
Introduction

There are various means by which models can be as-

sessed for inductive purposes (Dale submitted). Com-

monly these include such items as the balancing of com-

plexity against simplicity to reduce the effects of

overfitting, and balancing the coarseness of parameter es-

timates against precision of fit to avoid the use of overly

precise estimates. In the present paper we want to concen-

trate on the minimum message length principle of Wal-

lace & Freeman (1987) and Wallace & Dowe (2000), and

to illustrate some of the problems which can be addressed

through its use. This principle is very simple in concept.,

From the class of models we are considering, we choose

the model that permits us to encode both data AND model

in the most concise manner. The coded message is com-

posed of two parts. The first provides estimates of the un-

known parameters of the model using a code optimal for

the given prior distribution, in the sense of shortest mes-

sage length. The second then describes the data using a

code that would be optimal were the estimates correct. It

is not necessary to construct the coded message since we

need only calculate the length of the relevant messages to

make comparisons between models.

Any patterns derived from a set of data must be de-

pendent on the sampling scheme and the size and shape

of the plots selected. Random sampling is not required by

the induction method although the results will reflect any

selection bias. Increasing the number of samples used will

not remove such bias but should lead, asymptotically, to

convergence on the optimal solution for the given data.

Similarly, finding structure in data presupposes that we

have made observations on some set of attributes.

Ecologically, any inferences to be drawn are necessarily

a function of categories, such as species or growth forms,

and properties, such as presence or biomass, used to de-

scribe the samples. MML does not change these depend-

encies on scale and description. We shall assume that the

data are in the form of a rectangular matrix showing the

abundance of species in sites. The MML literature uses

the term ‘things’ for the items to be clustered, and ‘attrib-

utes’ for the descriptors used and this practice will be

adopted here.
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Minimum message length clustering

How many clusters

Clustering involves choosing models from a class of

models where the number of clusters is the single parame-

ter to be estimated. The null hypothesis is simply that

there is one cluster only; no special status for the null hy-

pothesis is needed. Present methods for estimating the

number of clusters leave much to be desired. For example,

for TWINSPAN (Hill et al. 1975) the only strict criterion

applied is that clusters must not be too small! Ignoring

such size limits, the number of clusters must be an integer

power of 2, a most curious restriction to impose. Com-

bined with the breadth-first search used, this can result in

large heterogeneous clusters remaining undivided while

small clusters are broken into minute pieces. Users must

rely on subjective evaluation of the meaning of the clus-

ters (cf. Austin 1970) except when the data have special

properties. Thus, the Sandland & Young (1979) test relies

on replication of samples, while the Krishna-Iyer (1949)

test presupposes the acceptance of spatial coherence as a

desirable characteristic of the results.

Various suggestions have been made for determining

the number of clusters to be retained (see Dale, 1987, Gor-

don 1994) but, because the calculated statistics are extre-

mal values, normal significance levels are inappropriate.

More recently data-based tests have been suggested with

Pillar (1996) using bootstrapping and Boik (1987) using

permutation tests, but still some caution is necessary.

Hayes (1996) has noted that permutation methods are

NOT always distribution-free. They may not require

Gaussian distributions but do assume that any distribu-

tions being compared are the same. Cross-validation is

another possibility, although this is known to be equiva-

lent in the limit to using Akaike’s (1978) coefficient.

The MML principle supplies a means of estimating

the correct number of clusters. As the name suggests this

is just the number of clusters which minimises the length

of message needed to describe the data adequately. MML

can be regarded as a means of estimating parameters so as

to maximise the posterior probability of the estimate

(Wallace and Dowe 2000). It uses prior probabilities but,

unlike the standard Bayesian maximal a posteriori theory,

it optimises a probability not a probability density and is

invariant under 1-1 re-parameterisation. Instead of maxi-

mising the posterior probability directly, MML makes use

of a conversion to message length; an event of probability

p corresponds to a message length λ = – log2 (p). The pro-

cedure is then to minimise the overall message length.

This is equivalent to finding the length of the shortest pro-

gram which, together with noise, will generate the data

(Chaitin 1966). MML can also be regarded as one way of

estimating the Kolmogorov complexity (Kolmogorov,

1965) and of balancing complexity of a model against its

adequacy of fit.

Thus, if we seek to estimate the mean and variance of

a Gaussian distribution, which is equivalent to a 1-cluster

solution for numeric variables with a Gaussian within

cluster distribution, we find that, for the mean, the estima-

tor is identical with the maximum likelihood estimator; x

= Σi (xi) / N.

If we let s
2

= Σi (xI – x)
2
, the maximum likelihood es-

timator for the variance, when the mean has also to be es-

timated, is s
2

/ N, which is known to be biased. The MML

estimator is s
2

/ (N-1). Similar estimators can be obtained

for discrete multistate variable probabilities, for the rate

parameter of Poisson variables and for the mean and con-

centration parameters of circular von Mises distribution

(Wallace and Dowe 2000). In mixture modelling, the

number of parameters grows with the data and the number

of clusters. Maximum likelihood can become inconsistent

(or very inefficient) with such problems whereas the

MML estimates remain consistent.

The message

As noted above, the message length to be minimised

has two components. In the hypothesis component of the

message there are 3 parts which are:

• The number of component clusters. A priori, all

numbers up to some constant are assumed equally

likely.

• The relative abundance of each component. This

provides labels for the clusters that can be used to in-

dicate the assignment of things. These are encoded

as a multinomial distribution.

• The cluster description. The distribution parameters

appropriate to each attribute for each component.

Each parameter, except for multistate attributes, is

considered to be specified to a precision of the order

of its expected estimation error, so well-measured

components have parameters specified with greater

precision. This is significant since ordered category

data is often employed in ecological studies, and

such data are very coarsely measured.

The fit-to-data component is calculated as follows. For

each thing we identify the cluster(s) to which it assigned,

together with the relative probability of that assignment.

Although the original program for Snob (Boulton and

Wallace 1970) crisply assigned things to clusters, and

hence was a segmentation procedure, it has since been de-
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termined that fuzzy, probabilistic, assignment in fact gen-

erally leads to shorter message lengths (Wallace 1990). In

practice, each thing is allocated (either pseudo-randomly

or randomly) to a single class chosen from the posterior

distribution. The associated uncertainty can then be used

to provide information on the succeeding thing. With ran-

dom assignment, an extension of this procedure can be

used to sample the number of clusters in proportion to its

posterior, and given sufficient time the estimation process

will converge (Richardson and Green 1997).

The first 3 parts specify our hypothesis, the 4
th

part

provides a possible encoding cost for our data. A more

complex hypothesis may produce better data encoding

but the extra cost incurred to code the hypothesis may ex-

ceed any gain in coding cost because of better fit. Thus,

the optimal choice involves a balance between hypothesis

complexity and fit. In addition, adjustments are made to

balance the cost of high precision of expression of pa-

rameters to the quality of approximation of the data.

The mechanics of MML

The MML principle proposes that we measure the

quality of a model by determining the minimal message

length needed to transmit the data using an optimal code.

Changes to the model are evaluated through changes in

this message length. To measure the length of the message

we have to combine the several parts. There may be other

components of a full message but these are of constant

length so we can ignore them when comparing model so-

lutions. For any probability p, the message length re-

quired is –log2(p) bits, so we have, for model H and data

D, Message Length = – log2(p(H)) – log2(p(D|H)).

Minimising the message length is equivalent to max-

imising Pr(H).Pr(D|H) which by Bayes rule equals

Pr(D).Pr(H|D) and, since Pr(D) is independent of H,

MML maximises the Bayesian posterior probability

Pr(H|D). More precisely, assuming a locally flat prior and

a quadratic likelihood function, we have

E(Message Length(y, θ)) = - log(h(θ)) - log (f(y, θ)) +

precision terms,

where h(θ) is the assumed known prior density on θ and

f(y|θ) is the likelihood of y given θ. This expression re-

mains an approximation and there may be modifications

necessary in other applications of the principle, for exam-

ple, in factor analysis.

The expressions used for determining the optimal en-

coding depend on the distribution. Thus to transmit K val-

ues from an M-state multistate distribution, assuming a

uniform prior over the possible combinations for the fre-

quency of observed variables is given by

MessLen(H&D) ≈ (M-1)/2 (ln(K/12)+1) – ln(M-1)! –

m=1ΣM(n[m]+1/2) ln(p[m]) ,

where n[m] is the number of values in state m and p[m] is

the probability stated for state m estimated as

p[m]=(n[m]+1/2)/(K+M/2).

To transmit K values from a normal distribution where the

values are continuous real and stated to a specified accu-

racy ε, with mean µ and standard deviation σ and a global

distribution µp, with a uniform prior in the range µp,±2 σp

and standard deviation σp with ln (σp) having a uniform

prior in the range ln (ε) to ln σp (2π)
0.5

is

ML(H&D) ˜ -ln (4 √{K/12} . σp/ σ)) - ln {ln (√(2π) σp/

ε) √((K-1)/6)- K ln ( σ√ (2π)/ ε +1/2) +1/2.

Similar expressions can be derived for a Poisson distribu-

tion, with parameter α, and for the circular von Mises dis-

tribution with mean µ and concentration κ (see Wallace

and Dowe 2000).

The Snob program

The MML clustering algorithm is implemented in the

Snob program, first presented by Boulton and Wallace

(1970, 1973) and in updated form by Wallace and Dowe

(2000). The program is written in FORTRAN and is avail-

able for not-for-profit academic research use from

http://www.cssw.monash.edu.au/~dld/Snob.html. Docu-

mentation is available at the same site.

The input to Snob starts with a description of the at-

tributes which indicates their inclusion or exclusion and

their type. Excluded attributes are not used during the

clustering procedure itself but their significance to the fi-

nal clusters is evaluated. Attributes may be any 1 of 4

types - multistate, numeric-Gaussian, numeric-Poisson or

Circular (von Mises). Each type requires some additional

information; for multistates, the number of states, for nu-

meric and angular, the precision of recording and for an-

gular, whether the recording is in degrees or radians. The

data themselves then follow. Each thing is given a unique

reference number and a list of attribute values; a reference

value of zero terminates the input. If the reference number

is negative the thing is not used to form clusters although

it will be notionally assigned. Missing values are permit-

ted in the data ( a - sign suffices), and these are assumed

to be at random. The program also assumes no correlation
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of attributes within clusters, and that the things are inde-

pendent samples. Similar assumptions are found in almost

all other clustering methods and we shall discuss ways of

relaxing them later.

The program structures the things into clusters, the

number of which it estimates. Each thing is, conceptually,

assigned a relative probability of belonging to every clus-

ter although output is suppressed if this probability is p ≤
0.01. For each cluster, the attributes are examined to see

if their parameters within that cluster differ significantly

from the corresponding parameters of the whole popula-

tion and thus whether they are contributing to the differ-

entiation of the cluster. As far as assessing significance is

concerned, the message length is actually calculated in

nits (using loge in place of log2), and a change of 10 nits

represents considerable significance; it indicate odds of

more than 22000:1 in favour of the model with the shorter

length!

The message information is composed from the com-

ponents by summation of the message lengths associated

with each of them. The overall accuracy of the estimate of

the message length is approximately 1 nit.

The algorithm involves reallocation of things between

clusters using an EM algorithm, as in k-means clustering,

and splitting and merging of clusters, all evaluated by

their effects on the message length. Splitting is investi-

gated by maintaining subclusters within all sufficiently

large clusters and investigating if using these produces a

reduction in message length. Merging involves trials of all

pairs of clusters and accepting a merge if the message

length is reduced. To identify potentially useful actions,

both merging and splitting initially assume that only

things in the cluster(s) being examined will be affected by

the changes. Once some candidates have been found us-

ing this approximation, a full evaluation is made. Initiali-

sation is usually by specification of some arbitrary

number of clusters with things randomly assigned. Alter-

natively, the user may supply an initial configuration.

Unfortunately, the implemented algorithm does not

guarantee a globally optimal solution, in part because it

does not sample the number of clusters from the appropri-

ate a posteriori distribution. The reallocation procedure

may also encounter local optima and several starting as-

signments are usually employed. Recently, as noted ear-

lier, Richardson and Green (1997) have developed appro-

priate procedures (the Reverse Jump Monte Carlo Model

Composition procedures) which do guarantee optimality

given sufficient time; how long that time is remains sub-

ject to further study.

The program will not find very small clusters, those

with fewer than 4 members, but they can often be detected

by closer examination of the results. Within a cluster, the

message lengths associated with things provide a means

of identifying outlying members and these are prima facie

candidates for small clusters.

Data and analyses

The analyses presented here are exemplary rather than

substantive for it is hoped to examine the questions in

more depth later. However, they do provide some evi-

dence of the flexibility of the methodology in answering

various questions of interest to a user and in establishing

the impact of user choices.

Slovak data

It would be desirable for the within-cluster variation

itself to be subject to estimation from some class of pos-

sible distributions. While this facility is not present in the

program, Snob does provide for two different numeric at-

tribute distributions within clusters, Gaussian and Pois-

son. If we have frequency data we can elect to use either.

We have used data from Slovakian calcareous grasslands

(L. M.) to examine within-cluster distribution. These data

consist of 22 samples containing 46 species whose per-

formance was recorded using a cover-abundance scale.

The samples were originally thought to be arranged along

a gradient, although Dale (2000a) has suggested that this

is not so. We have numbered both things and attributes in

order of the supposed gradient.

Two analyses were performed using these data, one

assuming a Gaussian within-cluster distribution, the other

a Poisson distribution. This is possible because the or-

dered category data can be interpreted either as a number

or as a non-negative integer frequency counted out of 9,

the maximal code value. The question of interest is which

interpretation provides the most effective coding. We

have assumed equal prior probabilities for Gaussian and

Poisson models.

A second experiment was made to assess the effec-

tiveness of embedding in spaces with different metrics.

Given a dataset A, it is possible to transform it to another

dataset B such that a Euclidean distance in A is equivalent

to some other metric in B, such as a chi-square metric, a

chord distance or a Hellinger distance (Legendre and Gal-

lagher 2001)
1

. In order to make the analyses comparable,
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the Gaussian analysis was repeated using the same preci-

sion as these alternative distances. By identifying the met-

ric providing the greatest reduction in message length, it

is possible to decide which is most suited for capturing

vegetation dissimilarity structure.

Latvian data

The second set of data pertains to a Latvian bog (L.S).

The data consist of 48 stands of 1 m
2

from a single site,

described by the % cover of 32 species, with the stands

selectively chosen to provide a characterisation of the par-

ticular vegetation type. An analysis using the ‘peeling’

technique of Hoffman and Jain (1987)
2

indicates that

these data might be close to a multivariate normal distri-

bution. There is weak evidence (Dale unpublished), using

methods developed by Hubert and Arabie (1994), for the

existence of two gradients or perhaps a circular sequence.

These data are used in two different comparisons.

First, Watanabe (1969) has proved in his ‘ugly duckling’

theorem that the notion of similarity relies on selecting a

limited set of features. With increasing numbers of fea-

tures, the similarity of all pairs of objects is asymptoti-

cally a constant! In most multivariate analyses of vegeta-

tion data all species are included, yet this presupposes that

they are coherent (univocal) in the message they are send-

ing. If they are incoherent, then some structure is likely to

be hidden, even if the entire analysis is not vitiated by am-

biguity. With these bog data, we have two major compo-

nents present in the vegetation, comprising the vascular

and the non-vascular species. With other vegetation types

we might argue that the loss of information from non-vas-

cular species is tolerable because such species largely re-

flect very local conditions, but the non-vascular compo-

nent is clearly of considerable significance in bogs. There

is, then, some interest in discovering if the two compo-

nents agree in their structuring. The MML principle pro-

vides a convenient method of assessing the total variabil-

ity using the one-class lengths. It also allows us to

evaluate the structure present in the two components. We

can further examine how far the two results are related by

examining the assignment of things to clusters.

Second, we examine the effects of logical correlation

between presence and abundance. Briefly we cannot

measure how much a species is absent; some noughts are

‘noughtier’/naughtier than others! Williams and Dale

(1962) suggested that the data should be partitioned into

presence/absence and abundance-when-present, with

abundance-when-absent regarded as a missing value.

There are three possible analyses using such partitioned

data: including both the components, using the pres-

ence/absence component alone and using the numeric

conditional on presence component alone. The last will

usually contain many missing values.

Throughout it must be remembered that the datasets

used here are very small. This means that the estimate of

cluster number may well be in error unless the clusters are

sharply separated. With more data we can support more

clusters if they are present. We have an analysis of rain-

forest data using nearest neighbour sampling to define the

sample plots (Williams et al. 1969), which estimated

close to 100 clusters to be present! We also have a dataset

with approximately the same number of things (1000+)

where the number of clusters is estimated at 11. More data

may give the opportunity for more clusters to be found but

opportunity is not necessity.

Results

Overall the estimation of number of clusters seems to

work quite well. Any tendency to overestimate the

number of clusters is not shown by the present data prob-

ably because of the small sample sizes. However, mes-

sage lengths associated with other cluster numbers were

generally markedly larger and thus significantly different.

In other analyses the overall minimum message length

has occasionally been difficult to find, but with these data

convergence was rapid and consistent from various start-

ing configurations. The Slovak data always have the

things uniquely assigned to a cluster, and generally the

Latvian data also show little fuzziness, except in one

analysis noted later.

Slovak data

From Table 1, it is clear that the Poisson model is a

more succinct model of the data even with a single class.

It also captures slightly more of the cluster structure

though the difference is small. (20% compared with 18%

for the Gaussian solution). While the difference may look

numerically small, being approximately 211 nits it repre-

sents an odds-ratio of some ca. 10
95

in favour of the Pois-

son solution! The Poisson alternative may not be truly op-

timal. Robinson (1954) suggested that cover might follow

a β-distribution, but it is clearly more effective than the

Gaussian in capturing the data structure at least for these

data.
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If things and attributes are truly ordered along a gra-

dient we might expect clear blocks of attributes associated

with each group and consecutive blocks of things. The as-

signment of the things (Table 2) shows just such a picture

for the Gaussian result with three disjoint groups in the

order 4, 5, 3. In contrast, the Poisson result shows inter-

mingling with no group in a single block. Since the exist-

ence of the gradient is doubtful, the Poisson result is per-

haps more realistic. However, it may simply be a better

model for rare species of which there are many in these

data.

The levels of significance of the attributes are not very

high, a function of the small number of things analysed.

Of the higher significance levels, most are concerned with

species absence or at least having a mean lower than that

of the population; there are about twice as many negative

indicators and the higher significance levels are largely

associated with them. In the Gaussian solution (Table 3),

a clear pattern of low level positives separates groups 3

and 4, though group 5 shows some overlap with 3. The

Poisson solution (Table 4) is a little more complex and

there is some intermingling, but not overmuch. From the

attribute patterns, groups 3 and 4 seem disjoint from 5 and

6 suggesting that a two-group solution might have some

merit if a hierarchical solution were used.

For patch-size determination, the Poisson rate pa-

rameter for individual species can be substituted for clus-

ter labels (Table 5). The Slovak data have no particular

spatial arrangement, and adjacency here reflects the sup-

posed gradient; for illustrative purposes we assume equal

spacing. Figure 1 shows the result for Helianthemum

nummularium, a species not strongly associated with the

cluster structure as can be seen from the entry in Table 5.

The general trend towards an increasing rate towards the

end of the presumed gradient is apparent, but this is not a

monotone trend.

Figure 2 shows gradient with the rates for all species

superposed. There is a considerable variation in pattern

between species considering the small number of groups

and short length, but overall a preponderance of relatively

sharp changes. While a pattern distinguishing the start,

middle and end of the sequence is commonly present,

none of these segments is without interruption as might be

expected if a continuous gradient was present. Local het-

erogeneity is displayed at scales from a single sample up

to 6 samples. The all-species figure emphasises the points

of change. With two exceptions the maximum rate for

each species is restricted to a single cluster, which is what

would be expected if the area was composed of relatively

homogeneous patches. The two exceptional species,

Draba lasiocarpa and Genista pilosa define larger

patches, with the former reduced at the end of the se-

quence, and the latter at the start.

The Poisson solution captures more structure and in-

dicates deviations from a simple gradient, which suggests

that it is in fact the preferable choice as the MML princi-

ple indicates. If the assumed gradient is accepted then the

Gaussian solution might be preferable. Certainly it pro-

vides a clean separation into 3 groups.

Table 1. Slovak data Gaussian v. Poisson assumptions analysis: general comparison of class message lengths for clusters .

1-cluster length supplies the null hypothesis cost. Difference is the difference between 1-cluster and n-cluster costs which

represents the reduction in redundancy.

Table 2. Slovak data: comparison of assignments of sam-

ples to clusters.
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Table 3. Slovak data: Gaussian attribute significance. Species not significantly different in any group not shown. Under

cluster columns are listed the probability of difference from the population, for 20%, 10%, 5%, 1%, 0.1% and 0.01% prob-

ability levels. The +/- column identifies if the mean is more or less than the population value.

Table 4. Slovak Data: Poisson Attribute Significance. Entries as in Table 4
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Table 5. Slovak data: Poisson rates. Maximum rate in a cluster in bold.

Poi ssonRate

Figure 1. Slovak data: Poisson rates for Helianthemum

nummularium. Rates are in order of the presumed gradient

show a general upward trend with finer scale interruptions.

Gradient Position

Figure 2. Slovak data: Poisson rates all species in order of

the presumed gradient.
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The general results are presented in Table 6. What is

remarkable is that the Hellinger distance provides a much

greater structuring than ANY other solution. The high

precision Gaussian and chord solutions resulted in identi-

cal clusters being formed. By analysing the contingency

tables between clusters the metrics can be organised by

their relationship with the Gaussian analysis. The order of

similarity was Gaussian → High Precision/ Chord → χ2

→ Hellinger. The Hellinger result is almost independent

of Gaussian result but is correlated with the χ2
result.

This would seem to suggest that the Gaussian/Euclid-

ean solution is not particularly good at capturing structure

within the vegetation space. The Hellinger distance out-

performs all the others, including the χ2
metric by a fac-

tor of 2. However, some caution is required. Inspecting

the significant attributes it becomes clear that the rarest

species are contributing most to the Hellinger cluster dis-

tinction - in a phytosociological idiom we are finding

‘faithful’ species rather than ‘constant’ species. The sen-

sitivity of the χ2
metric to rarities is known from corre-

spondence analysis where rare species are usually se-

verely downweighted to avoid them dominating the

results. It seems the Hellinger distance is even more sen-

sitive. Such a propensity is also present in Goodall’s prob-

abilistic dissimilarity coefficient (Goodall and Feoli

1988). We may well wish that undue weight not be as-

signed to the rare species and opt for another solution. In

such a case we might also reject the χ2
metric.

Table 6 also shows the effects of precision. Because

Snob is sensitive to the precision assigned to the numeric

attributes, the two Gaussian solutions are not identical; in-

deed the high precision analysis seems more effective.

This is illusory since the actual precision is certainly not

the 10
-5

value ascribed in the high precision analysis. This

will also have inflated the results for the other analyses

and aggravated the effects of rarity. It therefore appears

that the Poisson solution still offers an acceptable cluster-

ing.

Latvian data

Table 7 shows the general characteristics of the three

analyses. The vascular data are clearly less variable and

more strongly structured than the nonvascular. Both find

4 of the 6 groups found by the full analysis. Table 8 shows

the actual assignments. Although a formal test of signifi-

cance is vitiated, likelihood ratio tests show all the analy-

ses are ‘highly significantly’ related. Through a corre-

spondence analysis of the intergroup contingency tables

(Figure 3ab), the approximate mappings between groups

could be recognised (Table 9). These suggest that the vas-

cular and nonvascular results both distinguish some of the

clusters found in the full analysis, but confuse others. The

nonvascular group 5 has no obvious cognates in the full

Table 6. Entries are probability and R values for predicting row clusters from column clusters. n.s. = nonsignificant.

Table 7. Latvian data: general comparison of class message lengths coherency analysis. Entries as in Table 2.
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analysis, while nonvascular group 9 represents full groups

10 and 11, and nonvascular group 4 merges full groups 3,

4 and 6. The vascular analysis shows 4 groups cognate

with full groups, but 2 full groups, 3 and 4, have no rep-

resentation in the vascular groups.

Table 10 presents the species significantly related at

the 1% level or greater. As in the previous analysis, most

of the significant species relationships are negative. In

two analyses, a group is defined entirely by negative rela-

tionships. The same species tend to recur in each analysis,

with only 2 species restricted to a single analysis. Both the

reduced-species analyses find clusters that are also sig-

nificant for species of the other kind and overall appear to

have slightly more positive indicators.

Table 11 presents the general information. Both the

full partitioned data and the presence/absence analysis in-

Table 8. Latvian data coherency analysis: assignments of

things to clusters.

Figure 3. Latvian data correspondence analysis of contin-

gency tables of group assignments, a: full x vascular with

eigenvalues for c1=0.78 and c2=0.75 respectively. b: full x

nonvascular with eigenvalues for c1=0.81 and c2=0.60.

Table 9. Group equivalence for coherency analysis groups.

a

b
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dicate a single cluster only, while presence/absence con-

tributes less than half the full information. The purely nu-

meric data do manage to identify 2 clusters though the

overall gain is relatively small. The assignments to groups

for the numeric data are shown in Table 12, where it is

obvious that there is considerable overlap. More than half

the things are assigned partially, and 10 things are decid-

edly ambiguous with relative probabilities of 65 to 35 or

worse! Clearly, treating all absences as missing values

muddies the result considerably. The 1-class cost for the

full data is 1756.2 while for the numeric with missing val-

ues the cost is 728.1, a difference of over 1000 nits! Even

with the addition of the presence/absence information, we

still have a loss of over 400 nits (full = 1756.2, pres-

ence/absence + numeric = 1333.0). Again, we have a re-

minder that much of the pattern in vegetation data is re-

lated to patterns of absence, an example of Babad and

Hoffer’s (1984) argument that even no data has value!

The presence/absence and numeric data should be or-

thogonal and we can test this by comparing the sum of the

message lengths for the two distinct analyses with that for

the combined data for the n-class solution. The value is

very small, and lies within the errors of estimation of the

program. This is reinforced by the attribute significance

data where only 3 species show differences, Sphagnum

tenellum, Rubus chamaemorus and Sphagnum flexuosum.

All three are significantly negative in group 13, while the

two Sphagnum species are weakly (p < 20%) positive for

group 16. One other species, Empetrum nigrum shows

weak (p < 20%) negative presence/absence differences

for group 16. Three species show very weak association

in terms of presence information, although not, of course,

otherwise active.

Table 10. Latvian data: coherency analysis attributes significant at the 1% Level. Nonvascular species in [].

Table 11. Latvian data partition of information: general comparison of class message lengths
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Figure 4 shows the lengths required for coding the

things using the 2 numeric clusters. The interesting point

here is the obvious outlier (in fact stand 43) to group 2.

This is an example of how the message length of a thing

can indicate a probable outlier.

Discussion

Substantive

The limited results presented in these examples

should be regarded as suggestive of certain properties of

vegetation data and their structure. They also indicate

some of the possibilities of using the MML principle.

It seems that, for the Slovak data, a Poisson solution

is preferable to a Gaussian one, although it may not be

optimal since percent cover might have some other distri-

bution than Poisson. The generality of this conclusion re-

Table 12. Latvian data: assignments for numeric data (excluding presence/absence information). Length = message length

to encode the data for that thing assuming is belongs to its primary cluster. Rel. Prob. is the realtive probability of the thing

belonging to a cluster.

Figure 4. Latvian data: numeric data independent of pres-

ence/absence effects. Distribution of ‘thing’ message length

estimates for 2 clusters. Note the outlier (stand 43).
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mains doubtful, and further examination of other datasets

is desirable.

It also seems that models using metrics that emphasise

rare species identify more structure than those that do not.

Whether this is useful depends somewhat on the analyst’s

prior beliefs about the nature of vegetation; conservation-

ists might argue for the importance of rarity, other vege-

tation managers might be less enthused. Dale (1994) sug-

gested that a Riemannian space might be more

appropriate but we have not yet examined such a possibil-

ity although an approximation might be obtained by using

step-across methods (Bradfield and Kenkel 1987).

The possibility of using the estimates of the Poisson

parameters to provide a variable Poisson model (Stevens

1937) for the species is interesting and will be examined

further elsewhere (Dale 2001). The result, treated at face

value, does suggest that spatially vegetation can be re-

garded as a series of relatively small patches. In the pre-

sent case, these do NOT have a monotone relationship

with the presumed gradient, but by increasing the sample

plot area, small variations could be smoothed away. If you

have a prior belief that vegetation responds smoothly to

environmental gradients, this may be an acceptable pro-

cedure. This will be discussed later when the possibility

of comparing classes of models, for example mixture

clustering and axial ordinations, is considered.

The Poisson patches need not be environmentally de-

termined, instead forming as a consequence of the various

processes of growth and regeneration (see e.g, Boerlijst

and Hogeweg 1991, Dale and Hogeweg 1998, Dale

1999). Such autopoietic patterns can modify the selection

pressures operating on the plants (Savill et al. 1997). We

might seek to test this by examining the changing posi-

tions of patches through time, since environmentally de-

termined patterns should be more static spatially.

The Latvian data analyses suggest that partition of

data into qualitative and quantitative portions is not re-

quired, with the combination and the presence data both

accepting a single cluster. It should be remembered that

these data were selected to be representative and the ab-

sence of presence/absence information may be a conse-

quence of the quality of this selection. The analysis using

only known quantities gives a solution with considerable

ambiguity and with few species associated with the dis-

junction. It also emphasises the importance of absence in-

formation in vegetation structure.

The species coherency analysis suggests that vascular

and nonvascular species are partially replicating the full

analysis but that each ignores some aspects, and the non-

vascular even finds a novel disjunction. The species are

not completely coherent in their representation of the

vegetation structure. The results illustrate 2 different

ways of diverging from the full data structure. The vascu-

lar data, more structured than the nonvascular, manage to

identify 4 of the full groups relatively cleanly, but lose 2

altogether; this represents a partial recovery of structure.

The nonvascular species seem to have a more idiosyn-

cratic view, identifying at least one group not clearly

found in the full analysis and merging several others; this

represents a refocussed recovery, like astigmatic blurring.

But despite their differences, the subset analyses do iden-

tify some shared structure with species of one kind show-

ing differentiation within the clustering formed by the

other.

It is possible that the size of the sample plots masks

some variation, especially for the nonvascular species that

do not adopt a phalanx strategy. The choice of the area of

sample plots is always difficult whenever plants of mark-

edly different sizes or life forms are present. Lux (2000,

see also Lux and Bemmerlein-Lux 1998) has proposed us-

ing different descriptors to normalise differences in tem-

poral scales of variation but it is more difficult to see how

such a change would apply to spatial scale. Such ques-

tions of scale will be examined elsewhere.

Methodological

There remain several questions that will be briefly ad-

dressed here. These are:

• Intra-cluster correlation between attributes;

• Choice between hierarchical clusters and partition;

• Choice between crisp and fuzzy clusters;

• Dependencies between things.

Intra-cluster correlation between attributes

Pattern in ecological data is usually reflected in inter-

attribute correlation and clustering is a way of modelling

inter-attribute correlations. Mixtures of uncorrelated at-

tributes can model any distribution at the cost of introduc-

ing extra clusters if the correlation does not arise due to

actual homogeneous unknown subpopulations. In the real

world, we might expect correlation structure of a continu-

ous kind and this can be modelled by hypothesising the

existence of a continuous attribute, not measured, which

represents the common factor affecting the attributes that

were measured. This can be generalised for more complex

correlation patterns by introducing more continuous vari-

ables. MML methods that incorporate intra-cluster corre-

lation have been partially developed by Wallace and Free-
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man (1992), Wallace (1995, 1998) and Edwards and

Dowe (1998) although these are segmentation methods.

Hierarchy or partition

Many clustering methods presently employed in ecol-

ogy are hierarchical. Goodall and Feoli (1988) extend this

a little by allowing some individual samples to remain un-

assigned within nested classes; that is, given a cluster A

then it may contain other subclusters, B or C, but not all

members of cluster A will be assigned to these. A hierar-

chical MML segmentation procedure has been described

(Boulton and Wallace 1973, 1975). There seems to be an

intimate relationship between attribute subsets and such

things as nesting and overlap. Nesting would then be only

one pattern that might be observed. More complex inter-

relationships between feature subsets than a simple nest-

ing might be capable of resolution using multiple factor

within cluster variation and allowing axes used to de-

scribe any within-cluster variation to be shared with axes

in other clusters.

There may, for example, be several orthogonal struc-

tures present; for example, in kin relationships we can dis-

tinguish generation (grandparent - parent, parent-child)

and sex (father-son, mother-daughter). Uncle-nephew,

aunt-niece, and both can be present at the same time.

Which one you find in a hierarchical search will depend

on slight variations in the sample. However, a reticulate

representation (a plexus) might represent both simultane-

ously. The additive clustering method of Arabie and Car-

roll (1980) is one means of finding and presenting such

structures and Wallace’s (1995) suggestion provides an-

other.

Crisp segmentation or fuzzy clustering

Clusters may be defined such that any thing is as-

signed to a single cluster only (segmentation) or allowed

to contribute to several clusters (fuzzy). Most clustering

methods used in ecology do not permit an assessment of

degree of belonging of things to clusters. There do exist

fuzzy solutions of several different kinds (Dale 1988) in-

cluding some where a “degree of belonging” to a group is

provided (Bezdek 1974) and these have sometimes,

though rarely, been applied to vegetation data (Yarranton

et al. 1972). However, these suffer because the amount of

fuzziness can be varied through the user choice of an ex-

ponent. Thus, the degree of fuzziness is not estimated

from the data alone.

It is known that crisp methods can be inconsistent in

their definition of clusters parameters if the true clusters

in fact overlap ( Figure 5). Assigning things to clusters in

a fuzzy manner avoids the inconsistency, and Wallace and

Freeman (1987) have shown that this can be used to fur-

ther reduce the message length. Since difference in mes-

sage length is related to odds ratios for the associated

models, this means that fuzzy assignment cannot be less

acceptable than crisp assignment. Ganesalingam. and

Figure 5. Segmentation and mixture separation: inconsistency resulting from overlap. The boundary marks the line of seg-

mentation. Points lying on the ‘wrong’ side of the boundary are indicated. The parameters for clusters A and B will be incor-

rectly estimated if these points are excluded.
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McLachlan (1980) show that mixture modelling is prefer-

able to segmentation where cluster sizes are very dispa-

rate which is perhaps an additional advantage.

A further difficulty was raised by Chatfield (1995).

He argues that traditionally the estimation of model pa-

rameters assumes that a model has a prespecified form,

which disregards possible model uncertainty. This im-

plicitly assumes the existences of some ’true’ model that

may be a fiction. Model uncertainty is a fact of life and

likely to be more serious than other sources of uncer-

tainty. However this question is beyond the scope of the

present discussion.

There may be good reason for requiring a segmenta-

tion (Oliver and Forbes 1997), that is for demanding a

sharp boundary between classes with no overlap. A typi-

cal application would be identifying elements of structure

in a photographic image. MML can be used for segmen-

tation (Viswanathan et al. 1999) and seems to be more ef-

fective than other procedures, including cross-validation.

In any case, fuzzy clustering seems more realistic for

vegetation, where ecotones and ecoclines are ubiquitous

(van der Maarel 1990) and sample plots can easily include

several vegetation types because of spatial or temporal

overlap. MML also provides a relative probability of be-

longing to any cluster for each observation and the mes-

sage length for encoding. This last can be used to identify

things with very high costs, and therefore possible out-

liers.

Wallace (1998) shows that using fuzzy assignment

can shorten the message length in an MML clustering.

The trick is to use the uncertainty to obtain advance infor-

mation on the next thing. In fact a thing is assigned prob-

abilistically based on the a posteriori probabilities of the

various clusters, which has the same effect as partial as-

signment. A random assignment is a form of Gibbs sam-

pling of plausible classifications.

Dependency: temporal and spatial

An assumption common to almost all methods of

clustering presently in use in ecology is that the things to

be clustered are independent samples. At the same time it

is common to use grid sampling patterns and transects

where spatial dependency is a strong possibility, or to ex-

amine observations made sequentially in time where

again dependency is very likely. MML procedures which

incorporate models of various forms of dependency have

been proposed by Edgoose and Allison (1999) and Wal-

lace (1998) and the former comment specifically that the

results obtained by ignoring dependence, as in Dale

(2000b), and those where it is incorporated in the model

can be expected to differ considerably, though this is not

always the case. Li and Biswas (1999, 2000) have also

proposed another clustering procedure based on Hidden

Markov Models for temporal dependency.

Comparing classes of models

The final question concerns the possibility of com-

parison between different classes of model has to be con-

sidered. We need, for example, to be able to assess

whether a model based on fuzzy clusters is preferable to

one based on axes for a particular dataset, or whether a

hierarchical clustering is to be preferred to some other

scheme of cluster interrelationships. MML and more es-

pecially its relative the Minimum Description Length

principle (Rissanen 1983, 1995) provide means of choos-

ing between classes of models.

Falsification approaches do not seem to permit such a

comparison and indeed Shipley and Keddy (1987) have

argued that some questions, such as the choice between

clustering and axial representations, are unanswerable be-

cause falsification cannot be applied. Unfortunately, this

proposition has become part of the present interpretative

community (see Carley and Palmquist 1992), and some

questions have, in consequence, been excluded for con-

sideration for being undecidable, unnecessary and/or un-

scientific.

Yet Shipley and Keddy’s proposition is incorrect! It is

possible to compare non-hierarchical and hierarchical

cluster models or, more generally, specific cluster and ax-

ial (ordination) models. Rissanen’s (1983, 1995) Mini-

mum Description Length was developed for precisely that

purpose! The minimal message must now contain infor-

mation on the classes of models and the assignment of

prior probabilities for particular classes might cause diffi-

culties, but the principle remains intact. The difficulties

that remain are ecological, such as choice of scale and

choice of descriptors. Such problems will determine if

making the comparison is useful but do not change the

fact that it is possible. In comparing two classes of model,

the user has to supply a prior probability for each so any

preference for a continuum, say, can be captured in the

priors.

There is no universal mechanism for capturing all

structure in data, nor is there any reason to assume that a

single form of structure is universally applicable to all

vegetation data. Rather, we choose to look for structure

that is useful to us. Given a specific dataset we can assess

whether one structuring method is more effective than an-

other, but the extension of this to a general principle is

another matter.
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