
Introduction

Patterns of relative abundance are a critical, yet under-

studied component of species diversity in ecological com-

munities. Historically, the models for fitting relative

abundance distributions (in which the relative abundance

for each species in a community is plotted [log scale] ver-

sus its abundance rank; e.g., Fig. 1) can be divided into

two main categories, those based on statistics and infor-

mation theory, and biological models (cf. Tokeshi 1990).

Deterministic statistical models, such as the Log-series

model (Fisher et al. 1943), the Lognormal model (Preston

1948) and others (see Tokeshi 1999) may provide good fit

to empirical data (e.g., Wilson 1991, Watkins and Wilson

1994, Wilson et al. 1996). Yet, while authors have often

attempted to attribute biological meaning to these statisti-

cal models, they are generally considered to be more use-

ful for describing, rather than explaining, patterns in spe-

cies abundance (Tokeshi 1990, Wilson 1991). However,

for the purpose of understanding ecological assembly

rules (see Weiher and Keddy 1999, Wilson 1999) and the

ways that diversity is structured in natural communities,

a mechanistic understanding of the underlying processes

that give rise to such patterns would be invaluable.

To this end, Tokeshi (1990, 1993, 1999) proposed a

series of biological models based on niche apportionment

and inspired by the earlier work of MacArthur (1957).

These models, based on the familiar ‘broken stick’ anal-
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ogy, envision a finite niche space (i.e., a resource gradient

represented by a one-dimensional ‘stick’), divided and

subdivided by the species that compose the community or

assemblage of interest. There are two ways of interpreting

niche apportionment models, in ecological terms (sequen-

tial colonization) or in evolutionary terms (where differ-

ences in competitive ability lead to dominance control)

(Pielou 1975). Here I follow the ecological perspective

(sequential niche apportionment models) for two reasons:

First, it is easy to visualize graphically (Fig. 2), and sec-

ond, it is the perspective used in recent treatments (Toke-

shi 1999, Mouillot and Wilson 2002). The relative abun-

dance patterns predicted by the niche apportionment

models are the same regardless of whether their ecologi-

cal or evolutionary interpretations are emphasized.

There are three main assumptions common to the se-

quential niche apportionment models: (1) Species colo-

nize sequentially, with each successive colonizer captur-

ing a fragment of niche space previously occupied by an

earlier colonizer. The size of the fragment depends on an

‘apportionment rule’ (Bersier and Sugihara 1997). (2)

The identity of the niche fragment that the next colonizer

in an assemblage will subdivide depends on a ‘breakage

rule’ (Bersier and Sugihara 1997). (3) A species’ abun-

dance in an assemblage is proportional to the fraction of

total niche space it has captured (Tokeshi 1993). Different

sequential niche apportionment models (e.g., Dominance

Decay, MacArthur Fraction, Random Fraction, Random

Assortment and Dominance Preemption) are produced by

varying the apportionment and breakage rules (Table 1

provides a summary of these rules; see Tokeshi (1999) for

a complete description and summary of ecological inter-

pretations). Consider, for example, the Dominance Decay

model (Fig. 2): The apportionment rule is ‘random’; i.e.,

the size of the new fragment carved out of an existing

fragment is determined randomly. For the same model,

the breakage rule is ‘largest fragment is broken next’; i.e.,

the largest fragment at any given moment will be the next

one to be subdivided. The MacArthur Fraction model, on
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the other hand, has the same apportionment rule, yet its

breakage rule is ‘fragment to be broken next chosen at

random, weighted by fragment size’ (Table 1), meaning

that the probability that any given fragment will be the

next to be broken is proportional to its size (i.e., large frag-

ments are more likely to be subdivided than small frag-

ments). Models with similar apportionment and/or break-

age rules will produce similar relative abundance

distributions (e.g., Dominance Decay and MacArthur

Fraction models; Fig. 1), and might therefore be more dif-

ficult to discriminate compared to models with very dis-

similar apportionment and/or breakage rules (e.g., Domi-

nance Decay and Dominance Preemption models; Fig. 1).

As demonstrated in Table 1 and the examples above,

sequential niche apportionment models are characterized

by both stochastic and deterministic components. Thus,

many different realizations of communities that conform

to a particular model are possible (Pielou 1975), reflecting

the inherent variability of natural systems. Yet, the ex-

pected relative abundance distributions that emerge over

many realizations are quite distinct (Fig. 1). The issue,

therefore, becomes whether or not these last two points

can be reconciled; e.g., will an individual Dominance De-

cay community tend to be recognized as being best fit by

the predictions of the Dominance Decay model (rather

than some other model)? More generally, can past struc-

turing processes of sequential niche apportionment be

elucidated from present community relative abundance

patterns? My purpose here is not to debate the merits of

the theoretical underpinnings of niche apportionment

models themselves (i.e., I do not deal with the question of

whether the apportionment and breakage rules are

ecologically realistic), but rather to deal with the more

practical issue of discriminating among a given set of po-

tential apportionment processes from the relative abun-

dance patterns they produce.

Wilson (1993) dealt with the specific case of distin-

guishing the MacArthur Fraction model (referred to in his

analysis and elsewhere as ‘Broken Stick’) from other, sta-

tistically-based models (General Lognormal, Geometric

Series and Zipf-Mandelbrot). By using Monte Carlo

methods (Gotelli and Graves 1996) to generate many ran-

dom ‘communities’ each conforming to the assumptions

of the MacArthur Fraction model, Wilson demonstrated

the following: (1) MacArthur Fraction random communi-

ties composed of fewer than approximately 20 species

were more likely to be best fit by another model (in par-

ticular the General Lognormal model), rather than the

MacArthur Fraction model. (2) As random communities

with more and more species were examined, the prob-

ability that MacArthur Fraction random communities

would be correctly identified marginally increased, ac-

companied by a decrease in the variance of the predicted

relative abundance distributions with increasing species

richness.
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Wilson et al. (1998) performed additional analyses us-

ing a different suite of models (MacArthur Fraction [‘Bro-

ken Stick’], Sequential Breakage [which converges on

General Lognormal] and Randomized Niche Preemption

[which converges on Geometric]). Similar conclusions to

Wilson (1993) were drawn, with the likelihood of cor-

rectly identifying the provenance of a random community

being very low in species-poor communities, but increas-

ing in communities with more species.

Here, I applied the same logic to five major niche ap-

portionment models (Table 1), to determine whether or

not the relative abundance patterns of random communi-

ties tended to be best fit by the models whose assumptions

were used to generate them (as would be predicted if cur-

rent patterns can be used to hind-cast past processes), and

whether or not this trend was affected by the number of

species present in these random communities (see Mouil-

lot and Wilson 2002, for a parallel approach using species

evenness as a proxy for relative abundance distributions).

I also used an example situation from the literature

(Bersier and Sugihara 1997) to examine the possibility

that relative abundance distributions averaged from sev-

eral replicated communities might be easier to distinguish

than those derived from individual communities (Mouil-

lot and Wilson 2002). While Wilson (1993) pointed out

that replicate communities are difficult to find and are

typically composed of inconsistent numbers of species,

such a procedure has been attempted previously (e.g.,

Bersier and Sugihara 1997, Cassey and King 2001). To-

gether, the results of these two sets of analyses are highly

relevant to real communities, because they provide a

method to estimate the confidence that a community

structured by one of several possible niche apportionment

processes will be correctly identified, given a particular

level of community species richness and community rep-

lication.

Methods

I followed a procedure similar to that of Wilson

(1993) and Wilson et al. (1998). For each of the Domi-

nance Decay, MacArthur Fraction, Random Fraction,

Random Assortment and Dominance Preemption models,

I generated 1999 random four-species ‘communities’ ac-

cording to the appropriate apportionment and breakage

rules (Table 1) using Monte Carlo randomization meth-

ods (Gotelli and Graves 1996; all analyses were per-

formed on Visual Basic Editor of Microsoft Excel). I then

compared the species’ relative abundance distributions of

these random communities against those of the expected

communities (i.e., the relative abundance distributions

that emerge over many replications; Fig. 1) for each of the

same five models by calculating the sum-of-squares of the

log deviances (Wilson 1991); lower sums-of-squares cor-

responded to better fitting models. Log deviances were

used so that abundant species did not dominate the fitting.

(Because relative, rather than absolute abundance values

were used, the mean relative abundance over all species

was automatically fit in accordance with Wilson (1991).

The mean relative abundance was always equal to one di-

vided by the species richness of the random community).

Other fitting criteria are possible, most notably the good-

ness-of-fit test proposed by Bersier and Sugihara (1997)

and modified by Cassey and King (2001). This test has the

advantage of being able to test both the mean and variance

of a real data set against those predicted by the models,

while Wilson’s test only examines means. However, as a

goodness-of-fit test, it is unsuitable for the question of dis-

tinguishing models (which requires a best-fit test such as

Wilson’s). For example, a series of goodness-of-fit tests

on a particular relative abundance distribution data set

might accept the Random Fraction model and reject the

Dominance Decay model at a certain confidence level, yet

it does not follow that the Random Fraction model fit the

data significantly better than the Dominance Decay

model. Similarly, another series of goodness-of-fit tests

on a different relative abundance distribution data set

might accept both the MacArthur Fraction model and the

Dominance Preemption model, even though one provided

a significantly better fit than the other. Hence, I followed

Wilson’s (1991) method instead.

Thus, for every random community type, I was able

to determine whether the model used to generate it actu-

ally provided a better fit of relative abundances (over

1999 random communities) than any of the other models

examined. The resulting frequencies of ‘appropriate’

best-fit were equivalent to the probabilities of correctly

identifying the different types of communities.

I then repeated the entire procedure for communities

of eight, 12, 16, 20, 24 and 28 species in order to deter-

mine whether there was a greater likelihood of correctly

distinguishing communitites of increasing species rich-

ness (as was shown for the MacArthur Fraction model by

Wilson 1993 and for other models by Wilson et al. 1998).

To investigate whether or not averaging replicated

communities made them easier to correctly identify, I

generated a further 1999 random data sets of four-species

communities for each of the same five sequential niche

apportionment models. For this set of analyses, each data

set was calculated as the average relative abundance dis-

tribution of seven replicate random communities; thus,

13993 (i.e., 1999 x 7) additional realizations of random

communities generated by each model were required. The
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reason I specifically examined the case of seven replicates

of a four-species community was to mirror the conditions

of a previously published data set (Bersier and Sugihara

1997). Of course, this is only one example, and in prac-

tice, this decision should be made on a case-by-case basis,

taking into account the number of replicate communities

available and their species richness values for the system

of interest. I tested the 1999 average relative abundance

distributions of the five different data set types (Domi-

nance Decay, MacArthur Fraction, Random Fraction,

Random Assortment, Dominance Preemption) against the

expected relative abundance distributions of those same

models with the same criterion as above (sum-of-squares

of log deviances), in order to determine the effect of using

replicated, rather than individual communities in this ex-

ample.

Results

For the Dominance Decay random communities (Fig.

3a), the Dominance Decay model provided the best fit

most of the time for all levels of species richness. The fre-

quency of best fit (indicating the proportion of instances

that the past structuring processes were correctly identi-

fied) increased steadily from 0.52 in four-species commu-

nities to 0.78 in 28-species communities. Thus, in four-

species communities, the odds of correctly identifying a

Dominance Decay community were slightly better than

one-to-one. Similar results were noted for the Dominance

Preemption random communities (Fig. 3e), although the

frequency of best fit of the Dominance Preemption model

was greater, rapidly increasing from 0.80 (four-species

communities) to 1.0 (28-species communities).

The other three types of random communities exam-

ined (MacArthur Fraction, Random Fraction and Random

Assortment) were much more difficult to correctly iden-

tify at low levels of species richness (i.e., fewer than 12

species) than the Dominance Decay and Dominance Pre-

emption random communities. For MacArthur Fraction

random communities, the frequency of best fit of the Mac-

Arthur Fraction model was 0.14 in four-species commu-

nities (Fig. 3b). At this low level of species richness, it

was actually more likely that the Dominance Decay, Ran-

dom Fraction and Dominance Preemption models would

give a better fit than the MacArthur Fraction model that

was used to generate the random communities in the first

place. As more species were present in the community,

this trend changed and the MacArthur Fraction model

emerged as providing the best fit most of the time (with a
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frequency of best fit of 0.90 in 28-species communities;

Fig. 3b). Similar results were noted for the Random Frac-

tion and Random Assortment random communities (Figs.

3c, d), which had a low likelihood of being correctly iden-

tified at low levels of species richness (i.e., a low fre-

quency of best fit for the Random Fraction and Random

Assortment models, respectively), but a relatively greater

likelihood of being correctly identified at higher levels of

species richness.

When relative abundance distributions were calcu-

lated as the average of seven replicated random four-spe-

cies communities, there was a higher frequency of best fit

for the model that was used to generate those communi-

ties compared to the situation where individual (unrepli-

cated) random communities were examined (compare Ta-

ble 2 with the four-species communities of Fig. 3). In this

example case, the likelihood of a community type being

correctly identified ranged from 0.37 (Random Assort-

ment) to as high as 0.89 (Dominance Preemption) (Table 2).

Discussion

For species-poor, unreplicated communities, there

was a high probability of misidentifying the model that

gave rise to any particular random community type (Fig.

3). This problem was compounded by the fact that the

likelihood of correct identification was inconsistent

across the different models (e.g., it was much more likely

to correctly identify a Dominance Preemption community

than a Random Assortment community), introducing an

identification bias. While the likelihood of correct identi-

fication increased with species richness for all models, it

did so to very different degrees (Fig. 3), indicating that the

identification bias was persistent. Thus, particularly at

low levels of species richness, the stochastic components

that were shared by the sequential niche apportionment

models overwhelmed the deterministic components that

defined their differences. This was manifested as an in-

creased variance around the expected relative abundance

distribution of random communities with decreasing spe-

cies richness (Wilson 1993). As a representative example,

the relationship between the fourth rank’s variance in

relative abundance and species richness is shown for the

Dominance Decay model in Fig. 4.

The relative abundance distributions generated by the

average of seven replicated random four-species commu-

nities were more likely to be identified by the model that

created them compared to unreplicated communities, yet

there remained a high probability of misidentification for

some models (Table 2). Hence, in this example scenario

(analysing the data structure of Bersier and Sugihara

1997), it is quite likely that a large proportion of the com-

munity types were misidentified. Moreover, the likeli-

hood of correct identification remained inconsistent

across models (Table 2), indicating that the identification
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bias continued to persist at this level of community repli-

cation.

These results have clear implications for studies ex-

amining natural communities. They indicate that in a

community of low species richness (and/or low levels of

community replication), there is no way to speculate from

current relative abundance patterns alone which (if any)

niche apportionment processes were previously at work.

As communities with more species are examined, or more

replicate communities are incorporated into the analysis

(Cassey and King 2001, Mouillot and Wilson 2002), the

process of distinguishing among different types of com-

munities becomes more certain, but there may still be a

high probability of misidentification. Therefore, in the en-

deavour of discriminating among community types, it ap-

pears as though the use of sequential niche apportionment

models must be confined to situations where the combi-

nation of the species richness and the number of repli-

cated communities is sufficiently great to allow for the

resolution of the different models. Individual studies can

use the methods described here to determine the likeli-

hood of correctly identifying community types based on

the species richness and level of replication available for

the system of interest (see also Mouillot and Wilson

2002). This would be done for similar reasons as a priori

power analysis - to determine whether the test is capable

of doing what it purports to do, in this case discriminating

among models. Unfortunately, it is difficult in practice to

increase richness and replication simultaneously, since

the replication of communities with the same number of

species will become more difficult as species richness in-

creases.

Other important issues must be considered when at-

tempting to understand niche apportionment processes

and relative abundance patterns. For example, although I

chose to examine five major sequential niche apportion-

ment models, others are possible merely by setting new

apportionment and breakage rules. Consider a hypotheti-

cal niche apportionment process for which the apportion-

ment rule is ‘random’ and the breakage rule is ‘fragment

to be broken next chosen at random, weighted inversely

by fragment size’. This ‘Inverse MacArthur Fraction’

model, as it might be called, would produce similar rela-

tive abundance distributions to those generated by the

Dominance Preemption model in the same way that the

original MacArthur Fraction model produced distribu-

tions similar to those generated by the Dominance Decay

model (Fig. 1). This similarity would lead to mutual mis-

identification of communities produced by the Inverse

MacArthur Fraction and the Dominance Preemption

models, just as MacArthur Fraction and Dominance De-

cay communities were frequently confused with one an-

other (Figs. 3a, b). Thus, as more models are incorporated

into an analysis, and the differences among models be-

come even more subtle, the problem of identifying the ap-

propriate sequential niche apportionment process must

necessarily become even more severe. Given this conti-

nuum of community types, perhaps emphasis should shift

from attempts to fit community types into discrete cate-

gories (as was the case here and in the other recent stud-

ies), and instead focus on describing community types

based on their position in the continuum. An additional

technical difficulty concerns ‘composite’ models of se-

quential niche apportionment (Tokeshi 1990). There is no

theoretical reason to expect that an entire community,

from abundant to rare species, should be governed by one

model. Finally, the model providing best fit to a particular

community is likely highly dependent on the spatial scale

of sampling (Wilson et al. 1998). The determination of

past niche apportionment from current abundance pat-

terns continues to be an important challenge in commu-

nity ecology.
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