
We greatly appreciate the comments on our proposal

(Ricotta et al. 2000) to characterize landscape connectiv-

ity with topological indices (TIs). In our paper, following

the geometrical approach of Cantwell and Forman (1993),

we proposed to reduce the complexity of landscape pat-

terns into a connected landscape graph. Based on this ap-

proach, summary statistics quantifying the spatial rela-

tionships among landscape patches may be obtained by

mapping graph topology with scalars.

In a recent Forum paper, F. Jordán (2001) emphasized

that adding functional considerations to our purely struc-

tural approach may limit the conditions of applicability

and ultimately the results of the proposed method. In this

rejoinder, we would like to stress that, although adding

‘function’ to ‘structure’ necessarily requires more refined

tools for summarizing landscape connectivity, nonetheless

graph-theoretical approaches remain a key for understanding

the ecological functions of heterogeneous landscapes.

If, based on the preference of a given organism for

certain habitat types, only a subset of habitat patches is

analyzed, a ‘functional landscape (sub)graph’ out of the

whole ‘structural landscape graph’ is obtained. Analyzing

the spatial configurations of such subgraphs can be help-

ful for conservation studies as suggested by Jordán

(2001). Nonetheless, unlike structural landscape graphs,

functional landscape graphs may be disconnected thus

limiting the applicability of traditional measures for quan-

tifying their topology because of the presence of d�� = ∞
in the distance matrix D. In addition, increasing the level

of generality, directed connections between vertices of

functional landscape graphs reflecting asymmetric con-

straints on the underlying landscape structure can also be

introduced, for example to model spatially explicit

source-sink effects (Harrison 1991, Kunin 1995).

In such cases, to understand more fully the connectiv-

ity of functional digraphs, besides the adjacency matrix A

and the distance matrix D, an additional matrix termed

‘reachability matrix’, R, may be introduced by slightly

modifying the original definition of Harary (1969) in or-

der to render R ecologically more reasonable. In the

reachability matrix R, r�� = 1 if vertex v� is reachable from

vertex v� and r�� = 0 otherwise. In addition, the diagonal

elements, r�� are zero unless we deal with loop graphs

where a vertex may be bonded with itself. In this latter

case, r�� = 1. For an artificial example of a functional dis-

connected digraph along with its reachability matrix, see

Figure 1. As usual for undirected graphs, local vertex in-

variants x� (i.e., topological indices associated to single

graph vertices) can be obtained from R by adding all r��

elements along row i or column i of the matrix, whereas,

starting from the local vertex invariants x�, a number of

TIs can be derived by means of the following operations

(Filip et al. 1987):
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Operations in Equations (1-4) refer to the N vertices v� of

graph G, whilst the summation in Equation 5 is computed

over all edges v�-v� of G. Alternatively, a different ap-

proach for summarizing graph topology consists in the

application of information-theoretical formalism to the

set of local vertex invariants x�. For mathematical details,

see Bonchev (1983).

Besides its potential applicability for summarizing

landscape connectivity with TIs, the reachability matrix

has some interesting properties within the context of per-

colation theory and random graph evolution (Stauffer and

Aharony 1992). In its original definition (Erdõs and Rényi

1960), the evolution of random graphs refers to the

changes in structural properties, which a fully discon-

nected graph composed of N vertices undergoes as suc-

cessive undirected edges are randomly added. At first

(Seeley 2000), there are only isolated edges connecting

single pairs of vertices. After more edges are added, mul-

tiple branches and small trees with several edges occur

until the initial growth of cycles. Cycles start to appear

when a tree has an edge added to it, which connects two

of the already existing vertices in the tree. When the

number of edges has grown to almost exactly 1/2 N, the

graph ‘percolates’ and a giant component of order N
���

suddenly appears for almost all graphs. Hence the connec-

tivity of the overall graph (i.e., the proportion of possible

pairs of vertices for which a path exists), measured as,

(6)

suddenly and very rapidly increases from significantly be-

low 1/2 to significantly above 1/2. In other words, a tran-

sition in the structure of the random graph from a macro-

scopically disconnected structure to a connected one oc-

curs.

Within the context of a recovery plan for threatened

bird species in the southwestern United States, Keitt et al.

(1997) used an extension of random graph evolution to

quantify the connectivity of suitable nesting habitats for

the Mexican Spotted Owl and to examine the sensitivity

of habitat connectivity to changes in landscape configura-

tion, whereas Seeley (2000) studied the evolution of ran-

dom digraphs, albeit from a more theoretical viewpoint.

These results show that, although the potential appli-

cations of topological methods in ecological work remain

largely unexplored, graph theory represents a promising

tool to create a universal framework for modeling land-

scape functions at any scale of observation. Green (1994)

pointed out that the pattern of dependencies in matrix

models, dynamical systems and cellular automata are all

isomorphic to directed graphs. In this view, since the

range of these models spans almost all mathematical

modeling whether it is of physical or biological systems,

“there is strong evidence to suggest that directed graphs

can be considered as an essential or fundamental model.

That is, within any model which purports to describe the

dynamics of some aspect of the world there resides a core,

directed graph model” (Seeley 2000).

Finally, we conclude with a cautionary remark: as

stressed by Hill (1973) in a similar context, there is almost

unlimited scope for mathematical generality in relation to

topological measures of landscape functions. Ecologi-

cally well-understood indices should be used.
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