
Introduction

Markov models have been used in ecology as a tool

for describing and predicting vegetation dynamics (Lippe

et al. 1985, Orlóci et al. 1993, Baltzer 2000). We refer to

Feller (1968) for an exposition of Markov mathematics.

Basically, the community state at a future time point t+1,

given by a vector X��� of population quantities, is deter-

mined by the community state X� at time t multiplied by

a known transition matrix P whose rows add to unity.

Each element p�� of this matrix indicates the rate at which

population h loses space to population i from time t to t+1.

A controversial question about the applicability of pure

Markov chains in ecology is founded on the basic as-

sumption that the last state record of the system corre-

sponds to a stable state that comes about in the Markov

process. Most natural ecosystems continuously change

according to variations in the biotic and abiotic environ-

ment, and the behavior of organisms reflects these

changes (Lippe et al. 1985 and references therein). This

fact restricts the predictive power of the Markov chain ap-

proach and calls for adjustments in the conceptualization

of the model.

Baker (1989) shows cases where different transition

matrices are applied to the same data; in this case the

choice of the transition matrix to be used must be mod-

eled. Another approach consists in changing the transition

matrix probabilities and making them dependent on ex-

ogenous variables such as climate conditions and/or on

endogenous variables such as composition; thus the tran-

sition matrix is unstable and changes according to these

variables. An additional limitation in the Markov chain

approach resides in the characterization of the transitory

communities between the beginning and the end of the

simulation, sometimes very unrealistic if compared to the

data collected in the field; this effect is caused by the

smoothing of transitions due to the nature of the Markov

chain (Baltzer 2000).

Previous studies with the Markov chain in vegetation

dynamics (Orlóci and Orlóci 1988, Anand and Orlóci

1997, Orlóci 2000, 2001, Orlóci et al. 2002 and references

therein) have revealed the chaotic nature of transition

probabilities under natural conditions and have shown

that a randomly perturbed Markov chain can give a closer

approximation of the natural process than the pure

Markov chain.

The aforementioned limitations, however, should not

make Markov models unworthy. Baltzer (2000) obtained

good results by adjusting Markov chains and concluded

that annually measured data give better results than quar-
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terly measured data, and that microdata (those data de-

rived from observed transitions on objects such as points)

reduce the adjusting error level when compared to macro-

data (those data which represent the relative state frequen-

cies – such as species).

De Smidt collected a series of vegetation cover data

from 1963 to 1981 on grazed Atlantic Heathland in The

Netherlands. The data, published as percentage cover of

major species in Lippe et al. (1985), were used in Markov

chain modeling by different authors. Lippe et al. (1985)

computed transition probabilities from presence-absence

of species observed at a large number of points over the

19 years. They did not find a stationary Markov chain due

to perturbations (such as climate and occasional insect

plagues), strong temporal tendencies following these per-

turbations, and to the existence of strong spatial interac-

tions. However, with the same data set Orlóci et al. (1993)

successfully fit a stationary Markov chain using a new ap-

proach that statistically extracted the transition prob-

abilities from species cover percentages. Lippe et al.

(1985) obtained the transition matrix directly from points

whereas Orlóci et al. (1993) used inference that did not

consider the spatially distributed point arrangement that

Lippe et al. (1985) have used. Therefore, diverging results

were obtained depending on the method used.

With the same De Smidt data (Lippe et al. 1985),

Prentice et al. (1987) performed simulations with a pre-

viously created spatial model and with parameters ob-

tained from observations on the study area. They also var-

ied the model parameters and observations on the

succeeding changes in the community composition could

predict possible scenarios resulting from these changes.

Based on Prentice et al.’s (1987) results, we can conclude

that spatial models could perform as well as non-spatial

models and may detect similar species dynamics given by

non-spatial models.

Cellular automata (CA) models have been success-

fully used to simulate complex systems (Wolfram 1983,

2002). A CA model is applicable whenever the system

may be discretely represented and described through

similar units that interact with their adjacencies. Possible

applications lie in the field of plant ecology. Cells (units

of the CA) may represent a community with their popula-

tions (Moloney et al. 1992), living plants (when occupied)

and empty places (without plants) (Jeltsch et al. 1996,

Molofsky 1994, Van Hulst 1997, Gassmann et al. 2000)

or even plant parts (Colasanti and Hunt 1997). There may

be more than one plant species in the simulation; in this

case, every species behave according to its own rule set.

Through these simulations it is possible to study the sys-

tem’s dynamics (syndynamics, where succession is a par-

ticular case). Perturbations can be applied to verify the ef-

fect on the CA configuration in the overall simulation re-

sult (Molofsky 1994).

In this paper, we develop a probabilistic CA model to

simulate vegetation dynamics based on De Smidt data

(Lippe et al. 1985). The model has some resemblance to

a Markov chain model with variable transition prob-

abilities given according to the composition. We compare

the simulation results with the ones obtained by previous

models applied to the same data.

Methods

The model

According to Wolfram (1983), a CA consists of a

regular uniform lattice (array if in one dimension or grid

if in two dimensions) of cells. The borders of the lattice

can be filled with zero values or they may repeat the val-

ues in the opposite cells. In the first case, the lattice is de-

noted as an island; in the latter, it is denoted as a torus (or

a toroidal lattice). Each cell at a given time point is de-

scribed by the states of one or more variables. A CA

evolves at discrete time steps, with the value of a variable

at a cell being affected by the values of the variables at

cells in its neighborhood on the previous time point. The

neighborhood is generally taken to be the adjacent cells

around a given cell. The variables at each cell are updated

at each time point, based on the values of its neighbor-

hood in the preceding time point, and according to a set

of local rules. These rules may be deterministic or may

involve probabilistic elements or noise (Wolfram 1983).

The simplest probabilistic rule is that the value of a cell is

to be reversed with a given probability. Ermentrout and

Edelstein-Keshet (1993) explained how cellular automata

can represent complex differential equations in an attempt

to model complex physical and biological phenomena

through computer simulations.

In our model, a toroidal grid with 1025 cells arranged

in 25 lines × 41 columns was used to simulate the vegeta-

tion dynamics on the basis of De Smidt’s data, published

in Lippe et al. (1985), from grazed Atlantic Heathland in

The Netherlands. These are the same dimensions of De

Smidt data points in the study site. At a given point in time

each cell is occupied with one of 9 possible states (a plant

species or bare ground).

A reason presented by Lippe et al. (1985) for their un-

successful Markov chain fitting was the existence of

strong spatial interactions. These interactions were mod-

eled by Lippe et al. (1985) based on the neighborhood fre-

quency of a given state around every sampling point. This

was possible since the data consisted of presence or ab-
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sence of species or bare ground in each point in a grid of

1025 sampling points covering a 12 by 20 m plot. Sepa-

rate linear equations were obtained for each possible state

i based on the frequency (maximum 8) of state i around

every point and whether state i was already present or not

at the point. Thus, a total of 18 equations were fitted. The

parameters a and b for the linear equations P� = a + bx� for

each point state are given in Table 1, where x� is the neigh-

borhood frequency for state i and P� is a value between 0

and 1 defining the occupation probability of a point by

state i. Based on these equations, we developed a spatial

model according to the following rules:

(1) A cell occupied with a given state h will remain un-

changed if a random number drawn in the range 0 to

1 is not larger than the corresponding P� computed

for the cell under this condition (state h present).

(2) If rule (1) does not hold (the random number is

larger than P�), then the other q-1 possible states j ≠
h will have the opportunity to occupy the cell. For

that, an occupation probability P� is calculated for

every other state j ≠ h that is absent in the cell

(based on the cell’s neighborhood). The m prob-

abilities P� > 0, after adjusted to unit sum and ar-

ranged side by side (P�, P�, …, P�), define a

sequence of intervals

(0, P�], (P�, P�+P�], …, ( , 1].

A second random number in the interval (0, 1] is

drawn which will belong to one of these intervals,

defining the state j ≠ h to which the cell will change.

The interval may include its border limit (shown

with a bracket) or exclude it (shown with a parenthe-

sis). The order in which the probabilities P� are ar-

ranged is irrelevant for the definition of the

intervals. In case q = 2 or m = 1, the corresponding

state j ≠ h will occupy the cell.

In summary, on the basis of different probabilities gener-

ated from neighborhood frequencies, the algorithm al-

lows the persistence of the state present in the cell or its

changing into the other possible states. The spatial model

is a CA because the cell behavior, which is probabilistic,

is defined by rules that are variable according to the cell

state and to its neighborhood.

The equations for Juncus squarrosus (when present)

and for “other species” (when absent) may generate nega-

tive values (see Table 1). This effect is likely due to a

small sample (for Juncus squarrosus) and to a high vari-

ance (for “other species”, which form a heterogeneous

group formed by several species with very low cover). To

minimize the distortion a zero probability was assigned to

these states when P� was negative.

The initial arrangement of the states in the grid was

randomly created according to the initial proportions

(year 1963) of the reference work. The simulation rou-

tines were programmed in Visual C++ 4.0 and imple-

mented as a Windows application program available at

http://ecoqua.ecologia.ufrgs.br/~atlanzer. For ob-

taining final grid configurations, simulations were also

performed in Microsoft Excel for Windows with routines

programmed in Visual Basic. The time step for each itera-

tion was one year and thus 18 iterations of the model were

needed to cover the 1963-1981 interval in one run. In or-

der to get a sample of the possible solutions a total of 100

runs were executed.

Data analysis

For every state, the percentage cover was computed

for the whole cell grid using the data generated in each

simulation. The maximum and minimum percentage

cover at each time point for the 100 simulation runs were

taken as limits, which were compared to the observed per-

centage cover (Lippe et al. 1985) and to the results ob-

tained by Prentice et al.’s (1987) model. Principal coordi-

nates analysis based on Euclidean distances was

Pj
j

m

=

−
∑

1

1

Table 1. Parameters for probability determinations (from

Lippe et al. 1985).
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performed to compare the results of our model, Lippe et

al. (1985) data and Orlóci et al. (1993) Markov relevés.

The final grid configuration was analyzed to test

whether it was random or not. Patterns of neighborhood

based on the frequencies of the possible states were ex-

tracted from the simulation grids at the initial and final

time point (18
��

year). A possible neighborhood pattern is,

for instance, a cell occupied by state 1 and surrounded by

five cells with state 2 and three cells with state 3 irrespec-

tive of their arrangement, and in the grid this kind of pat-

tern will be found with a given frequency. A chi-square

statistic was calculated for each run of the model, for the

initial (χ�
�������) and final (χ�

	����) configuration grid, based

on the frequency distribution of observed patterns and ex-

pected uniform frequency distribution. The expected dis-

tribution for the computation of the chi-square in any of

the cases was determined based on the assumption of

equal frequencies for all possible patterns. A chi-square

statistic was also calculated for each of 100 random grid

configurations created with the states having equal ex-

pected frequencies; then an average chi-square was com-

puted (χ�

��). For each CA model simulation χ�

	����was

compared to χ�
������� and to χ�


��. Based on 100 simula-

tions, the probabilities P(χ�
������� ≥ χ�

	����) and P(χ�

�� ≥

χ�
	����) were calculated. A small probability was inter-

preted as an evidence of spatial organization.

From probability theory, the total number of possible

patterns is

where n is the total number of cells considered in the

neighborhood (8) and p is the number of states in the CA

(9). Because the total number of possible patterns

(115830) was larger than the number of neighborhoods

(1025; which is equal to the total number of cells) the

number of neighborhoods (number of cells in the grid)

was taken as the maximum number of possible patterns.

Results

A typical final simulation grid is displayed in Fig. 1.

We can see that states other than 2 (Empetrum nigrum)

tend to be clumped in groups rather than scattered in the

grid. This could be interpreted as a strategy to survive in

a matrix dominated by a single state. Forming aggregates

the other states reduce the probability of being replaced

by the dominant state (2). This pattern resembles the theo-

retical description given by Vichniac (1984) for one class

of voting rules, which are based on the ‘popularity’ of the

pC p
n p

n pn p
n
+ − = + −

−1

1

1

( )!

!( )!

Figure 1. Final grid configuration

(year 1981). The most frequent state

(2, for Empetrum nigrum) is in dark

gray. The occurrence of Vichniac´s

“surviving minority islands” is ap-

parent in the grid area.
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states in the neighborhood and lead to the occurrence of

“surviving minority islands”. However, in our simula-

tions this kind of behavior did not occur in the entire grid

area; there were cases where the “surviving minority is-

lands” still occurred but in a less extent.

Pattern analysis of the final grid configuration in Fig.

1 revealed the occurrence of 257 different neighborhood

patterns whose frequency distribution is shown in Fig. 2.

Other initial and final grid configurations were also ana-

lyzed and the number of neighborhood patterns with their

corresponding chi-square is in Table 2. We found a nega-

tive linear correlation between the number of neighbor-

hood patterns and the chi-square in the simulations, as de-

picted in Fig. 3, indicating that the chi-square value could

be a good predictor of organization in the grid. It seems

that starting from a disordered initial configuration, as

spatial organization occurs in the CA simulation the chi-

square tends to increase and the number of neighborhood

patterns to decrease with time. As a matter of fact, as seen

in the dynamics of a single run (Fig. 4), the number of

patterns initially tended to increase and then to decrease

after a few iterations. The chi-square value changed ac-

cordingly, decreasing and then increasing beyond the in-

itial value. Thus, spatial organization did not increase

monotonically over time.

The test for spatial organization, based on 100 CA

runs, indicated high consistency with a non-random spa-

tial arrangement (Table 3). There was also evidence of

Table 2. Pattern analysis of grid configurations after 10 CA

runs. The number of neighborhood patterns decreases from

the initial to the final configuration.

Figure 2. Relative frequencies of detected neighborhood

patterns in a final grid configuration (year 1981) simulated

by the CA model (Fig. 1). The arrow indicates expected

frequency under uniform distribution corresponding to a

random grid. Note that the maximum number of neighbor-

hood patterns (1025) was taken as the grid size and it is

smaller than the total number of possible neighborhood pat-

terns. Also, the number of detected neighborhood patterns

(257) was much smaller than this maximum.

Figure 3. Relationship between the

number of detected neighborhood

patterns in initial and final grid con-

figurations with their corresponding

chi-square values (r
�
=0.9847). The

configurations were generated by

10 runs of the CA model, from in-

itial random configuration with

states frequencies given by year

1963 in Lippe et al. (1985).
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spatial organization when final and initial configurations

were compared.

Fig. 5 depicts simulation results with the CA model in

terms of cover percentages. There was overall agreement

between simulated and observed (Lippe et al. 1985) data

for bare ground and most of the species. For Calluna vul-

garis, the CA model tended to underestimate while for

Empetrum nigrum and for “other species” it overesti-

mated the cover. Empetrum nigrum shows an irregular be-

havior, probably due to environmental disturbances, not

considered by the CA model. Overall, the CA model

mimics reality in a simple but robust way.

In Prentice et al. (1987), the minimum and maximum

values in their range included almost entirely the ob-

served cover in the field (not shown, see Prentice et al.

1987). The differences between the two models are

mainly in the pattern of maximum and minimum cover

values, which were smoother in the CA model.

Fig. 6 depicts the ordination results with the relevés

simulated by the CA model together with the observed

data of Lippe et al. (1985) and the Markov relevés of Or-

lóci et al. (1993). By visual inspection, the CA simulated

process of vegetation dynamics was clearly directional

(Fig. 6a). It appears the Markov chain model had a better

agreement with the observed data compared to the CA

model agreement but an objective measure of agreement

indicated that the two models did not differ significantly

(Table 4). The agreement was measured by Euclidean dis-

tances for each year using the two ordination axes, which

accounted for almost 99% of total variation.

Discussion

The results of the CA model show a trend within a

range rather than an exact population amount in a given

Table 3. Probabilities for the chi-square statistics generated

after 100 runs of the CA model. The average chi-square for

random grid configurations (χ����) with equal frequencies

for the states was 16.76.

Figure 4. Evolution of a single run,

as measured by chi-square and

number of neighborhood patterns.

The initial configuration, pointed by

the arrow, was more ordered than the

subsequent grid configurations (all

sequentially indicated with numbers

up to 18 years) and only after a few

iterations the chi-square value in-

crease beyond the initial value.

Table 4. Euclidean distances between observed relevés

(Lippe et al. 1985) and relevés simulated by the cellular

automata (CA) model and by Orlóci et al. (1993) Markov

chain model. The two models did not differ significantly (P

= 0.71) in terms of agreement with observed data, based on

analysis of variance with randomization test taking years as

blocks (Pillar and Orlóci 1996).
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moment in time contrary to what would be expected in a

Markov chain model. Pure Markov chains reach, after

several iterations, a final steady composition, which can

be represented as a point in a p-dimensional space where

p is the number of states. In contrast, the CA and the Pren-

tice et al. (1987) models reach a region of this p-dimen-

sional space, as expected by the range of possible out-

comes.

Probabilistic CA are reversible, contrary to the deter-

ministic elementary CA described by Wolfram (1983). In

our results, as expected from the random nature of the al-

gorithm, the CA never reached the same final composi-

tion. Instead, it was variable around a region in the p-di-

mensional space. Ecosystem stability depends on external

and internal factors and perturbations frequently lead eco-

systems to different equilibrium states (Holling 1973).

Natural and anthropogenic disturbances may occur occa-

sionally, implying that the same final composition is not

achieved after a perturbation. Therefore, probabilistic CA

may be useful to model the dynamics of ecosystems based

on the argument that a stable final configuration is not

reached. In the CA model several runs are required to find

a range of possible outcomes.

It is likely that every possible configuration is reached

in the evolution of a probabilistic CA, since the design

progressively destroys structures, which would not hap-

pen if the rules were deterministic (Wolfram 1983). The

destruction of structures does not generate random pat-

terns because the occupation probability is not always 0.5,

which is the value proposed by Wolfram (1983) for un-

predictable behavior. Though with a small probability,

the initial configuration – understood as any grid configu-

ration from which we start examining an ecosystem – may

be reached again in the evolution of the CA. This may oc-

cur in nature if some factor leads the ecosystem to a pre-

vious composition and arrangement.

The probabilistic nature of the present CA model

tends to smooth the transitions in composition between

transient communities as Markov chain models also do.

Figure 5. Results of simulations using the probabilistic cellular automata model for the cell states. The maximum and mini-

mum cover percentages in 100 simulation runs are the thin lines and the observed ones (De Smidt data from Lippe et al.

1985) are the thick lines. For every state, the percentage cover was computed for the whole cell grid using the data generated

in each simulation.
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Nevertheless, whereas the trajectory in a Markov chain is

repeatable for the same initial composition and transition

matrix, CA model outcomes vary within a range of possi-

ble values as already seen in Fig. 5. The range is smaller

if compared to the results of the model in Prentice et al.

(1987), though in some cases the CA model was not ac-

curate. Yet, the CA model is simpler than the model de-

scribed in Prentice at al. (1987). While in Prentice et al.

(1987) the model requires information about the parame-

ters establishment rate, maximum diameter and height,

growth constant and maximum radial increment for every

plant species, the CA model defines probabilistic rules

based on empirical linear equations generated from

neighborhood frequencies for every species in the raw

data.

We point out the possibility of an inadequate use of

linear equations as given by Lippe et al. (1985) to explain

the spatial interactions. The effects of neighbors are likely

to be non-linear, as demonstrated by Goldberg (1987).

Improving the fitness of the equations would probably re-

sult in a better model performance, reducing the disagree-

ments shown in Fig. 5 for some states, especially for Cal-

luna vulgaris.

The CA model we described performed as satisfactory

as the Markov chain model described in Orlóci et al.

(1993) for the simulation of population quantities. None-

theless the CA model simulated spatial patterns, which

may be useful to study population strategies in the occu-

pation of space. Furthermore, a directional process in the

vegetation dynamics may not correspond to a monotonic

increase in community spatial organization. The compari-

sons with previous models applied on the study area rein-

force the initial conclusion, we drew from Prentice et al.

(1987) results, that spatial models may perform as well as

non-spatial models detecting similar species dynamics,

with the advantage of generating spatial patterns. Also,

there is no reason to believe the CA model framework we

present could not be applicable to simulate the dynamics

of other systems as well, provided the same kind of de-

scription by components is given.
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