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Abstract

The taxonomic status of Rhinolophus macrotis sensu lato (s.l.) in Vietnam and adja-

cent territories remains problematic. To address this issue, we performed an inte-

grated study of morphological, acoustic, and genetic characters of R. macrotis s.l.

specimens and compared these with sympatric species within the philippinensis

group (R. marshalli, R. paradoxolophus, and R. rex). Our results reveal that in addition

to a cryptic species of R. macrotis previously found in Jiangxi and Jingmen, China,

R. macrotis s.l. in continental Asia includes three further species, namely R. cf. sia-

mensis, R. cf. macrotis, and R. cf. macrotis “Phia Oac.” These four taxa are distin-

guished from genuine R. macrotis in Nepal and R. siamensis in Thailand by their

morphological and/or genetic features. Further taxonomic evaluation of the sub-

species of R. macrotis s.l. is needed to determine their affinities with recently recog-

nized cryptic species and to possibly describe new taxa. Our results also show that

interspecific divergences in mitochondrial DNA sequences (Cytb and COI genes)

among taxa within the philippinensis group (particularly between R. cf. siamensis/R.

cf. macrotis and R. rex/R. paradoxolophus) are significantly lower than those of other

morphological groups in the genus. These phylogenetic patterns might be explained

by recent allopatric speciation or ancient introgression events among ancestors of

the taxa during the Pleistocene. However, further investigations including genetic

analyses of nuclear genes are needed to test the latter hypothesis.
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1 | INTRODUCTION

The big-eared horseshoe bat, Rhinolophus macrotis Blyth, 1844; was

originally described from the Kathmandu Valley in Nepal as a small

species within Rhinolophidae (Blyth, 1844). The taxon is differenti-

ated from other horseshoe bats by external features (i.e., very large

ears, long, broad, and tongue-shaped sella, and a well-developed lan-

cet with a rounded tip) and skull characteristics (i.e., long palatal

bridge, weak upper canines, and well-developed anterior nasal swel-

lings) (Csorba, Ujhelyi, & Thomas, 2003).

Rhinolophus macrotis s.l. shares several primitive characters (e.g.,

the wing structure with subequal metacarpals, long palatal bridge,

and middle lower premolar [P3] often situated in the toothrow) with

sister species within the philippinensis group including the following:

R. philippinensis Waterhouse, 1843; R. marshalli Thonglongya, 1973;

R. rex Allen, 1923; and R. paradoxolophus Bourret, 1951 (Andersen,

1905, 1907; Bogdanowicz, 1992; Bogdanowicz & Owen, 1992;

Csorba et al., 2003; Tate, 1943). Since its original description, three

additional subspecies of R. macrotis have been described from differ-

ent localities in Asia: R. m. dohrni Andersen, 1907 (type locality [t.l.]:

Soekaranda, Deli, Sumatra), R. m. siamensis Gyldenstolpe, 1917 (t.l.:

Doi Par Sakang, northwestern Thailand), and R. m. topali Csorba &

Bates, 1995 (t.l.: Kakul phosphate mine, Abbottabad, Pakistan). Tate

(1943) subsumed further three taxa which were originally described

as distinct species or subspecies under R. macrotis: R. hirsutus Ander-

sen, 1905 (t.l.: Guimaras Island, Philippines), R. episcopus Allen, 1923

(t.l.: Wanshien, Sichuan, China), and R. e. caldwelli Allen, 1923 (t.l.:

Yuki, Fukien, China). Based on this classification, R. macrotis has

been considered widespread in Asia (Figure 1) (Corbet & Hill, 1992;

Csorba et al., 2003; Molur, Srinivasulu, & Francis, 2008).

Ingle and Heaney (1992) suggested that R. m. hirsutus in the

Philippines should be re-elevated to species rank due to its morpho-

logical differences from other subspecies of R. macrotis. Because this

view is supported by Guill�en-Servent, Francis, and Ricklefs (2003),

who showed that R. m. hirsutus is more closely related to the Philip-

pine R. philippinensis lineage and distinct from Indochinese R. macro-

tis, the presence of R. macrotis s.l. in the Philippines should be

discounted. In Indochina, Osgood (1932) found two morphologically

distinct subspecies of R. macrotis s.l. in sympatry and parapatry in

northwest Vietnam: The larger bat with a forearm length (FA) of

43.3–45.3 mm was identified as R. macrotis caldwelli (originally

R. episcopus caldwelli), whereas the smaller bat (FA: 38–39 mm) has

hitherto been allocated to R. m. siamensis (although it is intermediate

between genuine R. m. macrotis [FA: 41–43 mm] and R. m. siamensis

[FA: 36.1 mm] from their respective type localities in Nepal and

Thailand). In Laos, Francis, Guill�en-Servent, and Robinson (1999)

found that sympatric specimens of R. m. siamensis and R. m. caldwelli

are very similar genetically, but can be differentiated by body and

skull size, noseleaf structure, and echolocation calls. As a conse-

quence, Francis (2008) and subsequent authors (Kruskop, 2013; Tho-

mas, Duckworth, Douangboubpha, Williams, & Francis, 2013)

subsumed bats with a FA of 42–47 mm and lower echolocation calls

with frequencies of maximum energy (FmaxE) of ca. 51–52 kHz (in

Laos) into R. macrotis, whereas R. siamensis has been regarded as a

smaller form with a FA of 38–42 mm that emits higher echolocation

calls (FmaxE: 67–74 kHz in Laos).

Rhinolophus siamensis and R. macrotis occur in sympatry in many

localities in China (Figure 1). The former taxon is smaller with a FA of

36–41 mm, whereas the latter is usually larger with a FA of 39–

48 mm (Smith et al., 2008). However, Sun et al. (2008) concluded

that bats of R. macrotis s.l. at different localities in southern China

can be divided into three different phenetic and phonic forms: (i) a

large form in Jiangxi Province (C6 in Figure 1) characterized by an

average FA of >45 mm and a mean FmaxE of 48.8 kHz; (ii) a small

form in Jiangxi (C6 in Figure 1) and Guangxi provinces (C5 in Fig-

ure 1) with a mean FA of <40 mm and mean FmaxE of 64.7–

66.7 kHz; and (iii) an intermediate form in Yunnan Province (C1 in

Figure 1) with a mean FA of 42.3–43.5 mm and a mean FmaxE of

57.3 kHz. Genetic divergence of cytochrome b (Cytb) sequences

between the large form and two other forms was comparable with

that between R. macrotis s.l. and R. rex, whereas divergence between

the two latter forms was <2%. Sun et al. (2008) consequently sug-

gested that the large form may represent a cryptic species of

R. macrotis, whereas the slight differences in morphology and echolo-

cation calls between the two other forms were attributed to geo-

graphic variation rather than speciation. Wu, Motokawa, and Harada

(2008) considered records of R. siamensis in China erroneous and

hence described southern Chinese specimens formerly identified as

R. siamensis as a new species, R. huananus Wu et al., 2008;. Zhang

et al. (2009) subsequently regarded R. huananus as a junior synonym

of R. siamensis and provided criteria to discriminate the latter taxon

from R. macrotis in China as follows: “Bats with FA >46 mm and

FmaxE <55 kHz were assigned to R. macrotis. If FA <46 mm and

FmaxE >58 kHz, then bats were assigned to R. siamensis.”

Since 2002, R. macrotis s.l. specimens collected in different locali-

ties of Vietnam have been identified as R. cf. macrotis or R. cf.
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siamensis based on their body size and/or echolocation calls follow-

ing Francis (2008). However, in 2015 and 2016, three specimens of

R. cf. macrotis were collected in Phia Oac–Phia Den Nature Reserve,

Cao Bang Province (hereafter Phia Oac) (Figure 1), which could be

differentiated from other forms by their significantly larger body size,

other external characters (e.g., ears and noseleaf structure) (Tu et al.,

2016), and echolocation call parameters. Because considerable dis-

crepancies remain in criteria for identifying R. macrotis and R. sia-

mensis in Indochina and southern China, we examine the taxonomic

status of Vietnamese taxa within the R. macrotis complex based on

analyses of their morphological characteristics, acoustic parameters,

and mitochondrial DNA sequences.

2 | MATERIALS AND METHODS

2.1 | Morphological analyses

We examined 60 specimens of R. macrotis s.l. (n = 42), R. marshalli

(n = 5), and R. paradoxolophus (n = 13) collected during field surveys

in Vietnam between 2002 and 2016 (Figure 1; Appendix 1). All

specimens are held in the Institute of Ecology and Biological

Resource, Vietnam Academy of Science and Technology, Hanoi,

Vietnam (IEBR). All specimens examined were adults, as confirmed

by the presence of fully ossified metacarpal–phalangeal joints.

External measurements were taken to the nearest 0.1 mm from

alcohol-preserved specimens. These included the following: FA—

length of forearm; Tail—tail length; E—ear length; Tib—tibia length,

from the knee joint to the ankle; HF—hind foot length, from the tar-

sal joint to the outermost part of the claw of the longest finger;

HSW—greatest width of anterior noseleaf; SHE—height of sella,

from the cup at the base; SEW—width of sella at the middle;

3rdmt—length of the third metacarpal; 4thmt—length of the fourth

metacarpal; and 5thmt—length of the fifth metacarpal.

Craniodental measurements were taken to the nearest 0.01 mm

using digital callipers under a stereomicroscope. These included the

following: GLS—total length of skull, from the most anterior part of

the premaxillae to the occiput; SL—greatest length of skull, from the

most anterior part of the upper canine to the most posteriorly pro-

jecting point of the occipital region; CCL—condylo-canine length,

from the exoccipital condyle to the most anterior part of the canine;

F IGURE 1 Distribution areas of Rhinolophus macrotis s.l. (blue dot line) and R. siamensis (orange dot line) in Asia (Chiozza, 2008; Molur
et al., 2008) and taxonomic sampling used for this study. Red symbols are type localities of described taxa of the R. macrotis complex. The
localities of bats of the R. macrotis complex collected by previous studies are presented in large map, and those collected by the authors in
Vietnam are detailed in small map: NP—Pokhara, Nepal; MY—Myanmar; C—China: C1—Jinning County, Yunnan (originally R. macrotis s.l.
intermediate form (Sun et al., 2008)); C2—Vicinity Of Nian Wei, Guangxi; C3—imprecise locality, Guizhou; C4—Shuipu Village, Libo, Guizhou;
C5—Nanning city, Guangxi; C6—Jinggangshan Nature Reserve (NR), Jiangxi; C7—, Jingmen; L—Laos: L1—Ban En, Luang Namtha; L2—NamEt
NBCA, Louangphrabang; L3—Lak Sao, Khammouan; V—Vietnam: V1—Hoang Lien National Park (NP), Lao Cai; V2—Copia NR, Son La; V3—
Xuan Son NP, Phu Tho; V4—Khau Ca NR, Ha Giang; V5—Phia Oac–Phia Den NR, Cao Bang; V6—Na Hang NR, Tuyen Quang; V7—Ba Be NP,
Bac Kan; V8—Cuc Phuong NP, Ninh Binh; V9—Xuan Lien NR, Thanh Hoa; V10—Phong Nha-Ke Bang NP, Quang Binh; V11—Bac Huong Hoa
NR, Quang Tri; and V12—Dakrong NR, Quang Tri
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ZB—greatest width of the skull across the zygomatic arches; MB—

greatest distance across the mastoid region; ALSW—greatest width

of the anterior lateral swellings in dorsal view; AMSW—width of the

anterior median swellings in the dorsal view; C1C1—greatest width

across the upper canines between their buccal borders; M3M3—

greatest width across the crowns of the last upper molars; PL—

length of palatal bridge; IC—width of interorbital constriction;

CM3—maxillary toothrow length, from the anterior of the upper

canine to the posterior of the crown of the 3rd upper molar; ML—

length of mandible, from the anterior rim of the alveolus of the first

lower incisor to the most posterior part of the condyle; and CM3—

mandibular toothrow length, from the anterior of the lower canine

to the posterior of the crown of the 3rd lower molar.

To test the phenetic affinities of the studied specimens, principal

component analysis (PCA) was performed in PAST (Hammer, Harper,

& Ryan, 2001) on the log-transformed morphometric measurements

(data of different sexes were combined). Using the original descrip-

tions of recognized subspecies or synonyms of R. macrotis s.l. in

mainland Asia (R. siamensis, R. episcopus, R. e. caldwelli, R. m. topali,

and R. huananus: Gyldenstolpe, 1917; Allen, 1923; Csorba & Bates,

1995; Wu et al., 2008), we evaluated the phenetic affinities of our

material and these taxa using PCA on seven craniodental measure-

ments: SL, ZB, MB, CM3, M3M3, ML, and CM3. As these measure-

ments are standard in bat research and vary little between

observers, comparisons using these data from different sources can

be performed with reasonable confidence (Palmeirim, 1998). Prior to

the analysis, data were scaled to the same precision of measure-

ments from the literature. The equalities of mean values of all mor-

phological measurements and PC scores obtained from PCA

between different taxa were tested using a one-way analysis of vari-

ance (ANOVA), followed by a Tukey HSD multiple comparison test

for unequal sample sizes (Tukey–Kramer) or a Kruskal–Wallis test

(Zar, 1999).

To examine the glans penis, digital 2D images were taken using

a Leica M80 binocular microscope connected to a PC. To examine

bacula, 5% potassium hydroxide was used to macerate the skin and

ossified tissues, which were then removed manually. A small quality

of alizarin red was added during maceration to stain examined

materials. Following dissection, bacula were stored in glycerin (Fri-

ley, 1947). Digital 2D images of bacula were taken using the same

apparatus and from which the following measurements (as detailed

in Figure 6) were taken to the nearest 0.01 mm using Leica

Acquire Software version 3.3 (Leica Microsystems Ltd, Switzerland):

total length; height of basal cone; width of basal cone; and width

of tip.

2.2 | Acoustic analyses

Between 2006 and 2014, echolocation calls of bats held in the hand

or resting in a flight tent were recorded with a Pettersson D240x

bat detector with a sampling frequency of 307 kHz (Pettersson Elek-

tronik, Sweden) and stored digitally on an Edirol R-09HR recorder

(Roland, USA). In 2016, bat calls were recorded by an Echo Meter

Touch (Wildlife Acoustics, USA), connected to an iPhone 5S (Apple,

USA).

The properties of all recorded calls were analyzed by callViewer

v.18 (Skowronski, 2008). For each bat, we calculated the mean

value � SD of the frequency of maximum energy (FmaxE), the start

and end frequency (SF and EF), the sound duration (ms), and inter-

pulse interval (IPI) from 5 to 10 calls. We also tabulated the same

metrics reported for species within the “R. philippinensis” group

(R. macrotis, R. marshalli, R. paradoxolophus, and R. rex) elsewhere in

mainland Asia to determine inter- and intraspecific variation in their

echolocation calls.

2.3 | Genetic analyses

Eighteen tissue samples of morphologically identified specimens of

R. macrotis s.l. (n = 15), R. marshalli (n = 1), and R. paradoxolophus

(n = 2) were collected in Vietnam between 2011 and 2016. Tissue

samples were taken from the chest muscles of voucher specimens or

from the patagium (biopsy punches; 3 mm diameter) of released bats

and preserved in 95% ethanol. Samples were stored at �20 °C until

processing. Total DNA was extracted using QIAGEN DNeasy Tissue

Kit (Qiagen, Germany) in accordance with the manufacturer’s instruc-

tions. Two mitochondrial genes were sequenced in three laboratories

(the Centre National de Séquençage, France; the Biological Research

Centre of the Hungarian Academy of Sciences, Hungary; and the

Infectious Disease Surveillance Center, Japan) for this study: the

complete cytochrome b (Cytb; 1,140 bp) and the 50 fragment of

cytochrome c oxidase subunit I (COI; 657 bp). Primer sets used for

PCR amplification of Cytb were Mt-14724F/Cyb-15915R (Irwin,

Kocher, & Wilson, 1991), Cy-14726F/Cyb-15909R (Arai et al.,

2016), or Molcit-F/Cytb-H (Ib�a~nez, Garc�ıa-Mudarra, Ruedi, Stadel-

mann, & Juste, 2006; Weyeneth, Goodman, Stanley, & Ruedi, 2008)

and of COI were UTyr/C1L705 (Hassanin et al., 2012) or VF1d/

VR1d (Ivanova, Zemlak, Hanner, & Hebert, 2007) (Table S3).

PCR amplifications of Cytb and COI genes were performed as

detailed in Tu et al. (2015), Arai et al. (2012), and Lim et al. (2016).

PCR products were purified using ExoSAP Kit (GE Healthcare, UK)

and sequenced in both directions with the PCR primers. The

sequences obtained were then edited and assembled using Codon-

Code Alignment version 3.7.1 (CodonCode Corporation, USA) and

Genetyx v11 software (Genetyx Corporation, Japan). The sequences

were deposited in GenBank under the accession numbers

KY652895-KY652914 (Appendix 1).

To explore the phylogenetic relationships of our material and

allied species in continental Asia, our analyses included additional

Cytb and COI sequences of R. macrotis, R. marshalli, R. paradoxolo-

phus, and R. rex available in the GenBank database. The origins of all

samples are presented in the Table S4, but only those of R. macrotis

s.l. are denoted in Figure 1. As a consequence, phylogenetic trees of

R. macrotis s.l. in continental Asia were inferred from two separate

mitochondrial datasets: (i) Cytb (37 sequences and 1140 nt) and (i)

COI (36 sequences and 657 nt), both using Bayesian inference (BI)

with MrBayes v3.2 (Ronquist et al., 2012). Following Guill�en-Servent

180 | TU ET AL.



et al. (2003), out-groups included Coelops frithii Blyth, 1848, and Asel-

liscus dongbacana Tu et al., 2015 of the Hipposideridae, and two spe-

cies of the genus Rhinolophus, R. pearsonii Horsfield, 1851, and

R. pusillus Temminck, 1834 (Table S4). Sequences were aligned manu-

ally in PhyDe version 0.9971 (M€uller, M€uller, Neinhuis, & Quandt,

2010). No gaps and stop codons were found in the alignments of the

mitochondrial COI and Cytb protein-coding genes. The best-fitting

models of sequence evolution for Cytb (GTR+I+G) and COI (GTR+I)

datasets were selected with jModelTest v2.1.4, using the Akaike

information criterion (Darriba, Taboada, Doallo, & Posada, 2012). Pos-

terior probabilities (PPs) were calculated using four independent

Markov chains run for 10,000,000 Metropolis-coupled MCMC gener-

ations, with trees sampled every 1,000 generations, and a burn-in rate

of 25%. Uncorrected pairwise genetic distances (p-distances) were

calculated with PAUP* version 4b10 (Swofford, 2003).

3 | RESULTS

3.1 | Morphology

Among Vietnamese members of the philippinensis group, R. paradox-

olophus and R. marshalli could be unequivocally differentiated from

R. macrotis s.l. by external and craniodental characters (Figures 2 and

3, Table 1). Rhinolophus macrotis s.l. specimens collected in Phia Oac

(hereafter R. cf. macrotis Phia Oac) were distinguishable from speci-

mens collected in other localities by their larger body and skull sizes,

and noseleaf structure. Remaining R. macrotis s.l. specimens were

subdivided into two separate forms, namely R. cf. macrotis and R. cf.

siamensis (Figures 2 and 3, Table 1). The phenetic affinities of speci-

mens were confirmed among these five taxa by PCAs on external

and craniodental measurements (Data S1).

A PCA on seven craniodental measurements of our material and

recognized subspecies or synonyms of R. macrotis s.l. in mainland

Asia (including R. siamensis, R. episcopus, R. e. caldwelli, R. m. topali,

and R. huananus: Gyldenstolpe, 1917; Allen, 1923; Csorba & Bates,

1995; Wu et al., 2008) revealed two PCs showing significant differ-

ences between taxa (ANOVA: P < 0.05) (Figure 4). PC1 (accounted

for 97.6% of total variance) correlated positively with all seven char-

acters and reflects size in general, whereas PC2 (accounted for 1.0%

of total variance) with high factor loading for M3M3, MB, and ZB

reflects shape (see Table 2). In the plot of PC1 against PC2 (Fig-

ure 4), R. paradoxolophus and R. marshalli were separated from

R. macrotis s.l. Within the latter taxon, PC1 shows that R. siamensis

is the smallest taxon, whereas R. cf. macrotis Phia Oac is the largest

and R. cf. siamensis and R. huananus appear in an overlapping cluster,

intermediate between R. siamensis and R. e. caldwelli. Rhinolophus cf.

macrotis is intermediate between R. e. caldwelli and R. m. topali,

whereas R. episcopus is slightly larger than R. m. topali, but distinctly

smaller than R. cf. macrotis Phia Oac. Based on PC2, two separate

groups can be observed: (i) R. episcopus and R. m. topali and (ii) R. si-

amensis, R. cf. siamensis, R. huananus, R. e. caldwelli, and R. cf. macro-

tis Phia Oac. Rhinolophus cf. macrotis is intermediate between these

two groups.

In the dentition, the lower middle (P3) premolar of our specimens

of the three morphological forms of R. macrotis s.l. (R. cf. macrotis,

R. cf. siamensis, and R. cf. macrotis Phia Oac) is situated in or half-

displaced from the toothrow and the lower anterior and posterior

premolars (P2 and P4) are clearly separated (Figure 3). These charac-

ters were also reported for the holotype of R. m. caldwelli and

R. huananus (Allen, 1923; Wu et al., 2008). Likewise, P3 in R. macro-

tis macrotis, R. m. topali, and R. m. episcopus is reduced, and its tip

does not reach the cingulum of the lower anterior and posterior pre-

molars (P2 and P4). Because this tooth is extruded from the tooth-

row, P2 and P4 are in contact (Allen, 1923; Bates & Harrison, 1997;

Csorba & Bates, 1995).

Of the three phenetic forms of R. macrotis recognized by Sun

et al. (2008) in China, the morphological measurements of the small

and intermediate forms of Chinese R. macrotis match those of our

R. cf. siamensis and R. cf. macrotis, respectively, suggesting they can

be treated as the same morphological taxa (hereafter R. cf. siamensis

and R. cf. macrotis). The large form of R. macrotis in Jiangxi, China

(Sun et al., 2008), agrees more closely with R. cf. macrotis Phia Oac,

although we found certain differences, for example, ear length = 23–

24 mm vs. 29–32 mm and sella height = 5.48 � 0.31 mm vs. 6.2–

6.7 mm, respectively.

3.2 | Glans penis and bacular morphology

The glans penis (one specimen per form) and bacula (two specimens

per form) were examined for the three morphological forms of

R. macrotis s.l. in Vietnam (Figures 5 and 6).

Glans penis: The glans penises of the three morphological forms of

R. macrotis in Vietnam are readily distinguishable by their size and

shape (Figure 5). In R. cf. macrotis (Figure 5a), the glans penis is cylin-

drical (ca. 4 mm in length) and separated from the terminal shaft by a

visible fold. The ventral surface is oblong, its dorsal aspect is flat-

tened, and the urinary meatus appears as a long and narrow ridge at

the middle of the ventral side. In R. cf. siamensis (Figure 5b), the glans

penis is bulbous (ca. 3 mm in length) and is also separated from the

terminal shaft by a visible boundary and the urinary meatus appears

as a long and wide vertical slit, bounded on either side by two small

labia-like projections. In R. cf. macrotis Phia Oac (Figure 5c), the glans

penis is club-shaped (ca. >4 mm in length), the boundary between the

glans and shaft is invisible, and the urinary meatus appears as a long

and deep vertical slit. Because intraspecific variation in glans penis

within each form of Vietnamese R. macrotis s.l. was not examined,

further investigations are needed to confirm the above observations.

Baculum: In general terms, the baculum of R. macrotis s.l. has a

slightly compressed dorsoventral basal cone, and dorsal and ventral

emarginations on the corresponding proximal margins are slight and

wide. The shaft of the baculum has a thickening at the midpoint,

which is visible laterally and dorsally. This has a very slight dorsal

bend near the base cone, which is more pronounced immediately

beyond the thickening. The tip is narrowly rounded off, with a lateral

widening and an elongated dorsal knob (Figure 6) (Top�al, 1975).

However, considerable differences occur in the size and shape of
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bacula among the three morphological forms of R. macrotis s.l. in

Vietnam (Figure 6; Table 3). For instance, the baculum of R. cf. sia-

mensis (Figure 6c, d) is distinctly smaller in most respects than that

of R. cf. macrotis and R. cf. macrotis Phia Oac (Figure 6a, b and e, f,

respectively), whereas those of the latter taxa are nearly identical.

3.3 | Echolocation calls

Echolocation call parameters of our R. paradoxolophus, R. cf. macrotis,

R. cf. siamensis, and R. cf. macrotis Phia Oac were compared with

published data for R. macrotis, R. marshalli, R. paradoxolophus, and

R. rex from Vietnam and adjacent territories (Table 4). Significant dif-

ferences were found in echolocation call parameters between these

taxa, and body size (expressed by FA) and FmaxE were negatively

correlated in general (Figure 7; Table 4). For instance, R. rex and

R. paradoxolophus are large bodied and consequently emit calls with

the lowest FmaxE values (26.8 � 0.2 kHz and 28.5 � 0.4 kHz,

respectively). Similarly, the FmaxE of the smallest taxon, R. cf. sia-

mensis from northern Vietnam and the small form of R. macrotis s.l.

in southern China (Jiangxi and Guangxi), was the highest recorded

(64.7 � 0.3 kHz to 69.0 � 0.7 kHz). Between these two extremes,

R. cf. macrotis Phia Oac bats and those of the large form of

R. macrotis s.l. in Jiangxi (Sun et al., 2008) overlapped in body size

(FA: >45 mm), while their FmaxE ranged from 43.2 kHz (former

taxon) to >47.9 kHz (latter taxon). Bats of Vietnamese R. cf. macrotis

and those of the intermediate form of R. macrotis s.l. in Yunnan (Sun

et al., 2008) are similar in body size (FA: 42–45 mm) and emit calls

with a range of FmaxE from 52.0 kHz (first taxon) to >56.4 kHz (lat-

ter taxon). One exception to the negative correlation between body

size and FmaxE was found in R. marshalli. This species is significantly

smaller than R. cf. macrotis Phia Oac but emits calls with a similar

FmaxE (Figure 7; Table 4).

(a)

(b)

(c)

(d)

(e)

F IGURE 2 Portrait and noseleaf
morphology of studied species of the
philippinensis group collected in Vietnam. a
—R. paradoxolophus (NH2016-66, ♂); b—
R. marshalli (IEBR.VN14-0212, ♂); c—R. cf.
macrotis (IEBR.VN11-0261, ♂); d—R. cf.
siamensis (IEBR.M-5353, ♂); e—R. cf.
macrotis Phia Oac (IEBR - VTTu15.0028,
♂). Not to scale
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3.4 | Phylogeographic analyses

3.4.1 | Cytb sequences

The Bayesian tree reconstructed from the Cytb alignment is pre-

sented in Figure 8. The philippinensis group and R. marshalli are

monophyletic (PP = 1), but within the philippinensis group, R. macro-

tis appears to be polyphyletic with four divergent clades. Rhinolophus

marshalli, R. rex, and R. paradoxolophus are situated between the

clades of R. macrotis, although these deep relationships are not

robust (PP < 0.7). Clade 1 included bats of the large form of

R. macrotis s.l. in Jiangxi (Sun et al., 2008) and Jingmen, China (Guo

et al., 2013), and occupied a basal position. Clade 2 included only

bats of R. cf. macrotis Phia Oac and one specimen from Guizhou,

southern China (Zhang, Sun, & Feng, 2015). Our specimens of R. cf.

macrotis and R. cf. siamensis grouped together with the small and

intermediate forms of R. macrotis s.l. from southern China (Sun et al.,

2008) and comprised Clade 3. A single Nepalese specimen of

R. macrotis (or Clade Nepal) was sister to a group uniting bats in

Clade 2 and Clade 3 (PP = 1), but the deep sister relationship among

them was not robust (PP < 0.5). Likewise, two pairs of taxa including

(i) R. rex in southern China/R. paradoxolophus in northern Vietnam,

and (ii) R. cf. macrotis (including R. macrotis s.l. intermediate form in

Yunnan sensu Sun et al., 2008)/R. cf. siamensis (including R. macrotis

s.l. small form in south China sensu Sun et al., 2008), were para-

phyletic (Figure 8).

Pairwise nucleotide p-distances estimated from Cytb sequences

between nominate taxa within the “R. philippinensis” group lay

between 3.0% and 5.5%, except for R. rex and R. paradoxolophus,

which show low divergence, similar to their intraspecific variation

(0.2%–1.1%). These values are significantly smaller than interspecific

variation between other Rhinolophus taxa such as R. pusillus and

R. pearsonii (>6.8%). Within R. macrotis s.l., the Nepalese specimen

differed from other bats in clades 1–3 by 3.2%–4.1%, whereas

genetic divergences between and within clades 1–3 were 2.4%–4.1%

and <2%, respectively. Thus, genetic distances between the four

identified clades of R. macrotis are comparable with interspecific

variations between nominate taxa within the philippinensis group. It

should also be noted that R. cf. siamensis and R. cf. macrotis in Indo-

china and southern China in Clade 3 are discriminable morphologi-

cally and acoustically, but their Cytb sequences are identical or only

slightly different (Table 5).

3.4.2 | COI sequences

Contrary to the Cytb analysis, no COI sequences were available for

samples of R. macrotis s.l. from Nepal and Jiangxi (China) (C7 within

Clade 1 in Cytb tree: Figure 8). The phylogenetic patterns of taxa in

the COI tree are comparable with those in the Cytb tree, except that

two specimens of R. paradoxolophus from Khammouane (Laos)

appear as sister to the clade containing R. rex and R. paradoxolophus

in northern Laos, Vietnam, and southern China (PP = 0.8) (Figure 9).

The philippinensis group is also monophyletic, but with relatively low

robustness (PP = 0.6). Rhinolophus marshalli, R. rex, and R. paradox-

olophus also appear as sister to R. macrotis s.l., although their deep

sister relationships are not robust (PP < 0.7). The two sister clades

of R. macrotis s.l. (clades 2 and 3) have maximum robustness

(PP = 1).

P-distances calculated from COI sequences between different

taxa are similar to those calculated from Cytb sequences. For

instance, interspecific genetic distances within the philippinensis

group range from 2.4% to 4.6%, except between R. rex and

R. paradoxolophus (0%–2.3%), which is also smaller than distances

among other Rhinolophus spp. (>9.1%) (Table 5). If R. paradoxolophus

specimens from northern Laos and northern Vietnam (northern

Indochina) and from Khammouane (Laos, central Indochina) are

treated as two separate lineages, namely R. paradoxolophus 1 and

(a)

(b)

(c)

(d)

(e)

F IGURE 3 Skull photographs of studied
species of the philippinensis group collected
in Vietnam. a—R. paradoxolophus
(IEBR.VTTu15.006, ♂); b—R. marshalli
(IEBR.XS15.20, ♂); c—R. cf. macrotis
(IEBR.VN11-0261, ♂); d—R. cf. siamensis
(IEBR.VN11-0138, ♂); e—R. cf. macrotis
Phia Oac (IEBR.VTTu15.0028, ♂).
Scale = 10 mm
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F IGURE 4 Principal components
analysis (PCA) on seven craniodental
characters of Rhinolophus spp

TABLE 2 Factor loading for PCs obtained from PCA of seven
cranial characters

Characters PC 1 PC 2

SL 0.37 0.11

ZB 0.33 0.41

MB 0.37 0.55

CM3 0.41 �0.19

M3M3 0.34 �0.67

ML 0.42 �0.01

CM3 0.39 �0.17

Eigenvalue 0.0136 0.0001

% variance 97.6 1.00

F IGURE 5 Morphology of the glans penis of three morphological
forms of R. macrotis s.l. recorded in Vietnam. From left to right
(ventral view and lateral view): a—R. cf. macrotis (IEBR.VN11-0201);
b—R. cf. siamensis (IEBR.VN11-0138); and c—R. cf. macrotis Phia
Oac (IEBR.POPD16.20). Scale = 5 mm

F IGURE 6 Bacula of specimens of different taxa within
R. macrotis s.l. collected in Vietnam. From left to right (lateral, dorsal,
and ventral view): R. cf. macrotis (Vietnam: a—IEBR.VN11-0082; b—
IEBR.VN11-0201); R. cf. siamensis (Vietnam: c—IEBR.VN11-0138;
d—IEBR.POPD16.24); and R. cf. macrotis Phia Oac (Vietnam: e—
IEBR.VTTu15.0027; f—IEBR.POPD16.20). Measurements as in
Table 3: i—total length; ii—height of basal cone; iii—width of basal
cone; and iv—width of tip. Scale = 2 mm
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R. paradoxolophus 2, respectively, genetic distances between the

two lineages are significantly higher than those within each

lineage (2.1%–2.8% vs. <1.4%, respectively). Within R. macrotis s.l.,

p-distances among bats in clades 2 and 3 ranged from 1.7% to

2.7%, higher than those within each clade (<1.4%), whereas inter-

specific genetic distances between R. cf. macrotis and R. cf. siamen-

sis in Vietnam and nearby regions ranged from 0.2% to 1.1%

(Table 5).

3.4.3 | Identification key for five morphological
taxa belonging to the philippinensis group in Vietnam

1a. Supplementary leaflet absent; sella with conspicuous basal

lappets; lancet greatly reduced. Internarial cup expanded side-

ways to form prominent leaflets. Sella very long, leaf-like,

approaching ears in length. Connecting process with very wide

base (Figure 2a and b). Anterior median swellings low, long, and

well-expanded anteriorly beyond the front of the rostral wall

(Figure 3a and b). . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ..2

1b. Supplementary leaflet clearly visible; sella without basal lap-

pets (Figure 2c–e); lancet long, lateral margins convex with a

rounded tip; connecting process high, lower part almost parallel

with sella; anterior median swellings well inflated, long, and

expanded anteriorly but reach slightly beyond front of rostral wall

(Figure 3c–e). . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .3

2a. Size larger: FA > 50 mm; ear enormous, length >29 mm; lan-

cet broadly rounded; margins of internarial cup passing beneath

base of sella; SL > 20 mm; ML > 13 mm . . .. . . R. paradoxolophus

2b. Size smaller: FA < 47 mm; ear enormous, length 23–27 mm;

lancet more or less triangular; lateral margins of internarial

cup merge with margins of sella; SL < 19 mm;

ML < 12 mm. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ... R. marshalli

TABLE 3 Measurements (in mm) of extracted baculum of Vietnamese Rhinolophus macrotis s.l

Taxon Total length Width of basal cone Height of basal cone Width of tip

R. cf. macrotis (A, B) 4.05, 4.11 1.05, 1.15 1.04, 1.10 0.26, 0.28

R. cf. siamensis (C, D) 2.62, 2.61 0.66, 0.57 0.67, 0.51 0.15, 0.14

R. cf. macrotis Phia Oac (E, F) 4.31, 4.44 0.98, 1.01 0.91, 0.99 0.22, 0.31

TABLE 4 Call parameters (mean � SD) of different species of the philippinensis group recorded in northeastern Vietnam and south China

Taxon FA (mm) n SF (kHz) EF (kHz) FmaxE (kHz) D (ms) IPI (ms)

R. macrotis “Phia Oac” (Male) 48.6 � 1.0 1 37.7 � 0.5 37.3 � 0.9 43.2 � 0.0 31.6 � 5.5 66.8 � 24.1

R. macrotis large form Jiangxi1

Male 48 1 – – 47.9 � 0.2 – –

Female 45.2 � 3.7 9 – – 49.3 � 0.3 – –

R. cf. macrotis (NW Vietnam)* 43.3 � 1.2 1 44.8 � 1.2 48.0 � 1.6 52.0 � 0.3 31.4 � 2.4 80.1 � 15.5

R. cf. macrotis (=intermediate form) Yunnan1

Male 43.5 � 0.5 3 – – 56.4 � 0.3 – –

Female 42.3 � 0.8 6 – – 57.7 � 0.3 – –

R. cf. siamensis (NE Vietnam)* 40.2 � 0.9 3 59.4 � 1.2 53.1 � 2.4 66.4 � 0.9 30.4 � 7.5 56.3 � 22.8

R. cf. siamensis (NW Vietnam)* 39.2 � 0.8 3 61.6 � 2.9 61.1 � 2.1 69.0 � 0.7 43.8 � 9.5 102.9 � 27

R. cf. siamensis (=small form) Guangxi1

Male 39.8 � 0.5 4 – – 66.1 � 0.2 – –

Female 39.0, 40.5 2 – – 67.3 � 0.3 – –

R. cf. siamensis (=small form) Jiangxi1 (Female) 39.5, 40.0 2 – – 64.7 � 0.3 – –

R. paradoxolophus NE Vietnam* 54.1 � 1.4* 2 23.5 � 0.7 21.5 � 2.1 28.3 � 0.4 67.5 � 3.5 85 � 21.2

R. paradoxolophus NE Vietnam2 44 23.7 � 1.0 22.7 � 1.3 28.5 � 0.4 60.5 � 12.4 108.1 � 21.5

R. rex Guizhou, China3 54.1 � 1.4 18 26.8 � 0.2

R. marshalli Vietnam4 45.0 � 0.6* 1 43.5–44 42.3–44 44 44.9 –

R. marshalli Guangxi5

Male 43.75 � 2.43 9 – – 43.30 � 0.55 – –

Female 42.06 � 2.46 8 – – 44.47 � 0.63 – –

Sources: *recent study; n—number of individual examined acoustically; 1—Sun et al., 2008; —2Furey, Mackie, & Racey, 2009; —3Feng et al., 2001; —4Thong et al.,
2007; and 5—Liu, Jiang, Berquist, & Feng, 2009.
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3a. Size large: FA > 47 mm; ear enormous, length >29 mm; sella

parallel-sided, width >4 mm, but gradually narrowing toward

base; SL > 19 mm; ML > 12 mm; interpterygoid shallow and

cone-shaped. . .. . .. . .. . .. . .. . .. . .. . .. . .. . . R. cf. macrotis Phia Oac

3b. Size medium: FA 42–45 mm; ear large, length >23 mm; sella

parallel-sided, width <3 mm, but significantly broader at base;

SL <18–19 mm; ML 11–12 mm; interpterygoid shallow and

cone-shaped. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ...R. cf. macrotis

3c. Size small: FA < 42 mm; ear large, length usually <23 mm;

sella parallel-sided, width usually <3 mm; SL < 17 mm;

ML < 11 mm; interpterygoid deep and narrow. . .. R. cf. siamensis

4 | DISCUSSION

4.1 | How many species of the philippinensis group
occur in Vietnam and nearby regions?

Most early bat taxonomists relied on classical morphological exami-

nation of several discrete characters when designating boundaries

between species or higher taxa (e.g., Andersen, 1905; Tate, 1943).

However, recent investigations have indicated that the convergence

in phenotypes is relatively common in many bat taxa, for example,

Myotis spp. (Ruedi & Mayer, 2001), Hipposideros spp. (Douang-

boubpha et al., 2010; Rakotoarivelo, Willows-Munro, Schoeman,

Lamb, & Goodman, 2015; Thong et al., 2012), and Rhinolophus spp.

(Ith et al., 2015; Jacobs et al., 2013; Taylor et al., 2012). In Asia,

many bat species that were previously thought to be widespread are

now regarded as cryptic species complexes, and scientific under-

standing of regional bat diversity is restricted by current taxonomy

and gaps in survey coverage (Campbell, Schneider, Adnan, Zubaid, &

Kunz, 2004; Francis et al., 2010; Murray et al., 2012).

In the case of the R. macrotis complex, different species—

although distinguishable by certain morphological differences—have

been synonymized under the nominal species, R. macrotis (Csorba &

Bates, 1995; Tate, 1943). However, two of the seven recognized

subspecies of R. macrotis, namely R. hirsutus and R. siamensis (Fran-

cis, 2008), have been recently validated as distinct species. In con-

trast to previous studies, our analyses of morphological traits,

echolocation calls, and genetic sequences suggest that R. macrotis

sensu stricto (s.str.) may be endemic to the Indian subcontinent,

whereas bats hitherto allocated to R. macrotis s.l. in Vietnam and

nearby regions should be classified into different species including

the following: (i) R. macrotis s.l. (=large form found in Jiangxi and

Jingmen, China (Sun et al., 2008; Guo et al., 2013)); (ii) R. cf. macrotis

Phia Oac; (iii) R. cf. macrotis (including R. macrotis s.l. = the interme-

diate form in Yunnan (Sun et al., 2008)); and (iv) R. cf. siamensis (in-

cluding R. macrotis s.l. = small form in southern China (Sun et al.,

2008)). Further investigations of the acoustic and genetic traits of

type or topotype material of recognized subspecies of R. macrotis s.l.

are needed to determine their affinities with recently recognized

cryptic taxa.

Previous studies in Indochina and China identified certain bats as

R. siamensis following Hendrichsen, Bates, and Hayes (2001), who

recognized a small-sized specimen collected in Pu Mat, central Viet-

nam, as possibly the genuine R. siamensis. Other specimens from the

region formerly allocated to the nominate taxon were observed to

be intermediate in body size between R. siamensis and R. macrotis

(Francis, 2008; Hendrichsen et al., 2001; Kruskop, 2013; Osgood,

1932; Smith et al., 2008). Wu et al. (2008) considered that bats

intermediate between R. siamensis and R. macrotis might belong to a

newly described species, R. huananus, whereas Zhang et al. (2009)

suggested that R. huananus may be a synonym of R. siamensis. Our

F IGURE 7 Relationships between forearm length (FA) (x � SD) and frequency of maximum energy (FmaxE) (x � SD) in Rhinolophus ssp.
within the philippinensis group. 1—R. cf. macrotis Phia Oac (male); 2—R. cf. macrotis Jiangxi (male); 3—R. cf. macrotis Jiangxi (female); 4—R. cf.
macrotis NW Vietnam; 5—R. cf. macrotis Yunnan (male); 6—R. cf. macrotis Yunnan (female); 7—R. cf. siamensis NE Vietnam; 8—R. cf. siamensis
NW Vietnam; 9—R. cf. siamensis Guangxi (male); 10—R. cf. siamensis Guangxi (female); 11—R. cf. siamensis Jiangxi (female); 12—
R. paradoxolophus NE Vietnam; 13—R. rex Guizhou, China; 14—R. marshalli NE Vietnam; 15—R. marshalli Guangxi (male); and 16—R. marshalli
Guangxi (female)

188 | TU ET AL.



morphological comparison shows that Vietnamese bats of R. cf. sia-

mensis overlap with the type material of R. huananus in a cluster

between the type specimens of R. siamensis and R. e. caldwelli

(Fig. 4). This suggests that bats of R. cf. siamensis in this study

belong to the same taxon as R. huananus. Further studies including

acoustic and/or genetic analyses of type or topotype material of

genuine R. siamensis are needed to confirm this taxonomic inference.

The significant overlap in body size and echolocation call param-

eters between R. rex in China and R. paradoxolophus in northern

Vietnam supports previous suggestions that these taxa may be con-

specific (Csorba et al., 2003; Hill, 1972; Zhang et al., 2009). How-

ever, interspecific divergences in DNA barcode sequences (COI)

between two specimens of R. paradoxolophus collected in Kham-

mouane, Laos (or R. paradoxolophus 2), and those of the clade unit-

ing Chinese R. rex and R. paradoxolophus in northern Vietnam

(R. paradoxolophus 1) were comparable with interspecific distances

within the “macrotis” complex. Morphological comparisons of

R. paradoxolophus s.str. in Quang Tri Province (central Vietnam)

(which may be conspecific with R. paradoxolophus 2 in

Khammouane, Laos, due to their geographic proximity) and those

from northern Vietnam reveal that the former is generally larger in

body size (Hoang Trung Thanh, pers. obs.). Thus, although the phylo-

genetic patterns we obtained among matrilines from distant geo-

graphic localities could be indicative of female philopatry (Hassanin

et al., 2015; Kerth, Mayer, & K€onig, 2000; Pereira, Salgueiro, Rodri-

gues, Coelho, & Palmeirim, 2009; Rivers, Butlin, & Altringham, 2005;

Tu et al., 2017), further morphological, acoustic, and genetic studies

are needed to test whether such genetic divergences represent

cryptic diversity.

4.2 | Low genetic divergence between taxa in the
philippinensis group

Different species within the philippinensis group are readily distin-

guishable by their morphological and acoustic traits, but levels of

mtDNA sequence divergence revealed in this study were signifi-

cantly lower than those found between other morphological groups

within the genus. In particular, mtDNA sequences of pairs of R. cf.

0.03
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F IGURE 8 Bayesian tree reconstructed from Cytb sequences. The numbers on nodes represent posterior probabilities. The asterisk “*”
indicates that the node was supported by maximal values of robustness (PP = 1). The localities of specimens examined were illustrated in
Figure 1, Appendix 1, and Table S4.
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macrotis/R. cf. siamensis and R. rex/R. paradoxolophus, from northern

Indochina and southern China, were identical or only slightly differ-

ent (Figure 8; Table 5). Such low levels of genetic variation between

species may be attributable to incomplete lineage sorting of ances-

tral polymorphism, as the result of recent speciation events, mtDNA

introgression between closely related species (Berthier, Excoffier, &

Ruedi, 2006; Mao, Zhang et al., 2010; Nesi, Nakoun�e, Cruaud, &

Hassanin, 2011), a slower rate of mitochondrial DNA evolution in

particular species (Avise, Bowen, Lamb, Meylan, & Bermingham,

1992; Nabholz, Gl�emin, & Galtier, 2008), or even misidentification of

specimens (Wiemers & Fiedler, 2007).

Rhinolophus cf. macrotis and R. cf. siamensis may have been con-

fused in previous studies (e.g., Sun et al., 2008; Zhang et al., 2009)

because differences in morphological and acoustic traits were attrib-

uted to geographic variation among allopatric populations. However,

both taxa occur in sympatry in Vietnam and Laos, and in these areas

at least, they are readily distinguishable morphologically and acousti-

cally (Francis, 2008). Misidentification of our specimens of R. cf.

macrotis and R. cf. siamensis collected in sympatry and allopatry is

unlikely, due to their considerable differences in body size, noseleaf

structure, craniodental characteristics, glans penis and baculum mor-

phology, and echolocation call parameters.

The low sequence divergence between taxa of the philippinensis

group may also indicate recent interbreeding. Although additional

studies including nuclear genes are needed to test this hypothesis

(Berthier et al., 2006; Hassanin et al., 2015; Mao, Zhang et al.,

2010; Nesi et al., 2011), our morphological and acoustic analyses

provide evidence against the possibility of recent gene flow

between R. cf. macrotis and R. cf. siamensis. The morphological and

acoustic differences between these taxa suggest that they might

occupy separate ecological niches in areas of sympatry, as previ-

ously reported for other sister taxa, for example, bamboo bats of

the genus Tylonycteris (Medway & Marshall, 1972; Zhang, Liang,

Parsons, Wei, & Zhang, 2007) or the Hipposideros bicolor complex

(Kingston et al., 2001). Such divergent characters may indicate that

sibling species of horseshoe bats may have evolved their own

specific mate-recognition systems (SMRSs) (Cotterill, 2002; Kingston

& Rossiter, 2004; Taylor et al., 2012) that would prevent recent

introgression. The low difference in mtDNA gene sequences of

R. cf. macrotis and R. cf. siamensis could be due to ancient intro-

gression events since their diversification and/or incomplete lineage

sorting of ancestral polymorphism (Funk & Omland, 2003; Pamilo &

Nei, 1988). Accordingly, if we assume a mutation rate of Cytb

sequence of a 2% per million years, the separation of the four spe-

cies (R. macrotis s.l., R. paradoxolophus, R. rex, and R. marshalli) from

a common ancestor would have taken place at the Plio-Pleistocene

boundary (about 2.7 Mya). Other taxa within the R. macrotis com-

plex may have diverged more recently during the Pleistocene

(around 1.2–2.1 Mya) (Guill�en-Servent et al., 2003; Sun et al.,

2008). At the end of the late Miocene and until the early Pliocene

R. macrotis Clade 2

R. macrotis Clade 3

R. macrotis HM541598 V6
R. macrotis HM541600 V6

R. macrotis HM541599 V6 

R. macrotis HM541592 MY

VTTu15-0027 V: Phia Oac

R. macrotis HM541602 C2

R. macrotis HM541597 V6

R. pearsonii HM541678

R. macrotis VN11-0082 V2 (M)

R. pusillus JF444070

R. paradoxolophus 1 HM541666 C: Guangxi

R. rex NC_028536 C:?

R. paradoxolophus 2 HM541670 L: Khammouane

R. siamensis HM541798 L1

R. paradoxolophus 2 HM541672 L: Khammouane

R. siamensis HM541796 L2

R. macrotis VN11-0201 V2 (M)

R. paradoxolophus 1 HM541653 V6

R. macrotis VN11-0138 V7 (S)

VTTu15-0028 V: Phia Oac

R. macrotis JQ600012 C4

R. marshalli HM541627 L: Houaphan

R. paradoxolophus 1 HM541634 L: Houaphan

R. rex  KT599913 C:?

R. macrotis JF444050 V6

R. macrotis VN11-0679 V10 (S)

R. paradoxolophus 1 HM541668 V6
R. paradoxolophus 1 HM541660 C: Guangxi

R. siamensis HM541801 L3

R. macrotis HM541596 L2

R. marshalli HM541626 L: Vientiane

R. macrotis HM541601 V2

R. macrotis JF444052 C4

R. paradoxolophus  HM541667 V: Huu Lien

0.9

0.6 0.8

0.7
*

*

*

*

*

*

*

*

*

*

*

**

“PHILLIPPINENSIS” GROUP

0.04

Outgroups
Coelops frithi
Ase. dongbacana

“S” = cf. siamensis 

“M” = cf. macrotis 

FA: 39.0 - 41.5 mm; 
Echo: 64 7-66.7 kHz

FA: > 42.0 mm; 
Echo: ca. 52 - 57.3 kHz 

F IGURE 9 Bayesian tree reconstructed from COI sequences. The numbers on nodes represent posterior probabilities. The asterisk “*”
indicates that the node was supported by maximal values of robustness (PP = 1). The localities of specimens examined were illustrated in
Figure 1, Appendix 1, and Table S4.
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epoch, South-East Asia was a single block of rainforest due to the

prevailing warm and humid climatic conditions (Morley, 2000).

However, the uplift of Himalayan–Tibetan plateau about 3.6–

2.6 Mya and the onset of extensive glaciations in the Northern

Hemisphere during the late Pliocene and Pleistocene epochs led to

repeated cycles of cool and arid glacial periods and warm and

humid interglacial periods in Asia (An, Kutzbach, Prell, & Porter,

2001). Associated with these climatic oscillations, forest expansion

and contraction events across the region during Pleistocene may

have acted causal factors in shaping current diversity and distribu-

tion of Asian biota (Meijaard, 2003; Woodruff, 2010). Because Rhi-

nolophus spp. are recognized as forest-interior specialists (Kingston,

Francis, Akbar, & Kunz, 2003), contraction and expansion of forests

during Plio-Pleistocene have been regarded as major factors driving

their biogeographical history (Flanders, Wei, Rossiter, & Zhang,

2011; Mao, He et al., 2013; Mao, Zhu, Zhang, & Rossiter, 2010;

Rossiter, Benda, Dietz, Zhang, & Jones, 2007; Tu et al., 2017). For

the R. macrotis group, we suggest that the vicariance of the most

common ancestors of recent taxa might have taken place due to

the persistence of different allopatric refugia across the region dur-

ing Pleistocene glacial periods (Bird, Taylor, & Hunt, 2005; Gath-

orne-Hardy, Syaukani Davies, Eggleton, & Jones, 2002; Lin et al.,

2014; Morgan, Somboon, & Walto, 2013; Tu et al., 2015, 2017). As

a consequence, vicariant populations adaptively evolved under dif-

ferent ecological selections imposed by isolated refugia which may

have led to shifts in their morphology (noseleaf structure and body,

skull, glans penis, and baculum morphology) and echolocation sys-

tems, and subsequently their own SMRSs. Depending on the status

of SMRSs of each taxon, the restoration of connectivity between

some of those during interglacial periods allowed ancient introgres-

sion events between some taxa that retained their relatedness

(Mao, Zhang et al., 2010; Mao, He et al., 2013; Mao, Thong et al.,

2013). However, to test this hypothesis, further investigations

including genetic analyses of both mitochondrial and nuclear gen-

omes are needed (Berthier et al., 2006; Hassanin et al., 2015; Mao,

Zhang et al., 2010; Nesi et al., 2011; Tu et al., 2017).
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