
Introduction

Traditional ecological diversity indices summarize in-

formation about the relative abundances of species within

a community or sample without regard to differences be-

tween constituting species. Nevertheless, for large-scale

environmental protection purposes, data on species abun-

dances are generally unknown and the only available in-

formation relates to the number of species. In addition,

when focusing on conservation problems, species abun-

dances are mostly irrelevant and the common treatment of

species abundances is largely meaningless in case of sys-

tematically remote organisms, such as oaks and orchids

(Izsák and Papp 2000). In this view, Vane-Wright et al.

(1991) were the first to suggest that, for conservation pur-

poses, we should quantify the relative values we assign to

different species such that their relative abundances are

ignored. Based on the seminal work of May (1990), they

proposed a measure of species “taxonomic distinctness”

based on phylogenetic relationships amongst species. The

proposal of Vane-Wright et al. (1991) is based only on the

topology of cladistic classifications and is appropriate

when branch lengths are unknown, whereas Faith (1992,

1995) suggested to measure taxonomic diversity based on

known branch lengths. The resulting measure of phyloge-

netic diversity (PD) is simply the cumulative branch

length of the full phylogenetic tree.

Unfortunately, this literature has been largely ignored

in environmental monitoring research, where emphasis is

not on selecting species to conserve but rather on assess-

ing whether sampled communities exhibit some changes

in biodiversity following environmental degradation or

remediation efforts (Clarke and Warwick 1998). Also, de-

tailed, fully resolved cladograms are not available for

most groups of organisms, and the basic information on

species relatedness is often just the set of pairwise dis-

tances between species. These distances (not necessarily

fulfilling the distance axioms) can be based on morpho-

logical or functional differences (Izsák and Papp 1995),

on Linnaean taxonomy (Izsák and Papp 1995, Clarke and

Warwick 1998, Rogers et al. 1999), or on more refined

molecular biological methods (Solow et al. 1993, Shi-

matani 2001).

Finally, since the ultimate aim of any summary statis-

tics is to provide a manageable tool for characterizing and

comparing different multivariate sets based on distinct

objectives and motivations, it is generally understood that

different indices may inconsistently rank a given pair of

sets. The main reason for this confusion is that, by map-

ping the structure of a multidimensional set such as a bio-

logical community with scalars, information is necessar-

ily lost, and there is no ideal function capable of uniquely

characterizing all aspects of taxonomic diversity. Quoting

from Patil and Taillie (1979, p. 15): “Such inconsistencies

are inevitable whenever one attempts to reduce a multidi-

mensional concept to a single number [...]. For example,

the mean and median are inconsistent measures of central

tendency; likewise, the standard deviation, mean absolute
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deviation, and range are inconsistent measures of spread”.

A paradigmatic example within the context of conserva-

tion biology is Faith’s (1992) criticism on the measure of

taxonomic distinctness proposed by Vane-Wright et al.

(1991). Faith (1992) notes that in re-examining reserve-

selection scenarios based on a phylogeny of bumble bees

(Apidae), the index PD produces different priorities for

species conservation relative to the measure proposed by

Vane-Wright et al. (1991).

A more complete summarization of taxonomic diver-

sity would require a parametric family of indices whose

members have different sensitivity to the presence of spe-

cies with different levels of taxonomic distinctness. In this

paper, I propose to summarize taxonomic diversity by

Rényi’s (1961) formalism on the matrix of pairwise dis-

tances between species.

Background

Let us define a species distance matrix D, the elements

d�� of which represent the taxonomic distances between

the i-th and the j-th species such that d�� = 0, and d�� = d��

for any i ≠ j. As an application for demonstration, I used

a small artificial community composed of the following

five species: Ostrya virginiana, Populus grandidentata,

Prunus serotina, Quercus rubra, and Ulmus americana.

Based on the pairwise genetic distances d�� proposed by

Shimatani (2001, Appendix 2), I constructed the genetic

distance matrix D of Table 1. Once the genetic distance

matrix of the analyzed species set has been constructed, a

straightforward way to collapse its structure into a sum-

mary statistic Σ� is to sum the (off-diagonal) elements d��

in D:

(1)

Within the context of taxonomic diversity, this measure

was independently proposed by Warwick and Clarke

(1995) and Izsák and Papp (2000) for quantifying the

structure of Linnaean taxonomic trees. However, a

slightly different formulation of Σ� termed the “Wiener

index” has been known in chemometrics since the late

1940s for summarizing the topology of molecular struc-

tures (Wiener 1947, Ricotta et al. 2000). Since D is sym-

metric with zeros in its main diagonal, one could reduce

the calculation of Σ� to the upper triangular submatrix

without loss of any information. It is easily demonstrated

that total species distance Σ� satisfies set monotonicity,

which is a desirable property for biodiversity measures

(Solow and Polasky 1994). That is, the value of Σ� will

increase by adding a new species x to a given species set

S. Formally, Σ�(S∪ {x}) > Σ�(S). Nevertheless, Σ� is

not a species richness index insofar as it is not a monotone

increasing function of the number of species in the sample

plot. Instead, its values are jointly determined by the

number of species and the structural complexity of the

taxonomic tree (Izsák and Papp 2000). For example, for

the genetic distance matrix of Table 1, Σ� = 60.64.

A different approach for summarizing taxonomic di-

versity consists in the application of information-theoreti-

cal formalism to D. Let us consider a system composed of

N different sets where p� is the relative abundance of the

i-th set (i = 1, 2, 3, …, N) such that 0 ≤ p� ≤ 1 and Σ�
���p�

=1. For a distribution function characterized by its relative

abundance vector p = (p�, p�, …, p�), Rényi (1961) ex-

tended the concept of Shannon’s (1948) entropy by defin-

ing a generalized information (or entropy in information-

theoretical sense) of order α as:

(2)

where α makes mathematical sense for -∞ ≥ α ≥ ∞. Nev-

ertheless, as explained in the remainder, for negative val-

ues of α, the resulting index has some undesirable prop-

erties that render it inadequate for summarizing

taxonomic diversity. Therefore, non-negative values of α
(i.e., α ≥ 0) should be preferably used.

Rényi proved that H
�α�

satisfies certain axioms that

entitled it to be regarded as a measure of generalized in-

formation (Beck and Schlögl 1993). Mathematically, the

various measures obtained by varying α are in fact differ-

ent moments of the same basic Rényi’s information func-

tion. Notice also that in Rényi’s original definition, loga-

rithm to the base 2 is used to measure information content

in bits, while in ecological applications the natural loga-

rithm is traditionally used (Tóthmérész 1995).

The statistical information of a given system is basi-

cally a measure of uncertainty in predicting the relative

abundance of the different sets. The maximum value of

Rényi’s entropy is obtained in case of equiprobability

(i.e., if p� = 1/N for i = 1, 2, ..., N). Minimum entropy is

obtained if there is a set having its relative abundance ap-
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proaching 1 (the abundances of all other sets being zero),

which implies . Since uncertainty is maximum

when entropy is the highest, the entropy concept forms

one of the basic foundations of ecological diversity theory

(Orlóci 1991).

Within the context of ecological diversity theory, Hill

(1973) showed that the generalized information function

H
�α�

has many desirable properties as a diversity index.

One particularly convenient property is that a number of

traditional diversity indices computed from species rela-

tive abundances p� are special cases of H
�α�

. For α = 1,

Equation (2) is defined in the limiting sense using l’Hos-

pital’s rule of calculus, and H
���

=Σ�
���p� ln p� (i.e., Shan-

non’s entropy). For α = 0, H
���

= ln N, where N is species

richness; for α = 2, H
���

= ln 1/D, where D is Simpson’s

(1949) dominance index D=Σ�
��� p�

�
, and for α = ∞, H

�∞�

= ln 1/d = ln 1/p��	, where d is the dominance index of

Berger and Parker (1970) and p��	 is the proportional

abundance of the most frequent species. While traditional

indices supply point descriptions of community diversity,

according to Rényi’s formulation, there is a continuum of

possible diversity measures that differ in their sensitivity

to the rare and abundant species, becoming increasingly

dominated by the most common species for increasing

values of the parameter α. For a given community, H
�α�

is

a decreasing function of α. From Equation (2) it follows

that for a given community ln N ≥ H ≥ ln 1/D ≥ ln 1/d,

where equality holds for equiprobable distributions. In

other words, traditional species diversity can be described

by its diversity profile of H
�α�

vs. α (Patil and Taillie 1979,

1982).

New taxonomic diversity measures

The application of Rényi’s formalism to different sys-

tems is based on the possibility of partitioning all system

elements into N sets, so that a finite probability scheme is

obtained. Since the criterion for partitioning the elements

of a given system is generally not unique, it is always pos-

sible to select for any system several information meas-

ures that represent statistical characteristics of that system

(Bonchev 1993). In this view, a simple way to obtain a

finite probability scheme from the taxonomic distances d��

of a given species distance matrix, such as the genetic dis-

tance matrix of Table 1, is to add all distances d�� along

row i (or column i) of D. This results in a vector v = (11.1,

15.13, 12.22, 12.39, 9.8) whose elements v� represent the

(cumulative) taxonomic distance between species i and

all other species. The corresponding parametric taxon-

omic diversity measure is:

(3)

From Equation (3), it follows that for α = 0, = ln N

(a monotonic function of species richness), whereas for α
= ∞, , where v��	/Σ� is the

cumulative genetic distance of the taxonomically most

distinct species transformed to a finite probability space.

That is, by selecting α >> 1, the sensitivity of is

tuned in the domain of the taxonomically most distinct

species. Conversely, if one analyzes community structure

considering a wider range of species (i.e., including tax-

onomically less remote species), then lower values of α
should be selected.

Similarly, one can introduce a parametric information

function on pairwise genetic distances by trans-

forming the elements d�� of the upper triangular submatrix

of D in a finite probability scheme (Bonchev 1993):

(4)

Naturally, conform to the usual diver-

sity axiom that maximal diversity arises for an equiprob-

able distribution of pairwise species distances (see Pielou

1975). In both cases, in analogy to ecological diversity

theory, one can define a taxonomic diversity ordering of

a given set of communities. In this view, community A is

taxonomically more diverse than community B (written

as A > B) if the taxonomic diversity profile (or

) vs. α of A lies everywhere above the taxonomic

diversity profile of B (Tóthmérész 1995). Notice that the

taxonomic diversity ordering is only partial in that two di-

versity profiles may intersect. In this case, A and B cannot

be unambiguously ordered according to their taxonomic

diversity as different moments of (or ) rank

them in contradictory ways. That is, it is not necessarily

true that for every A and B, either A > B or B > A.

Further, two parametric indices of taxonomic even-

ness that measure the degree to which taxonomic distinct-

ness is divided equitably among species can be derived in

the usual way from Equations (3) and (4) as

, respectively. Being

based on Rényi’s parametric information, both evenness

indices conform to the Lorenz partial order that has been

proposed by several authors as the foundation of the eco-

logical notion of evenness (Taillie 1979, Gosselin 2001,

Ricotta and Avena 2002).

Discussion and conclusion

Thus far, I suggested that Rényi’s formalism might be

used to describe quantitatively the distribution of the pair-

wise distances between species, to express taxonomic di-

versity. I assumed a certain degree of conceptual analogy
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between traditional ecological diversity theory developed

for summarizing species relative abundance structure and

taxonomic diversity. In traditional diversity theory, it is

generally agreed that diversity measures combine in a

non-standard way two components: species richness and

evenness. High species richness and evenness are both

equated with high diversity such that community B is con-

sidered intrinsically more diverse than community A

without reference to indices, provided A leads to B by a

finite sequence of forward transfers of species abun-

dances from one species to another strictly less abundant

species (Patil and Taillie 1979, 1982, Solomon 1979).

Formally, let A and B be communities with respective

species abundance vectors p
�
�

and p
���

. We say that A

leads to B by a forward transfer of abundances if there are

positive integers i and j such that p�
�
�

> p�
�
� ≥ 0 and

(5)

where 0 ≤ h ≤ p�
�
�

- p�
�
�

. Such a transfer increases spe-

cies richness when p�
�
�

= 0, and increases evenness when

p�
�
�

> 0 (Patil and Taillie 1979, 1982). In ecological di-

versity theory, diversity measures δ that satisfy this prop-

erty are termed “Schur-concave”. Given a Schur-concave

diversity index, δ�
� ≤ δ��� whenever community A leads

to community B by a forward transfer of species relative

abundances. This requirement that transferring abun-

dances should increase the index is known in economet-

rics as Dalton’s (1920) “principle of transfers” and was

originally proposed in connection with the measurement

of income inequality (see Patil and Taillie 1982). Apply-

ing Dalton’s principle of transfers to the computation of

taxonomic diversity, it is easily shown that Rényi’s gen-

eralized entropy function H
�α�

is Schur-concave in the in-

terval 0 ≥ α ≥ ∞. Nevertheless, it is also easily shown that

Schur-concave parametric indices such as H
�α�

satisfy set

monotonicity only for the trivial case α = 0. That is, by

adding a new species x to a given species set S (i.e., in-

creasing the richness component of the community), the

values of will not necessarily in-

crease. This effect may be a serious drawback for those

who believe that taxonomic diversity measures must pos-

sess set monotonicity.

To conclude, diversity research is one of the fields

where relevant biological problems meet sophisticated

mathematical tools that evolved at the crossroad with

other statistical disciplines such as econometrics or

chemometrics. For instance, information-theoretical

measures belong to the standard apparatus for quantifying

the topological structure of chemical compounds (Bon-

chev 1993, Basak et al. 2000). Also, the proposal of ap-

plying information-theoretical measures for summarizing

taxonomic diversity is not entirely new. Pielou (1975) for-

malized this idea in a modified version of the Shannon

index where, besides species diversity, generic and famil-

ial diversity is also considered, whereas Ricotta (2002)

proposed a generalization of Shannon’s entropy that takes

into account a taxonomic weighting factor based on the

cumulative taxonomic distances v�. Nonetheless, to the

best of my knowledge, the idea of mapping the structure

of the species distance matrix with parametric informa-

tion is proposed here for the first time.

Finally, it is again worth noting that diversity meas-

ures are merely numbers and their relevance to ecological

problems must be judged on the basis of observed corre-

lations with other environmental variables (Molinari

1989). Quoting from Magurran (1988, p. 113): “diversity

measures are valuable, but are only a means to an end.

That end is that ecologists should be able to ask the ques-

tions and formulate the hypotheses to help them under-

stand, and sensibly manage, the natural world”.

	
��������������� 
  ��� �	 ����# ��� ����� ��� ��
��	���	�� ��
���� 
	� ��� ����������� �	������ 	� � �����	��
�����	� 	
 ���� ������

References

�����
 ���
 ���� �������
 ���� �������� ��� ���� ��� � �����

�!"!�!#$%�� $��$% �� �& $� ����� ��� '����� � ��� �� ��� ��

���
� ���� ��
���� ���� (�� )��	)�)�

� %�
 �� ��� *� �%&�+#�� ����� ��� 
��!��
��� �� ������� �!���
��

��'��$�# ,�$- ��$�. /� ��
 ��'��$�# �

� �# �
 0�1� ��� *�2� /��� �� ��3�� �$- ��$�. !4 "���%�!�$%

*!��'$�$4 �� $� �  " � � � �$' ���� ������� �5)� ��(�	��(3�

�!�%& -
 �� ����� 6�4!�'��$!�	�& !� �$% 6��$% � 4!� �&���%	

� �$7��$!� !4 �& '$%�� ����%��� � 8 � ��%& ����$ � /� ��
 2 �%&	

�!��&
 ,9�

����� 
 9�8� ��� 8�:� 0���$%�����)� � ��;!�!'$% �$��$�%�� �� $�	

� ; ��� $�� ����$��$%�� "�!" ��$ �� �� ���"� #��"� ��� ���	����

����!�
 1� ����� �& ' ���� ' �� !4 �& $� <���$�. !4 $�%!' ��

#���� �� ��� �()	�5��

*�$�&
 ��/� ����� �!�� �-��$!�  -�����$!� ��� "&.�!# �$% �$- ��$�.�

���"� ����� $� 5�� �	���

*�$�&
 ��/� ����� /&.�!# �$% "��� �� ��� �& <����$4$%��$!� !4 !�#��	

$�'�� �$!�$- ��$�.� 6�� ��2� 1�����!��& � ���
 �����$� ���!

%���� �
��� ��� #���
������ �&�"'�� = 1���
 2!��!�
 ""�

(�	�)�

�!�� �$�
 *� ����� 2!� �7 "���$�� !�� �� �& � �� ��!�� �!#$%��

4��' �!�� �! � 4$�  - �� �� $��$% ����

����! #��"� �� ��3	

��3�

1$��
 :�>� ��3�� �$- ��$�. ���  - �� ��� � ��$4.$�# �!���$!� ��� $��

%!�� <� �% �� #��"�&! �(� (�3	(���

67�?�
 @� ��� 2� /�""� ����� �""�$%��$!� !4 �& <������$%  ���!".

$�� ; 4!� �$- ��$�. ����$ � !� ��!�!"&$�$� �" %$ � ��� '���# ��

#�$� ��� #��"� ����� �� ���	��(�

67�?�
 @� ��� 2� /�""� ����� � �$�� � ��  �  %!�!#$%�� �$- ��$�. $�	

�$% � ��� ' ���� � !4 �$!�$- ��$�.� #��"� %���"� ���� ���	��5�

p

p k i j

p h k i

p h k j

k
B

k
A

i
A

j
A

( )

( )

( )

( )

,

=
≠

− =
+ =

R

S
||

T
||

if

if

if

H Hv i d ij( )
( )

( )
( )α αand

"& $��
���



:�#�����
 �� ��))� #��"�&���" '�$� ���! ��� ��� %���� �
����

/�$�% �!� ,�$- ��$�. /� ��
 /�$�% �!�
 A@�

:�.
 8�:� ����� ��;!�!'. �� � ��$�.� (��� � �(3� ���	����

:!�$���$
 @� ��)�� � %��$���� � $�� ; 4!� �& ' ���� ' �� !4  - �	

� ��� )���� �5� ���	��5�

>��B%$
 2� ����� #�� ��! ��� ���� 
������ �/� �%�� '$% /���$�&	

$�#
 �& 1�#� 
 A2�

/��$�
 ��/� ��� �� ��$��$ � ��3�� �� !- �-$ � !4 �$- ��$�.� 6�� @�*�

������ 
 ��/� /��$�
 0� �'$�& ��� �� ��$��$ � ����
 #��"�&���"

'�$� ���! �� ���� ! ��� * ������� 6�� ����$!��� �!	!" ���$- 

/���$�&$�# 1!�� 
 *�$�����
 :�
 ""� �	�3�

/��$�
 ��/� ��� �� ��$��$ � ��)�� �$- ��$�. �� � %!�% "� ��� $�� ' ��	

�� ' ��� �� �
� ����� ���� 33� ()	�53�

/$ �!�
 ���� ��3�� #��"�&���" '�$� ���!� 0$� . 6�� ��%$ �% 
 A �

C!���

8D�.$
 �� ��5�� >�' ���� � !4  ���!". ��� $�4!�'��$!�� 6�� �� A .	

'�� � ���
 * �������&� �� ��� ��� �� �� ��"�! �!
�����
 ��

%����
�����" ���������� ��� * �+�+�"��!� ,�$- ��$�. !4 ���$4!�	

�$� /� ��
 � �� � .
 ���$4!��$�
 E!�� �
 ""� �(3	�5��

8$%!���
 �� ����� ��$�#$�# �& #�" � ��  �  %!�!#$%�� �$- ��$�. $�	

�$% � ��� ' ���� � !4 �$!�$- ��$�. �$�& �&���!�F�  ���!".�

%!'' �� �! 67�?� = /�""� �%!�� :!� ��
 $� "� ���

8$%!���
 �� ��� ���� �- ��� ����� >� �& $�4!�'��$!�	�& !� �$%��

' ��$�# !4 1$��F� "���' ��$%  - �� ��� ���� ������� ����� ���

5�	3��

8$%!���
 ��
 �� ����$�%$
 ���� �- �� ��� �� ����$� ����� G����$4.$�#

�& � ��!�� %!�� %�$-$�. !4 �����%�" '!��$%�� � #��"&	�& !	

� �$%�� �""�!�%&� ��

����! #��"� �� )�	�(�

8!# ��
 ��
 9�8� ����� ��� @��� 8 .�!���� ����� �& ��;!�!'$%

�$��$�%�� �� !4 %!����� �!��!'	�� ��$�# 4$�& %!''��$�$ � !4 �& 

A!��&	 ��� ������$%� �� ���
� #��"� 5)� 35�	3)��

�&���!�
 �� ��()� � '��& '��$%�� �& !�. !4 %!''��$%��$!�� ��""

�!��� ����� �� �3� �3�	(���

�&$'����$
 9� ����� >� �& ' ���� ' �� !4 �" %$ � �$- ��$�. $�%!�	

"!���$�# �" %$ � �$44 � �% �� )���� ��� ���	�(3�

�$'"�!�
 ��1� ��(�� : ���� ' �� !4 �$- ��$�.� (��� � �5�� 5))�

�!�!'!�
 ��2� ��3�� � %!'"����$- �""�!�%& �! �" %$ � �$- ��$�.�

6�� @�*� ������ 
 ��/� /��$�
 0� �'$�& ��� �� ��$��$ � ����
 #���

"�&���" '�$� ���! �� ���� ! ��� * ������� 6�� ����$!��� �!	!"	

 ���$- /���$�&$�# 1!�� 
 *�$�����
 :�
 ""� ��	���

�!�!�
 ��8� ��� �� /!����.� ���(� : ����$�# �$!�!#$%�� �$- ��$�.�

��$� ��� #��"� ����� �� ��	��3�

�!�!�
 ��
 �� /!����. ��� @� ��!����� ����� >� �& ' ���� ' �� !4

�$!�!#$%�� �$- ��$�.� �� #�$� ��� #���� %���&�� �(� 5�	5)�

��$��$ 
 �� ��3�� �" %$ �  <�$���$�$�.� � %!'"����$- �""�!�%&� 6��

@�*� ������ 
 ��/� /��$�
 0� �'$�& ��� �� ��$��$ � ����
 #��"�&��

��" '�$� ���! �� ���� ! ��� * ������� 6�� ����$!��� �!	!" ���$- 

/���$�&$�# 1!�� 
 *�$�����
 :�
 ""� ��	5��

�B�&'D�D�7
 �� ����� �!'"��$�!� !4 �$44 � �� ' �&!�� 4!� �$- ��$�.

!�� �$�#� �� ,�&� ���� 5� �)�	����

E�� 	0�$#&� 8�6�
 ��@� 1�'"&�$ � ��� /�:�0$��$�'�� ����� 0&�� �!

"�!� %�� �.�� '��$%� ��� �& �#!�. !4 %&!$% � ���"� ����� $� ���

���	��(�

0���$%�
 8�:� ��� 9�8� ����� � ����� A � H�$!�$- ��$�.F ' ���� �

� - �� � � %� �� $� ��;!�!'$% �$��$�%�� �� �$�& $�%� ��$�#

��� ��� %� � #��"� * �&� �� � ���� ���	����

0$ � �
 1� ��(3� ����%����� � � �'$���$!� !4 "���44$� �!$�$�# "!$���

�� �
� � ���
� ���� 5�� �3	���

���
�
	�� ����
���� ""


