant

impact to (q1,q2) in the explanation of p. A symmetric

approach leads to the quest of nodes (p1,p2) with signifi-

cant impact in the explanation of nodes q of the other hi-

erarchy H
J
.

Test-values

In order to understand easily and quickly the differ-

ences between the considered associations, we refer every

Apq to its distribution under the hypergeometric model.

Once the probability p to get a value lower than or equal

to the observed value is found, we transform it according

to the inverse cumulative normal distribution F (Mor-

ineau and Alevizos 1992). The obtained value, called test-

value, measures the deviation from the expectation ex-

pressed in standard deviation units, much easier for the

user to compare to the usual bounds, namely ±1.96 for α

Table 2. The contingency for Case 1 discussed in text.

Table 3. The contingency table for Case 2 discussed in text.
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= 5%, or ±2.57 for α=1%. In Figure 1, the probability p is

outlined by the box enclosing all the values of Apq lower

than or equal to the observed one.

Geometrical interpretation

There is a straightforward geometrical interpretation of

the statistics U and V used in the tests. For V, after setting

δ(p1,p2),(q1,q2) = (Ap1q1 - Ap2q1) - (Ap1q2 - Ap2q2) =

it becomes clear that V = δ2
(p1,p2),(q1,q2). The expectation

and the variance of δ(p1,p2),(q1,q2) can be calculated under

the multiple hypergeometric model with

E(δ(p1,p2),(q1,q2)) = 0

VAR(δ(p1,p2),(q1,q2)) =k2/(k..-1) ×(kp1.+kp2.)/(kp1.kp2.) ×
(k.q1+k.q2)/k.q1k.q2 .

Now, if we use Ward’s (1963) agglomerative method for

the construction of the hierarchies in the frame of χ2
met-

rics, the aggregation indexes ν(n) of the nodes n = (p1,p2)

of H
I
can be decomposed, up to the constant (k-1), into the

sum of squares of standardized variables δ2
(p1,p2),(q 1,q2)

/VAR(δ(p1,p2),(q1,q2)) (Denimal 1997), namely

.

As a consequence of decomposition, one may use the pre-

vious tests to identify the siginificant cut-levels in both

hierarchies. In fact, if at least one node of the c-hierarchy

has a significant interaction with the nodes of the r-hier-

archy at a given α, a cut level may be chosen so that all

the nodes under that have no interaction. This rule should

be used with care in the case of hierarchy built on dis-

tances computed on reduced dimensional factor spaces,

since interactions are estimated within the contingency ta-

ble, and significant low-level associations among items

may occur due to the loss of information in the considered

factors space. For this reason, in this case one may decide

to use the rule only in pre-defined upper parts of the hier-

archies, chosen with other criteria.

For U we introduce δp.(q1,q2) = (Apq1 - Apq1) =

k..[kpq1/kpkq1) - kpq2/(kpkq2)] so that U=δ2
p,(q1,q2)and simi-

lar comments may be made concerning its distribution.

Note that in the table reporting the results of the applica-

tion, δ2
p,(q1,q2) will be displayed as the share of (q1, q2)

to the sum of δ2
-s.

Application to Ellenberg’s grassland data

As an example, we consider Ellenberg’s grassland

data table (Müller-Dombois and Ellenberg 1974, see also

Gauch and Whittaker 1981) used also in Camiz (1994).

The table represents 25 relevés of meadows from Ger-

many, with 76 species present in more than one relevé (the

singleton species were omitted). They comprise three

community types: Bromus-Arrhenatherum, Geum-Ar-

rhenatherum, and Cirsium-Arrhenatherum. We do not

discuss here the analysis already made by Camiz (1994)

for structuring the table and accept our previous choice to

keep only the first two CA axes. We compare here the rule

of thumb for the cut-levels, validated by the AOC, with

the cut-levels obtained by the second rule of Mojena and

Wishart (1980) and we discuss the information obtained

by the use of the tests described here.

In Figures 2 and 3, relevés and species are represented

respectively on the plane of the first two CA axes. An

arch-effect is evident, due particularly to relevés 25 and

19 (corresponding to group 1 of 7) and species 76, 91, and

27 (groups 3 and 2 of 13), which only partially hides a

possible second gradient.
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Figure 1. The test-value associated with Apq, the observed value.
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Two HCs were performed through Ward’s (1963)

method on the Euclidean distances between objects on the

plane of the first two CA axes. Camiz’s (1994) rule, based

on the inspection of fusion levels and derivative se-

quences, suggests 3, 5, and 7 groups for the relevés, and

5, 8, and 13 groups for species. The results of the AOC,

in particular the inspection of canonical correlations, sug-

gest no more than two gradients, with 0.4 as a threshold.

Camiz (1994) chose the 7 × 13 cross-classification, in or-

der to rearrange the vegetation table, according to the po-

sition of the groups along the first AOC axis. It must be

pointed out also that all partitions with 8 groups of species

had less significant results than the partition with only 5

groups. The application of Mojena and Wishart’s (1980)

second stopping rule suggests 3, 5, or 4 groups of relevés

and 3, 2, 7, and 13 groups of species (or 3, 2, 7, 5, 8, and

13, according to different window sizes used in the com-

putation of moving statistics). According to this rule,

without access to the results of AOC, one could select first

the 3 × 3 cross-classification followed by the 5 × 7 table.

Considering in detail the tables constructed using in-

teraction indices and tests results, the first table (Ta-

ble 4) allows to detect significant interactions

between nodes (p1,p2) and (q1,q2). Here, each row

corresponds to a node of the species hierarchy with its

two branches and corresponding relative weights;

each column corresponds to a node of the relevé hier-

archy with its branches and relative weights. In each

cell, the interactions between pairs of branches of

each node are reported in terms of four test-values

with the p-value of the interaction test. Recall that the

p–value represents the probability of the critical re-

gion in the corresponding test.

Figure 2. Representation of relevés along correspondence

analysis axes 1 and 2. The labels of groups of relevés ac-

cording to the chosen partition are in bold italics

Figure 3. Correspondence analysis ordination of species for axes 1 and 2. The labels of groups of species according to the

chosen partitioning are in bold italics. The horizontal scale is doubled for clarity.
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Examining the second table (Table 5) identifies the

significant differences of association between species

nodes n=(p1,p2) (considered in this case as unions p1 ∪
p2) and each of the sub-clusters (q1, q2) defining the

relevé nodes (the reciprocal table was calculated but is not

shown here). Each row corresponds to a node of the spe-

cies hierarchy with its two branches and corresponding

relative weights; each column corresponds to a node of

the relevé hierarchy with its branches and relative

weights. In each cell, shares of indices δp(q1,q2) are given,

together with the corresponding test-values and the inter-

action p-value. The two tables may be used jointly for a

mutual interpretation of both hierarchies.

The inspection of Table 4 reveals several significant

interactions between the nodes of the two hierarchies, up

to the 8 × 16 cross-classification. Lower level significant

interactions were considered uninteresting, since they

seemed too isolated or limited to too small groups. Based

on our former observations, we limited the study to cross-

classifications up to 7 × 13. In the following discussion,

their number, derived from the HC procedure, will indi-

cate the nodes. The association with the number of parti-

tion groups, represented in Figures 2 and 3 will be given

in the structured table (Table 6).

Table 4 suggests that the highest node in the relevé

hierarchy, node 49 = (40,48) has opposite highly signifi-

cant effects on the branches of the highest node of the spe-

cies hierarchy, node 151 = (149,150). From Table 5 it is

seen that the influence of node 49 = (40,48) can be noticed

at the 5% level. In fact, the species belonging to branches

150, 147, 145, 141, and 140 are rare or entirely absent

from group 1 (40) of relevés, whereas the species of

branches 149 and 144 are abundant in the same relevés.

Considering relevé node 48 = (46,47) in Table 4, we

observe significant interactions with species nodes 150 =

(147,148), 148 = (145,146), 147 = (140,142), and 141 =

(131,138). In Table 5, one may notice that the relevés of

Table 4. Interactions between nodes of the relevè hierarchy (columns) with nodes of the species hierarchy (rows). The four

test values in each cell show the associations between row branches aj and bj and column branches ai and bi. In both head-

ings and label cells, the two branches of each node are given, with relative weight. In each cell, test values and significance

level are provided. In the table, weights and p-values are multiplied by 1000 and test values by 10. p-values must be com-

pared to 5% and test values must be compared to ±1.96, corresponding to the 5% significance level.
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branch 47 contain species of nodes 147, 142 and 140,

whereas in branch 46 these species are nearly absent (142)

or absent (140). In the same way, it appears that the

relevés of branch 46 (contrary to those of branch 47) con-

tain species of branch 146, which explains the significant

difference of associations observed between branch 146

and each of the two branches (46,47).

Considering now relevé node 47 = (39,45), strong in-

teractions are found with the species nodes 150 =

(147,148) and 147 = (140,142). The explanation comes

from the more abundant number of species of branches

147 and 140 observed on branch 45 of relevès.

As regards relevé node 46 = (43,44), significant inter-

actions are noticed with nodes 151 = (149,150) and 148 =

(145,146). The first interaction was already explained and

the second can be interpreted from the more important

number of species of branch 145, present in the branch 44

of relevés.

A study of some remaining interactions completes the

discussion. Node 45 = (27,41) has an interaction with the

node 142 = (130,137) coming from the absence of species

of branch 137 in relevé branch 27. The node 44 = (42,18)

has two significant interactions with species nodes 145 =

(135,141) and 143 = (139,89). This is explained by the

poor number of species of group 8 (135) in relevé number

18 and by the presence of the species Euphrasia odontites

(89) only in relevé 18, but in none of the branches of 42.

In summary, the partition of seven groups of relevés

reveals significant interactions with all the 13 groups of

species. A deeper investigation did not seem of higher in-

terest and as well one may reduce the number of groups,

according to both the discussed choice of cut-levels and

the phytosociological interpretation.

Table 5. Influences of the nodes of relevè hierarchy (columns) on the nodes of the species hierarchy (rows). The two test

values in each cell show the associations between row nodes nj and column branches ai and bi. In both headings and label

cells, the two branches of each node are given, with relative weights. In each cell, (called delta in the table) shares are listed,

together with test values and significance level. In the table, weights, deltas, and p-values are multiplied by 1000 and test

values by 10. p-values must be compared to 5% and test values must be compared to ±1.96, corresponding to the 5% signifi-

cance level.
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The previous observations suggest now which inter-

actions must be taken into account. Besides, the inspec-

tion of the structured table (Table 6), based on the infor-

mation resulting from the two tables with the indices of

interactions, becomes easier. The first evident interaction

concerns node 49 = (40,48) of relevés and node 151 =

(149, 150) of species. The relevés of branch 48 are very

poor of species of branch 149 (among others, Carex acu-

tiformis, Polygonum bistorta, and Carex gracilis),

whereas they are present in the two relevés of group 1
(branch 40), poor of the species of the branch 150. In fact,

Table 6. Structured data table according to the 7 × 13 partition based on correspondence analysis coordinates. Groups are

rearranged according to AOC axis 1 coordinates. Species and relevès are arranged within groups according to CA axis 1 co-

ordinates. In the dendrograms, nodes are indicated by the corresponding node numbers and near to both row and column

groups are the group numbers according to the chosen partition.
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only species of group 8 (135) are also present (but these
are ubiquitous, as Arrhenatherum elatius, Poa pratensis,

Dactylis glomerata) and those of group 11 (132): Cirsium

oleraceum, Geum rivale, Melandrium diurnum,

Deschampsia caespitosa, etc. Relevé node 49 interacts

with species node 149 = (136,144), since species of

branch 144 (Polygonum bistorta, Rumex cristatus and

gracilis) are present only in relevés of branch 40, whereas

some presence of those of branch 136 may be found in

groups at node 48 (Lychnis flos-cuculi, Myosotis palus-

tris, Carex acutiformis).

The second interaction of interest concerns the node

pairs 48 = (46,47) and 150 = (147,148). Species of branch

147, such as Bromus erectus, Koeleria pyramidata, Carex

flacca, etc., are present only in the relevés of branch 47.

Most of the species of the branch 148 are present in both

relevé branches, but another interaction should be consid-

ered now, between nodes 48 = (46,47) and 148 =

(145,146). In fact, only species of branch 145 are actually

present in node 48, whereas those of branch 146 (Cirsium

oleraceum, Euphrasia odontites, Ajuga reptans, Alopecu-

rus pratensis, Holoschoenus lanatum, etc.) are present

nearly only in the branch 46. Considering the described

interactions, a 3 × 5 cross-classification makes sense.

Continuing the discussion of the results, one may find in-

teractions concerning all nodes of both hierarchies up to

the described 7 × 13 cross-classification. This describes in

finer detail the structure of the studied table and justifies

the choice to maintain Camiz’s (1994) partitions in our

description: it will be the ecologist’s decision to choose

the appropriate level of detail.

Discussion

Interpreting the results of classical exploratory data

analysis, based on ordination and classification, requires

sophisticated tools. The attempt of Lebart et al. (1979) in

proposing a complete set of such tools, however, is not

useful in the case of cross-classifications since only one

partition of individuals is taken into account at a time and

interpretation is based on the behaviour of single vari-

ables in groups. The exact conditional tests proposed here

are based on the multiple hypergeometric law and take

into account hierarchies of variables and objects simulta-

neously. They are applicable to cross-classifications of

any contingency data table. In addition, the associated sta-

tistical tests allow selecting the interaction level of the

highest significance, thus revealing the mutual relations

among rows and columns of the table.

Feoli and Orlóci’s (1979) AOC is a useful tool for the

quick inspection of the sharpness of a cross-classification,

for measuring the quality of a restructured vegetation ta-

ble, and for showing correspondence between the groups

of both partitions. The ability to represent the results with

a classical ordination scatter diagram is helpful, together

with its use to identify lattices of background environ-

mental factors. Nevertheless, as all exploratory ordination

methods, it is limited to suggesting the possible relations,

rather than to hypothesis testing. The exact conditional

tests associated to the proposed indices allow a more pre-

cise and reliable estimation of influences and interactions,

thus enabling the scholar to be more certain of his results.

As proposed here, the joint application of AOC and

the exact conditional tests allowed a very clear descrip-

tion of Ellenberg’s data table. AOC keeps its place as a

tool for the analysis of vegetation tables, since the deci-

sions concerning the number of factors, the evaluation of

the sharpness of the results, and the overall quality of the

cross-classification remain its advantages. It is interesting

to observe that the inclusion of the new tests to clustering

in classical data analysis procedures (Camiz 1994) adds

elements of hypothesis testing in the otherwise explora-

tory frame. Concerning the choice of optimal cut-levels in

particular, it is evident that any exploratory method based

on the fusion level sequence may provide only a first

guess. Tests by the examination of the interactions are re-

quired. In addition to interactions detected by the data

analyst, the ecological meaning of the interactions should

always be considered.

We kept here the structured table rearranged accord-

ing to the sequence of groups along the first AOC axis

observing the constraints of contiguity established by the

dendrograms, and in each group rearranging items ac-

cording to their position along the first axis of CA. This

may be refined by the information obtained through the

proposed statistics, since one may choose to exchange the

branches of each node according to the influence of nodes

of the other hierarchy. Such a method of organisation

should be made automatic, a goal of our future research,

together with the development of a better method of pres-

entation of the results. In fact, up to now the program

printout is rather hard to read and calls for a better graphi-

cal presentation of results. This should be done automat-

ically, by introducing a grey scale of cell patterns tied to

the level of significance of the interaction as usual in trel-

lis diagrams. Both graphical improvements should be

helpful for an average user.

Extensions of these tools to other kinds of data tables

are currently under study, concerning in particular the

three- and multi-way tables, as well as classical individual

× variables tables. The aim is a complete set of interpre-

tation aids, suitable for different data structures.
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