
Introduction

In his discussion of pattern in vegetation, Greig-Smith

(1983, p. 80) notes two approaches to non-randomness,

one due to point-to-point (ptp) variability in a Poisson pa-

rameter, the other due to some form of dependence be-

tween observations, termed contagion by Pólya (1930).

He cites Feller (1943) as showing that these cannot be dis-

tinguished on the basis of observed frequency distribu-

tions, and comments that ptp variability has been little

studied. Indeed, in contrast to the large number of refer-

ences to studies of contagion, he cites only 4 concerned

with point-to-point variability – Ashby (1935), Stevens

(1937), Singh and Das (1938) and Erickson and Stehn

(1945). The Poisson parameter is simply the mean (and

variance) of a Poisson distribution and presumably vari-

ation in this parameter reflects environmental heterogene-

ity, with the probability of occurrence of a species varying

with the harshness, or otherwise, of the habitat. It would

seem sensible, therefore, to attempt to cluster observa-

tional data so that, within clusters, the Poisson parameter

is constant. In addition, it would also seem sensible to

compare the use of a Poisson distribution with some other

possible distribution, such as the Gaussian, to determine

the extent to which the Poisson model is supported. This

is the objective of this paper.

Method

Previous methods

For the four approaches noted above, the first three

proceed via the number of empty squares E = n (1-n
-1

)
s

[1+s(s-1)c] expected when a quadrat is divided into n

smaller squares and s individuals occur, assumed ran-

domly distributed. The constant c is estimated to give best

fit to the data and acts as an overall measure of Poisson

parameter variability. Greig-Smith (1983) comments that
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the applications tested contagion more than ptp variation,

that it would be difficult to apply and that the meaning of

c is difficult to interpret.

Erickson and Stehn (1945) are concerned only to di-

vide the area into favourable and unfavourable parts for

each species. They plotted log(x!y) against x, where x is

some number of individuals and y is the number of quad-

rats containing x individuals. This, for random data, is a

linear relationship, and they fitted a linear relationship to

the larger values of x. This permits an estimation of the

number of, and mean density within, samples assigned to

the favourable area, from which the unfavourable ele-

ments can be determined by difference. This certainly

concentrates attention on the variability of the Poisson pa-

rameter, but assumes a discontinuous pattern of variabil-

ity and can be invalidated if contagion is also present.

Since neither of these previous methods can be consid-

ered satisfactory, I have developed an alternative.

Outline of method

The overall notion is as follows. I first derive a

number of clusters using all species data to define subsets

of observed samples that are similar, the number of clus-

ters being objectively determined. The clusters are de-

fined assuming that all species have a specified distribu-

tion within a cluster. In the present case the distribution

will be either Poisson or Gaussian. So, within these clus-

ters, an estimate of the parameter(s) needed to define the

distribution of each species is possible. With suitable spa-

tially arranged observations, we can then examine the

spatial distribution and variation of the Poisson or other

parameters for each species. Although the clusters are

presumed homogeneous, the parameter values for any

particular species need not differ between clusters. This

assumes that no single species dominates the cluster for-

mation
1

since, if one did, then the clusters and the pa-

rameter values would be equivalent.

The clustering program used allows each species to be

associated with a separate model, so mixtures of Poisson

and Gaussian models are possible, if the user can justify

such choice. It might be sensible to allow rarer species to

be Poisson distributed and commoner ones Gaussian, but

there is no obvious means of identifying a suitable thresh-

old.

The MML clustering method

The method I use for clustering falls into the category

of mixture modelling or model based clustering. For a

general discussion of such methods, see Banfield and Raf-

tery (1993), Bensmail et al. (1997) and Fraley and Raftery

(1998). Here I have chosen to use Wallace and Dowe’s

(2000) Snob program, which is based on the minimum

message length principle. This principle argues that a user

should determine the quality of a model by calculating the

length of an optimally encoded representation of the data,

given the model. Overall the Snob program incorporates

a Bayesian view coupled with information-theoretic ideas

derived from Kolmogorov (1965) and combines a meas-

ure of model complexity with one of quality of fit to the

observed data.

Using this principle has several advantages:

• It takes into account the precision with which the ob-

served data were recorded to determine the precision

with which the distribution parameters have to be es-

timated; coarse measurement means coarse esti-

mates, precise measurement means precise

estimates. However, this does mean that when com-

paring results we have to normalise the comparison

in some way to adjust for varying precision.

• The clusters identified are fuzzy clusters to which

things belong with some given probability. Fuzzy

clustering is necessary if the parameters of the clus-

ters are to be consistently estimated. In addition, the

use of fuzzy clusters will usually reduce the length

of the message, which is our criterion of model ex-

cellence.

• By establishing a trade-off between quality of fit to

the observed data and complexity of the model the

program can determine an optimal number of clus-

ters (cf. Dale 1987). Complexity of model here

means simply the number of clusters. Thus, the

method provides a means for establishing the

number of clusters, and incorporates a test against

the null hypothesis of a single cluster.

• Snob allows the user to specify the required distribu-

tion within clusters and presently permits the use of

Bernoulli (multistate), Poisson, Gaussian and von

Mises (angular) distributions
2

.
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1 It would also be possible to adopt a �leave one out� approach. This would use all species except a nominated one to form clusters, then

estimate the parameters for the omitted species, which is rather tedious if a large number of species are examined. In this case, the

model for the selected species need not be the same as the model used for the remaining species.

2 A recent development (Dowe pers. commun.) also allows a t-distribution to be chosen. This provides a �thick-tailed� distribution. I hope

to examine this possibility later.



Assessment of results

In order to assess the analysis overall I use the differ-

ence in message length between the 1-cluster and the op-

timal n-cluster solution as a measure of the amount of pat-

tern captured by the clustering. To avoid problems with

differences in precision between analyses, I normalise

this difference using the 1-cluster message length to pro-

vide a suitable index of pattern captured.

It should be noted that the difference in value of the 2

message lengths is intimately associated with the a poste-

riori probability of the model. Specifically, the exponen-

tial of the difference represents the odds in favour of the

model with the shorter length. Finally, it is possible that

the 1-cluster null hypothesis can be accepted, if no other

solution with smaller message length is found.

Data and analyses

The data were originally collected by Goodall (1953)

and consist of 256 samples arranged in a stratified random

sample over an area of Mallee vegetation growing on

dunes; Eucalyptus oleosa dominated the ridges, Eucalyp-

tus dumosa the hollows. An area of 640 x 640 m
2

was di-

vided into 64 grid squares of 10 x 10 m
2

. Four 5 x 5 m
2

randomly selected samples were then taken from these. 61

attributes were used, mostly species although some

growth forms were distinguished and dead material of

Triodia irritans was also recorded. The number of species

was reduced to 32 in some analyses by rejecting very rare

species.

Percentage cover was used as a performance measure,

measured using point quadrats to 0.05%. Since this repre-

sents extremely precise recording, an analysis was also

carried out with the precision reduced to 1%. The Snob

program uses the precision value together with fit to the

data to determine an optimal coding for the parameter es-

timates.

To find the optimal clustering solution, several

searches were made, starting from different initial esti-

mates of the number of clusters and from differing ran-

dom initial allocation of samples to clusters. In most

cases, these converged to the same, or very similar, MML

solutions.

In total, five analyses were made. These involved us-

ing Gaussian and Poisson within-cluster models with both

the full and the reduced data. The extra analysis was of the

full data using the Poisson model but with the precision

reduced as noted earlier. No substantive interpretation is

attempted here, since the main objectives are concerned

with differences in model within clusters.

Results

Snob output

The results from a Snob clustering include the follow-

ing information:

• The message length for the 1-cluster (null) case.

This in effect is the message length if all patterns in

the data are ignored

• The message length for the optimal number of clus-

ters and a statement of that number n.

• Information on the association between attributes

and clusters including the appropriate distributional

parameters for each attribute and whether these are

significantly different from the population parameter

values.

• The assignment of the samples proportionally to the

various clusters. This will reflect the degree of over-

lap between clusters, which is recorded as the prob-

ability that the sample belongs to a specific cluster.

• For each sample, the message length required to

code it, conditional on the estimated parameters and

cluster assignments. This information is useful for

detecting outliers in clusters but is not important

here.

Comparison of Gaussian and Poisson descriptions

The general features of the analyses are presented in

Table 1. Several things are immediately obvious. The

Poisson models all have considerably larger message

lengths than the Gaussian solutions and consistently iden-

tify an optimal solution with considerably more clusters,

in fact about 3 times as many. The odds in favour of the

Gaussian solution are very large indeed, being e
227248

:1!

The choice of within-cluster model overrides any differ-

ences in number of species and in precision of measure-

ment, and the differences in message length indicate that

the observed differences are certainly significant. Reduc-

ing the precision produces a longer message and thus a

less desirable result. Reducing the number of species de-

creases the message length, as might be expected.

While the Poisson data have a higher total message

length, the analyses under this model clearly capture

much more structure. With a large number of small clus-

ters (the largest has only 11 members), the fit to the data

can be extremely good. In contrast, the Gaussian clusters

are larger, ranging in size from 4 to 64, and, individually,

fit less well. I should add that this result is at the high end

of percentages when compared with other studies of vege-
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Figure 1. Mallee Poisson clusters: spatial distribution. This map illustrates the fragmentary nature of the Poisson clusters

and is obtained by �contouring� the cluster labels.

Table 1. Message length information. Message lengths are in nits. The normalised effectiveness index = difference between

1-class and n-class lengths / 1-class length.
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tation data I have attempted. In fact, 20-30% pattern cap-

ture is a more common result; contingent variation is very

large in vegetation data (Brokaw and Busing 2000).

The question is whether the intricate pattern of the

Poisson clusters when spatially arranged (Fig. 1) is a re-

sult of environmental heterogeneity or a function of the

plants themselves (see Boerlijst and Hogeweg [1991] for

possibilities of autopoietic pattern generation). Some of

the variation is certainly environmental, for Goodall notes

the existence of sandy ridges up to 10 m high running

east-west. This dune-swale system can be easily identi-

fied in the Gaussian solution (Fig. 2). In contrast to the

large number of clusters of the Poisson analysis, the

Gaussian analysis is more frugal, although the number of

groups may still seem somewhat large.

They are less obvious in the Poisson result partly be-

cause of the way the maps were prepared but also because

of the greater fragmentation due to the large number of

clusters formed. But these ridges and hollows are associ-

ated with different dominants, if dominance is a suitable

concept when total cover is only around 50%. Eucalyptus

dumosa and Triodia irritans are important on the ridges,

Eucalyptus oleosa and some scattered chenopods in the

hollows.

Individual species parameter distributions

Figures 3, 4 and 5 show the spatial variation in the

Poisson rate parameter for 3 species, Eucalyptus dumosa,

Eucalyptus oleosa and dead Triodia irritans. In all cases,

it is clear that there are large patches with similar Poisson

rates and that these patches are spatially larger than the

cluster patches. This suggests that the cluster patches are

not a reflection of these particular species but do represent

the combined effect of all species.

In all three results, the linear dune-swale pattern is dis-

tinguishable though sometimes with difficulty. Overall,

the spatial distribution of Poisson rates suggests that the

clusters formed from all species subdivide the area very

finely. Individual species have patches with a smoother

response bounded by areas of more rapid change, but

these patches seem larger than those indicated when all

species are taken into account.

Approximation by reduced data

Comparison of reduced and full data show correla-

tions between results whether Gaussian or Poisson mod-

els are used, although the Gaussian correlation is some-

what lower. Using the reduced data clusters to predict the

Figure 2. Mallee Gaussian clusters: spatial distribution.
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Figure 4. Eucalyptus oleosa: contour map of Poisson parameter.

Figure 3. Eucalyptus dumosa: contour map of the Poisson rate parameter.
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full data clusters gives an R
2

= 0.79 for the Poisson model

and R
2

= 0.61 for the Gaussian.

However, the differences in message length show that

there are significant differences between these results and

that the contributions of the rarer species are not insignifi-

cant. Almost all species show differences from the popu-

lation Poisson rate (mean and variance), though in many

cases this reflects absence in most of the area with the spe-

cies concentrated in just a few samples.

Attribute significance

There are marked differences between the Poisson

and Gaussian solutions in how the attributes reflect the

cluster differentiation. In the Poisson analysis, the com-

moner species show significant differences for almost all

clusters. The rare species also make their contribution to

the distinction of clusters. Many of these differences are

based on absence; that is the species is of lower mean

abundance in the cluster than in the population in general.

In contrast, in the Gaussian solution the commoner spe-

cies each distinguish only a few clusters, and the rare spe-

cies contribute much less to differentiation. Still, only 4

species in the Gaussian analysis show uniformity across

the entire area and all are very rare.

Fuzziness of assignment to clusters

The amount of ambiguity in assignment to clusters is

very small, with the Gaussian solutions worse (Table 1).

The Poisson assignments are almost entirely completely

crisp. However, in almost all cases only one other cluster

had any reasonable probability (there is a single case

where 2 other clusters were involved). The probabilities

of assignment to clusters other than the most likely were

all relatively small; the largest being a probability of 0.18.

If there had been serious ambiguity then drawing maps of

cluster distributions would become problematic, but in

the present case no serious difficulties arise.

Examination of the message lengths for each sample

(not shown here) does not suggest that there are any out-

liers, except in a single case for the complete Gaussian

analysis. This means that there are very few, if any, small

clusters which have been merged into other clusters by the

program search procedure.

Discussion

Methodological assessment

The strategy of using all species to develop clusters

seems to have worked well. The clusters found are in gen-

Figure 5. Triodia irritans (dead): contour map of Poisson rates.
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eral very small for the Poisson model, and the individual

species form patches of relatively constant Poisson pa-

rameter which are larger than the clusters identified. In

addition, the discrimination of the clusters by the attrib-

utes shows that almost all make some contribution. The

Gaussian solution seems to rest more on the commoner

species and perhaps reflects dominance characteristics.

This difference is reminiscent of the contrast of floristic

(presence) and dominance (abundance) approaches to

vegetation classification; on these results dominance is a

clear winner. Historically in vegetation classification the

Braun-Blanquet approach (cf. Westhoff and van der

Maarel 1973), which emphasises floristic presence, has

been more widely adopted than the Scandinavian system

of Du Rietz (cf. Trass and Malmer 1973) which more

strongly emphasised dominance. It seems that for these

data this was an error!

Another feature of note is that, in selecting the optimal

number of clusters, the 1-cluster null model has no special

status, a stance which is at variance with the views of, say,

Simberloff (1980), Wilson (1991) and Keddy (1993).

These authors have argued for an approach based on fal-

sification of simple clear null hypotheses. But even if such

hypotheses are available in the complexity of ecosystems,

they do not identify which alternative hypothesis should

be adopted when the null hypothesis is falsified. We are

told what is not, but not what is!

Instead, the problem being addressed here is to esti-

mate the optimal number of clusters within a class of

models parameterised by that number and there is an im-

plicit falsification of many models within a class. We

could also consider another class of models, such as an

ordination model, whose parameter is the optimal number

of orthogonal axes
3

.

In fact, we might go further, for we could attempt to

identify the appropriate class of models as well. Both the

minimum message length principle and the minimum de-

scription length principle (Rissanen 1999) permit such

comparisons, the latter being expressly developed to do

just that. So, contrary to Shipley and Keddy (1987), it is

possible to compare cluster representation with axis rep-

resentation and select a ‘best’ result.

Whether such a comparison is of much use is a differ-

ent matter. That it might be done is perhaps worth know-

ing. That it should be done is a very different question -

and one based in deontic logics that notoriously have no

truth value. It is likely, for example, that scale effects, due

to changes in the area of the primary sample unit or suc-

cessional development, could lead to the appropriate fam-

ily of models varying. Neither clusters nor axes might be

universally preferable and some combination of the two

models could well be preferable to either alone (cf. Ed-

wards and Dowe 1998).

In any case, the use to be made of such structure as is

found may necessitate the choice of one or the other

model class irrespective of their optimality. If all patterns

are ultimately for an agent, as MacKay (1969) argued,

then interest and ‘actionability’ may be paramount.

Evaluating these properties is a challenging task, though

some suggestions already exist in the literature (Barsalou

1995, Hilderman and Hamilton 1999).

Methodological assumptions, constraints and extensions

The Snob program makes some assumptions and we

need to consider what impact these may have had. The

present program assumes that all attributes are uncorre-

lated within clusters, which may not be true. Edwards and

Dowe (1998) have examined modifications to Snob

which permit within-cluster correlations. They note that

the effect of the existence of such correlation is to increase

the number of clusters. Snob further assumes that the vari-

ous samples being clusters are independent, i.e., that spa-

tial or temporal dependence is absent. Wallace (1998) and

Edgoose and Allison (1999) have considered how this

constraint might be overcome in space and time respec-

tively. Again an increase in number of clusters is the re-

sult. However, these possibilities would apply equally to

both Poisson and Gaussian models and it seems unlikely

that they would be responsible for the very large number

of clusters identified in the Poisson results obtained here.

The program deletes clusters with less than 4 mem-

bers, re-assigning the members to other clusters, since pa-

rameter estimates are then very unreliable. This will tend

to reduce the number of clusters. Overall it seems likely

that there has been some overestimation of the number of

clusters. I hope to examine this question when suitable

programs become available.

The next problem is more difficult although a solution

should be attainable. To be completely Bayesian, prior

probabilities should be assigned to the class of models

based on Poisson and Gaussian distributions. I have as-

sumed here that this probability would be equal for both,

178 Dale
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dimensionality of the space, which makes any estimation difficult.



though other views may differ. I suspect that I should fur-

ther take account of the fact that for the Poisson solution

there is only a single parameter for each cluster, whereas

for the Gaussian there are two (mean and variance). Thus,

the Gaussian model is more complex than the Poisson and

some penalty should be paid for this. I have included no

such penalty.

I have assumed that all clusters have the same internal

distribution, that is either all Poisson or all Gaussian, al-

though this is not a necessary assumption. Banfield and

Raftery (1993; see also Stanford and Raftery 1997) have

considered models involving principal curves (Hastie and

Stuetzle 1989) and Poisson distributions in order to re-

cover linear manifolds in noisy data. However, I have no

justification in the present study for using such complex

models.

Practically, the major problem concerns the effective-

ness of the search for the optimal model. Snob employs

an expectation-maximisation algorithm but it is possible

that other algorithms might be more effective, such as

simulated annealing. For the present study, the search

procedure seems to be acceptably effective.

The variable Poisson model

The basis of the variable Poisson model is that the

Poisson parameter for any species varies from place to

place, in contrast to the use of other models expressing

contagion. Certainly, the results obtained using the Pois-

son model within clusters suggest that the variable Pois-

son model is capable of describing the variation in abun-

dance extremely well, and to that extent is justified.

However, the most surprising result is the contrast be-

tween Poisson model’s effective pattern capture and the

fact that it is markedly suboptimal in terms of message

length. The identification of a large number of clusters

means that fit to the data can be very good, but of course

it increases the complexity of the description greatly.

In comparison, the Gaussian distribution leaves a

greater part of the variation to contingency but is decid-

edly more parsimonious in defining clusters. The results

obtained here suggest that a Poisson model is not a good

model of species distribution compared to the Gaussian.

There may of course be even better models for within-

cluster variation. Kemp and Kemp (1956), following Ro-

binson (1954), have suggested that locally cover percent-

age may follow a Beta distribution. For neither

distribution is the degree of ambiguity of assignment of a

large magnitude. However, I would argue that the proce-

dure used here does suffice to examine the variable Pois-

son model for individual species, if that is the intent of the

investigation. This would be the case if we were interested

more in autecological characteristics or niche definition

for individual species.

Overall, to accept the variable Poisson model would

seem to require a very large prior commitment to this

model. In the limit, of course, the variable Poisson model

would lead to an acceptance of continuous variation in the

Poisson parameter, and an individualistic interpretation.

Indeed, if the Poisson model is accepted, then this would

be a natural interpretation. The Gaussian model, in con-

trast, isolates large patches of relatively homogeneous

vegetation, which is closer to, but not necessarily identi-

cal with, the community-unit model. The results obtained

here show that the Poisson model is much less acceptable,

although this conclusion must remain tentative because of

the problems of model class comparison which have been

ignored.
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