
Introduction

The investigation of the species abundance distribu-

tion of a community is one of many possible ways to study

biodiversity, and it allows establishing a mathematical

model to represent the relationship between the number

of species and their abundance. If the data adjust to the

distribution generated by the model, then a parameter of

the distribution may be used as an estimator of the diver-

sity (Greig-Smith 1983). The abundance distribution

among the species in an ecological community has been

represented by mathematical and graphic formulations

and explained verbally through biological arguments gen-

erally associated to a mathematical model (MacArthur

1957, Whittaker 1972, May 1975, Sugihara 1980).

Mathematical models

The basic mathematical models of abundance distri-

bution are the geometric series (Motomura 1932 apud

Whittaker 1965), logseries (Fisher et al. 1943), lognormal

(Preston 1948) and a type of broken stick (MacArthur

1957). If the observed abundance distribution fits the dis-

tribution generated by the geometric series model, the pa-

rameter k may be used to express the inverse of the diver-

sity (Martins and Santos 1999). In the logseries model, the

parameter α is used as diversity index (Fisher et al. 1943).

In the lognormal model the number λ, the ratio between

the parameters S* (number of species in the community)

and σ (standard deviation of the distribution), is used as

diversity measure (Magurran 1988). In the broken stick

model, since the species abundance distribution is highly

even (high equitability), the parameter S (observed

number of species) can be used as a diversity measure

(Magurran 1988).

Assuming the canonical form for the lognormal

model (Preston 1948), α = 5 for the logseries, and k = 0.4

for the geometric series, May (1975) demonstrated that

the equitability of the distributions generated by the log-

normal and broken stick models increases with the

number of species. From approximately 10 species on, the

broken stick model always predicts the largest equitabil-

ity, the geometric series and logseries the smallest, and
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the lognormal generates intermediary equitability. This

gradient of equitability, described mathematically by

May (1975), has been observed in nature (Magurran

1988), once the communities fit to the respective models

with the values of α and k close to 5 and 0.4, respectively.

Biological models

These models are used to make inference on commu-

nity organization, that is, on the ecological or evolution-

ary processes that result in a given abundance distribu-

tion. The abundance distributions observed in natural

communities may be explained through biological hy-

potheses (Magurran 1988). The biological hypotheses as-

sume that if the abundance of a species were proportional

to the amount of resources it uses, then the abundance dis-

tribution would reflect the niche structure in the commu-

nity (Sugihara 1980). The niche pre-emption hypothesis

(Whittaker 1972) is associated to the geometric series

model: the niche hyperspace is emptied as a few species

arrive one by one at constant time intervals in a habitat

dominated by a strong ecological factor, and each one

takes the same fraction of the remaining hyperspace. This

hypothesis is also associated to the logseries model, but

the species would arrive at aleatory intervals (May 1975).

Sugihara (1980) proposed a biological hypothesis associ-

ated to the lognormal model: the distribution of abun-

dance among the species would come from an aleatory

sequential breakage of the niche hyperspace, until all the

species have been accommodated. In the biological model

associated to the broken stick, the niche space is consid-

ered unidimensional and represented as a stick that is

aleatory and simultaneously broken in as many pieces as

the number of species (MacArthur 1957).

Reasoning this way could lead to a biological expla-

nation whenever a mathematical model represents the

abundance distribution observed in a natural community.

The biological processes acting in the generation of such

a model could happen at an ecological or evolutionary

scale of time. At the ecological time scale, the species

abundance would be the outcome of competition and

other biotic interactions; at the evolutionary time scale,

the abundance would be an innate property of the species

as a result of coevolution (Wilson 1991).

On the other hand, purely statistical explanations have

also been applied to abundance distributions represented

by certain mathematical models (May 1975), and critics

have been made to the traditional biological hypotheses

(Ugland and Gray 1982). Cohen (1968) demonstrated that

different and even contradictory hypotheses could gener-

ate the same abundance distribution. Therefore, the study

of the abundance distribution is not enough to interpret

and explain the processes acting in an ecological commu-

nity (Whittaker 1972). If these limitations are kept in

mind and no biological explanation is evoked, the mathe-

matical models can be used as tools for detecting consis-

tent patterns among natural communities, and thus could

provide good assistance in the understanding of the or-

ganization of ecological communities. From now on, we

will deal only with the mathematical models.

The broken stick model proved satisfactory for small

communities of taxonomically related organisms (Pielou

1975, Magurran 1988), but plant communities in general

do not fit this model (Whittaker 1965, Wilson 1991, Wil-

son and Gitay 1995, Watkins and Wilson 1994). The log-

normal model is frequently found in mature communities

with many species (Whittaker 1965, May 1975, Hughes

1986, Gray 1987), while the geometric and logarithmic

series occur in poor, disturbed communities in restrictive

environments (MacArthur 1960, Whittaker 1965, 1972,

Gray 1987). According to Hill and Hamer (1998), as the

lognormal and the logseries models are frequently found

in undisturbed and disturbed habitats, respectively, they

have been used as disturbance indicators in natural com-

munities.

The empirical relationships between abundance dis-

tribution models and the community characteristics de-

scribed above have been recently challenged (Watkins

and Wilson 1994, Wilson and Gitay 1995, Wilson et al.

1996, Wilson et al. 1998). According to Wilson (1991),

limitations in the methods of fitting observed data to the

different mathematical models blur the value of the initial

attempts to relate the observed abundance distribution of

communities to the ecological circumstances. The recur-

rent failure in finding consistent patterns involving abun-

dance distribution has been attributed to the individualis-

tic character of the communities studied (Watkins and

Wilson 1994, Wilson and Gitay 1995). However, the

mathematical models of abundance distribution may not

be good indicators of the ecological mechanisms govern-

ing community organization (Watkins and Wilson 1994).

In this case, other characteristics, like equitability may be

more efficient in revealing patterns. As discussed pre-

viously, it is expected that, in general, communities with

similar number of species and different types of abun-

dance distribution have different degrees of equitability.

On the other hand, communities with different number of

species fitting the same model may also have different de-

grees of equitability (May 1975). Moreover, using abun-

dance classes, such as the lognormal octaves (Preston

1948), implies grouping in the same class species with

quite different abundance in different communities. For

example, if the most abundant class interval ranges from
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128 to 256 individuals, species of different communities

will be put into this class, since their abundance falls in

this range. The consequence of using wide abundance

classes is that different communities with great differ-

ences in the abundance magnitudes of the most abundant

species may present similar frequency of the most abun-

dant classes, thus fitting the same model, despite their dif-

ferent degrees of equitability.

Our objective is to investigate whether these mathe-

matical models, their parameters, and equitability can dis-

criminate between different plant communities. Follow-

ing the literature, we expect that well-conserved,

species-rich communities fit the lognormal model, but

communities disturbed by fire, with few species or under

stressing conditions would fit the logseries or geometric

series models. We expect no community data to fit the

broken stick model.

Materials and methods

Data collection

We used data from four surveys in the seasonal

semideciduous forest and two surveys in swampy forests,

all in the state of São Paulo, SE Brazil (Table 1). Ribeirão

Cachoeira (MRC) and São Vicente (SVI) are well-con-

served semideciduous forest fragments, without notice of

recent anthropic disturbance. Pedreira (PED) and Pomar

(POM) have been disturbed by fire until the decade of

1980. Campinas Agronomic Institute (BIA) and Santa

Genebra (BSG) are swampy forests, in which the environ-

ment is very restrictive due to anaerobic stress (Joly 1986,

Joly 1991), caused by overflowing and uprising of the

water table (Toniato et al. 1998).

Fitting and goodness of fit tests

We considered the number of individuals in each spe-

cies as abundance measure, since, according to Magurran

(1988), in large samples with frequent species, the

number of individuals behaves as a continuous variable.

Generally, the rarest species of a community are not in-

cluded in a sample, and then a lognormal distribution can

be veiled, that is, the classes on the left side (the rarest

species) of the distribution will be absent. In this case, the

distribution is truncated at a point known as the veil line

(Preston 1948). Pielou’s (1975) method was used to fit the

truncated lognormal model.

We used the abundance distribution histogram to fit

the models of the broken stick, truncated lognormal, and

logseries, and the log-transformed abundance rank dia-

gram to fit the geometric series (Whittaker 1965, Pielou

1975, May 1975, Magurran 1988). When using abun-

dance distribution histogram, the abundance classes are

generally plotted on the x-axis on a logarithm to the base

of 2, while the y-axis shows the number of species in each

class. When using rank diagram, the x-axis presents the

position of each species in a rank order of decreasing

abundance, and the y-axis shows its log�-transformed

abundance. In the abundance distribution histograms we

used the following upper limits of the abundance classes

for the truncated lognormal: 0.5; 1.5; 2.5; 4.5; 8.5; 16.5;

...; until the upper limit of the most abundant species class.

For the other models we used 1.5; 2.5; 4.5; 8.5; 16.5; ...;

until the upper limit of the most abundant species class.

The goodness of fit was tested by the one-sample Kol-

mogorov-Smirnov test (Sokal and Rohlf 1995, pp. 711-

714). This test is recommended for testing agreement to

models of abundance distribution (Hill and Hamer 1998,

Basset et al. 1998) since it is more powerful than the chi-

square statistic. However, using the Kolmogorov-Smir-

nov test with grouped data and theorized distribution with

parameters estimated from the sample results in a conser-

vative test (Conover 1999). Nevertheless, following lit-

erature recommendation, we used this test since it is more

appropriate to deal with distributions and did not present

different results from the chi-square.

Table 1. Characteristics of the six forests considered for the fitting to the models of abundance distribution. MRC = Ribeirão

Cachoeira, SVI = São Vicente, PED = Pedreira, POM = Pomar, BIA = Campinas Agronomic Institute, and BSG = Santa
Genebra. Climatic classification according to Koeppen.
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In the goodness of fit test for the truncated lognormal

the first class must be disregarded. To test the goodness

of fit to the geometric series, we transformed the theoreti-

cal rank abundance diagram generated by this model into

an abundance distribution histogram by taking from the

y-axis of rank abundance diagram the same abundance in-

tervals as specified above and counting the number of

species in the x-axis falling in each interval.

The following equations describe the distributions

tested here:

Broken stick

S��� = [S(S - 1) / N] (1 - n/N)
���

,

where S��� = number of species with n individuals; N =

total number of individuals; and S = observed total

number of species.

Truncated lognormal

S� = p�S*,

where S� = cumulative number of species in the e
��

abun-

dance class; p� = cumulative proportion of the e
��

abun-

dance class in the normal curve; e = abundance class (0 =

0-0.5, 1 = >0.5-1.5, 2 = >1.5-2.5, 3 = >2.5-4.5, 4 = >4.5-

8.5, 5 = >8.5-16.5, ..., until the most abundant class); and

S* = total estimated number of species.

The following procedure to fit a truncated lognormal

distribution was described by Pielou (1975). In a lognor-

mal distribution, the logarithms of the distribution values

have normal distribution (Zar 1999). Therefore, to obtain

p� it is necessary to

1. Calculate the mean (x) and variance (s
�
) of the log��-

transformed abundance of all the species (x�):

and

2. Calculate γ = s
�
/(x - ls�)

�
, where ls� = -0.30103, that is,

log��(0.5), the upper limit of the non-sampled species

class of abundance;

3. Obtain the value of θ for the calculated γ. This value

can be found in the table of Cohen (1961, Magurran 1988,

see Appendix 1 for a description of generating Cohen’s

table). The value θ allows to estimate µ� and V�, respec-

tively the population mean and variance of x�:

µ� = x - θ (x - ls�)

and

V� = s
�

+ θ (x - ls�)
�

4. Determine p� by substituting ls in the equation z = (ls�
- µ�) / √V� for the log�� of the upper limit of the e

��
abun-

dance class and entering with the value of z obtained in a

table of proportions of the normal curve (Zar 1999). This

table gives directly the value of p� only when z is negative.

If z is positive, make p�= 1 minus the value given in the

table. The upper limit of the class 0 is 0.5, that is, the point

where it is admitted that the observed distribution is trun-

cated. To determine S* the value of p� should be entered

in the expression S* = S/(1-p�). The non-cumulative

number of species in the e
��

abundance class is obtained

by making S� - S���. The diversity index of the lognormal

distribution is then calculated as λ = S*/σ, being σ = √V�.

Logarithmic series

S��� = αx
�

/ n,

where S���= number of species with n individuals; x = con-

stant (x <1); and α = [N(1 - x)]/x, which is a constant and

a diversity index.

To obtain x, the expression [(1 - x)/x][- ln(1 - x)],

should be iterated until the result approximates S/N.

Geometric series

n	 = NC
k(1 - k)
	��

,

where n	 = number of individuals of the species in the j
��

position of decreasing order of abundance; C
= [1 - (1 -

k)
�
]
��

is a normalization constant, which assures that Σn	
= N; and k = proportion of the remaining abundance allo-

cated for each species. To obtain k, the expression [k/(1 -

k)][(1 - k)
�
] / [1 - (1 - k)

�
] should be iterated until it ap-

proximates n	
� / N, where n	
� is the number of individu-

als of the least abundant species. The diversity index of

the geometric series is then calculated as 1/k.

We estimated the species richness S��� by the rarefac-

tion method (Hurlbert 1971), the diversity by the parame-

ters of the abundance distribution models that fitted the

data, and the equitability by the evenness index E (Bulla

1994) and dominance index l (Simpson 1949):

,

where n� = number of individuals of species i.

The rarefaction method eliminates the influence of the

sample size variation by furnishing an expected richness

value for a standard sample size m. Thus, it allows com-

parison between the communities (Hurlbert 1971, Magur-

x x Si
i

S

=
=
∑ /

1

s x x Si
i

S
2 2

1

= −
=
∑ ( ) /

l N N n ni i
i

S

= − −−

=
∑[ ( )] ( )1 11

1
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ran 1988), although the result of such a comparison de-

pends on m. The standard sample size cannot be greater

than the smallest sample size of the communities com-

pared. The smallest sample size in the communities we

took for comparison was 522. However, due to computing

problems, we adopted 380 individuals as the standard

sample size (m = 380). The confidence interval of S����

was calculated using its large-sample variance ,

obtained through the formula provided by Heck et al.

(1975), in the following equation:

.

The evenness index E allows to calculate the confidence

interval (Bulla 1994), thus increasing the consistency of

the comparison among samples of different sizes and spe-

cies number, which are factors strongly affecting the

evenness (Hurlbert 1971, Hill 1973). The dominance, es-

timated by l, suffers little or no influence of the sample

size (Simpson 1949, Magurran 1988). The variance of l

was approximated using a formula derived from the

Simpson’s formula for its variance (Simpson 1949, Ap-

pendix 2):

Variance(l) ≤ 4/N . P���+ 4/[N(N - 1)] ,

where: P��� was obtained from a set of 64 forests in the

state of São Paulo compiled in the data bank system FI-

TOGEO (Scudeller and Martins 2002), updated by R. J.

de Oliveira (personal communication). In that set of for-

ests, P��� takes the value of 0.025. The confidence inter-

val of l was calculated through the formula:

.

The parameters λ and α are correlated and have high dis-

criminating power, but α is preferable for being easier to

calculate and for allowing the determination of its confi-

dence interval (Magurran 1988).

Results

Species richness

The estimated richness varied from 24.5 (±3.92) to

81.1 (±7.83) species for BIA and MRC, respectively. The

richness values were highest for the well-conserved com-

munities, smallest in the swampy forests, and intermedi-

ate in the disturbed forests (Table 2, Fig. 1).

Broken stick

The D��� values, which measure the deviation be-

tween the observed and the expected distributions, were

very high to be considered as achieved by chance, since

the probability of finding such a so high value is very

small. Therefore, the null hypothesis (observed distribu-

tion equal to the expected by the model) was rejected for

all the communities studied (Table 3). The use of the pa-

rameter S as diversity estimate only makes sense if the ob-

served distribution fits the model well, with high equita-

bility and samples of similar size (Magurran 1988).

Lognormal

All the communities studied fitted the lognormal

model (Table 3). The diversity estimated by λ was small-

SS
m( )

2F
H

I
K

IC SS S( ) ( )
.

380 380
196 2=

IC Sl l= 196 2.

Table 2. Species richness (S�����), diversity indices (α, λ), evenness (E) and dominance (l) in different forests: Ribeirão

Cachoeira (MRC), São Vicente (SVI), Pedreira (PED), Pomar (POM), Campinas Agronomic Institute (BIA), and Santa
Genebra (BSG). Values of (S�����), α, l and E are accompanied by the 95% confidence interval.
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est for BIA (46) and largest for MRC (211), accompany-

ing the variation of richness (Table 2, Fig. 2).

Logseries

All the communities studied fitted the logseries model

(Table 3). The values of α varied between 6.7 (±2.23) and

34.1 (±6.14) for BIA and MRC, respectively, accompany-

ing the variation in species richness (Table 2, Fig. 3).

Geometric series

Only one community (BSG) fitted the geometric se-

ries model (Table 3), and we did not calculate the diver-

sity index 1/k.

Evenness (E) and Dominance (l)

POM and BSG had the smallest and largest evenness

values, respectively, E = 0.33 (±0.039) and E = 0.40

(±0.038) (Table 2, Fig. 4). The dominance showed an in-

verse variation in relation to richness, α and λ, with BSG

and BIA exchanging their positions (Table 2, Fig. 5). The

largest value of l was found for BSG (0.130 ± 0.0275), the

smallest for MRC (0.042 ± 0.0192).

Discussion

Broken stick

Our results agreed with the statement that plant com-

munities in general do not follow the broken stick model

(Whittaker 1965, Wilson 1991, Watkins and Wilson

1994, Wilson and Gitay 1995). According to Greig-Smith

(1983), the model is inappropriate for plant communities

because it does not imply high dominance, which may be

strong in many plant communities. We observed that the

model underestimates not only the number of very abun-

dant species but also the number of very rare ones. In fact,

the generalised disagreement between theoretical and em-

pirical distributions occurs mainly because the broken

stick model fails to predict the relatively large number of

singleton species found in the communities.

Lognormal

Since all the communities fitted this model, it showed

no relationship with richness, environmental stress or dis-

turbance. Hill and Hamer (1998) claimed that the lognor-

mal model could be used as an indicator of no disturbance

in natural communities. However, Nummelin (1998)

demonstrated that the goodness of fit to this model de-

pends on the time elapsed after the disturbance and on the

community type and that the disagreement with the log-

normal model cannot be considered a simple and univer-

sal indicator of disturbance. On the other hand, our results

showed that even disturbed communities fit the lognor-

mal model, thus discouraging its use as a disturbance in-

dicator. The same may be said of its use as an indicator of

stress or richness. The visual analysis of the abundance

distributions suggests that the lognormal model does not

give the best fit to all the communities we studied. This

Table 3. Values of D��� and p for the goodness of fit test for the models of the broken stick (VQ), lognormal (LN), logser-

ies (LS) and geometric series (SG) in different forests: Ribeirão Cachoeira (MRC), São Vicente (SVI), Pedreira (PED), Po-

mar (POM), Campinas Agronomic Institute (BIA) and Santa Genebra. Significantly values are in boldtype, S = number of

species. The tested hypothesis is H�: the observed distribution is equal to the expected for the respective model.
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means that the application of better analysis methods,

which allow distinguishing the model with the best fit,

could improve the conclusions (Wilson 1991). However,

such analyses have also failed in detecting consistent pat-

terns between the lognormal model and species richness

or environmental stress or disturbance (Watkins and Wil-

son 1994, Wilson and Gitay 1995, Wilson et al. 1996,

Wilson et al. 1998).

Logseries

All communities fitted the logseries model, but they

also fitted the lognormal model. The agreement of the

same data set to both models is frequent when the lognor-

mal distribution is truncated close to the modal abundance

class (Magurran 1988). The veil line hides the rare spe-

cies, but as sampling effort increases, it moves to the left

and a clear distinction between the lognormal and the log-

series models is then possible (Magurran 1988). This hap-

pens because the logseries does not give good fitting for

the portion of the curve lying on the left of the modal

abundance class (Magurran 1988). Studies in tropical for-

ests have confirmed this trend (Hubbell and Foster 1983,

Leigh 1999). Hence, the goodness of fit to the logseries

model may be just a consequence of sample size (May

1975). This could explain the agreement of MRC and

SVI, well-conserved forests, in following the logseries

model. On the other hand, the agreement of the disturbed

and stressed forests to the truncated lognormal model

could disappear if we had used the non-truncated lognor-

Figure 1. Species richness (S�����) estimated by the rarefac-

tion method and the respective 95% confidence interval for

different forests: Ribeirão Cachoeira (MRC), São Vicente

(SVI), Pedreira (PED), Pomar (POM), Campinas Agro-

nomic Institute (BIA), and Santa Genebra (BSG).

Figure 2. Diversity estimated by the index λ of the lognor-

mal model for the forests studied (see caption to Fig. 1, for

abbreviations).

Figure 3. Diversity estimated by the α index of the logser-

ies model and the respective 95% confidence interval. (See

caption to Fig. 1, for abbreviations).

Figure 5. Simpson’s l index of dominance and the respec-

tive 95% confidence interval for the forests studied (see

caption to Fig. 1, for abbreviations).

Figure 4. Evenness estimated by the index E and the re-

spective 95% confidence interval for the forests studied

(see caption to Fig. 1, for abbreviations).
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mal ignoring the singletons.

Geometric series

The disturbed and one of the swampy forests did not

fit the geometric series model, indicating that the empiri-

cal relationships between this model and stress, distur-

bance and low species richness were not confirmed. Wat-

kins and Wilson (1994) and Wilson et al. (1996) found

similar results considering variation in environmental ad-

versity and species richness. The same was found by Wil-

son et al. (1998) in relation to disturbance. As in the bro-

ken stick model, the poor fit to the geometric series comes

from the underestimate of the singleton species. The ratio

expected/observed singletons was of 0.5 for the unique

forest that fitted the model (BSG), and below 0.38 for the

others forests. The geometric series also underestimated

the number of very abundant species. This is due to the

relatively large number of species in the communities

studied here. If S is large, then the result of the expression

[k/(1 - k)][(1 - k)
�
] / [1 - (1 - k)

�
] is very small when com-

pared to n	
�/N. In this case, the value of k should be low

in order to approximate the value of the two expressions

(see Materials and methods). Since k is the proportion of

the remaining abundance taken by each species, the dif-

ference between the abundances of the species in the theo-

retical rank generated by the model is small when S is

large; in other words, the dominance is small. Our results

show that, for the species-poor communities, k = 0.14

(BIA, 33 species) and k = 0.11 (BSG, 36 species), but the

theoretical distributions generated smaller dominance

than observed: for BIA l��	����� = 0.076 and l�������� =

0.117; for BSG l��	�����= 0.059 and l��������= 0.130. Our

results suggest, therefore, that in communities as species-

rich as those we studied here, the geometric series, as the

broken stick model, does not imply high dominance.

Moreover, the gradient of equitability described by May

(1975) holds only when k ≈ 0.4, a value that is typical of

species-poor communities (May 1975, Magurran 1988).

Our results show that further studies are needed in or-

der to validate (or reject) the abundance distribution mod-

els as predictors of species richness, stress and distur-

bance. However, other community descriptors gave better

answers to stress and disturbance.

Lambda (λ), alpha (α) and species richness

Both λ and α can be used as diversity indices and pre-

sented similar results, showing a diversity gradient simi-

lar to the observed for the species richness estimated by

rarefaction. Well-conserved communities had the largest

diversity and species richness, swampy forests the small-

est, and disturbed forests had intermediate positions. This

coincidence of results is expected, since λ and α are quite

sensitive to the species number (Magurran 1988). The

confidence intervals of S���� and α for POM, BSG and

BIA did not overlap those for MRC and SVI, thus show-

ing that these two groups of communities had quite differ-

ent species richness and diversity.

Evenness (E) and dominance (l)

Unlike richness, λ and α, the evenness did not show

any relationship with disturbance or stress. The only com-

munities in which the evenness confidence intervals did

not overlap were BIA and BSG, both swampy forests, in

which the overlap was expected. However, the domi-

nance showed an inverse variation in relation to species

richness, λ and α, being larger in the swampy and dis-

turbed communities. The confidence intervals of l for

BSG and BIA did not overlap those for MRC and SVI,

thus showing that these two groups of communities had

quite different dominances. According to Bulla (1994),

the E index of evenness gives the same weight for rare or

very abundant species, but Simpson’s l index of domi-

nance is determined predominantly by the most abundant

species. By comparing our results for E and l, it can be

seen that disturbance or stress alters the community abun-

dance distribution mainly on the tail of the distribution

corresponding to the most abundant species. As the

number of the most abundant species was small and the

amplitude of the most abundant classes was very large,

the increase in frequency of these classes in the disturbed

and stressed communities was also small. This, together

with the difference in species number between the com-

munities, may be the cause of the insensitivity of the log-

normal and logseries models to stress and disturbance.

If we accept that the variation of λ and α is related to

variations in species richness, we may consider that the

community attributes influenced by stress and distur-

bance were species richness and dominance. According to

Grime (1983), high levels of stress and disturbance de-

crease species richness, since few species can survive un-

der these conditions. In the swampy forests, tree survival

depends on metabolic or morphologic adaptations to an-

oxic conditions imposed by flooding and water table up-

rising (Joly and Crawford 1982), developed by few spe-

cies (Joly 1991). Metzger et al. (1998) found that

Shannon’s index was significantly smaller in swampy or

frequently flooded forests than in the seasonal forests that

are very rarely flooded. Hence, we expected that the di-

versity estimated by richness-sensitive indices, such as

Shannon’s (Magurran 1988), were smaller in the swampy

forests. The larger dominance we found in swampy or dis-

turbed communities may have no ecological meaning, be-

176 Cielo Filho et al.



cause it is expected that species-poor communities have

smaller equitability for purely statistical reasons (Cot-

greave and Harvey 1994). However, Simpson’s l index is

not much influenced by species richness (Magurran

1988), and high dominance is expected in communities

under stress or disturbance (May 1975). Communities un-

der stress or disturbance may be regulated by only one or

a few ecological factors, and species with different com-

petitive ability in relation to the prevailing factors could

divide the niche space in a quite hierarchical manner

(May 1975). On the other hand, if several factors play a

similar role in the determination of the abundance of spe-

cies with different competitive abilities, in relation to dif-

ferent factors, the dominance would be smaller. If so, in

communities under stress or disturbance, a smaller

number of species would compete in a more hierarchical

way than in communities where these factors are less in-

tense. However, given the small number of communities

under comparison, this explanation should be regarded

carefully.

Comparing a larger number of communities could

provide a more precise evaluation of the usefulness of

abundance models for detecting of alteration of the com-

munity abundance distribution caused by stress or distur-

bance. Nevertheless, our results agree with those of Wil-

son et al. (1996), who compared 84 communities, and

concluded that the adjustment to abundance models is not

the best procedure for detecting patterns related to species

richness, stress or disturbance in natural communities.
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Appendix 1. Generating Cohen’s table

Let X be a random variable whose distribution is nor-

mal with mean µ and variance σ2
truncated on the left

with truncation point x� (this means that observation is

possible only if x ≥ x�).

Let ϕ and F denote, respectively, the density function and

the cumulative distribution function of the normal stand-

ard distribution, that is:

and

.

The likelihood function of a sample {x�, x�, ... ,x�} of X is

L(x�, x�, ... ,x�,µ,σ,η) =

(1-F(η))
�

(σ√2π)�� exp ,

where

η = (x� - µ) / σ.

Remark 1. F(η) is the mass of the distribution being trun-

cated; η may be estimated together with µ and σ (in terms

of x, x� and s) as the simultaneous solutions of the follow-

ing likelihood equations:

x� - µ = ση

x - µ = σZ

s
�

+ (x - µ)
�

= σ�
(1 + ηZ)

where Z(η) = ϕ(η) / (1 - F(η)) and x and s
�

are the sample

mean and variance respectively, that is:

Remark 2. We assume in the following that ξ<0 or equiva-

lently x�<µ. This means that the truncated mass is smaller

than 1/2.

Remark 3. Observe that ϕ‘(η)>0 (because η<0), then:

Z‘(η) = [(ϕ(η))
�

+ ϕ‘(η) (1 - F(η))] / (1 - F(η))
�

is strictly positive; this implies that the mapping

η→Z(η)

is strictly increasing and then one to one.

Remark 4. Following Cohen (1959) the likelihood equa-

tions may be reformulated as follows:

σ2 = s
2 + θ(x -x0)2

ϕ
π

( ) .exp( / )t x= −1

2
22

F t s ds
t

( ) ( )=
−∞
zϕ

( )xi
i

n

−
F

H

G
G
G
G

I

K

J
J
J
J

=
∑ µ

σ
1

2

22

x

x

n
s

x

n

i
i

n

i
i

n

= =
−

= =
∑ ∑

1 2

2

1and

( )µ
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µ = x - θ(x - x�)

[1 - Z(Z - η)] / (Z - η)
�

= s
�

/ (x -x0)2

where θ(η) = Z(η) / (Z(η)-η).

We have Z(η)>0 (by definition) and Z(η)>η (because

η<0); hence θ>0.

Remark 5. We have Z‘(η)>0 because η<0 (see Remark 3);

then:

θ‘(η) = [Z(η) - (Z‘(η))η] / (Ζ(η) − η)2 > 0;

this in turn implies that the mapping

η → θ(η)

is one to one and then θ is determined by η and vice-versa.

Cohen (1959) gives a table for the estimated values of

θ as a function of s
�

/ (x -x0)2
which depends only on sam-

ple values.

Hence we may calculate the estimators of σ and µ af-

ter substitution of the estimated value of θ in the two first

equations of the second version of the likelihood equa-

tions (see Remark 4).

Remark 6. The computation of the estimators is based in

the numerical solution of the equation

[1 - Z(Z - η)] / (Z - η)
�

= s
�

/ (x -x0)2.

Since Cohen’s work was done in 1959, it would be inter-

esting to recalculate Cohen’s tables in light of the present

numerical calculation techniques.

Appendix 2. An upper bound of the variance of an

estimator of the measure of diversity λ

Following Simpson (1949): “Consider an infinite

population such that each individual belongs to one of Z

groups, and let

π�, π�, ..., π�

be the proportion of the individual in the various groups.

Then, λ defined as

is a measure of the concentration of the classification. It

can take any value between 1/n and 1, the former repre-

senting the smallest concentration or largest diversity

possible with Z groups, and the latter complete concentra-

tion, all the individuals being in a single group”.

“Now suppose a sample of N individuals to be chosen

at random of a population of this kind, and let

n�, n�, ... n�

be the number of individuals falling into the various

groups. It is easily shown that:

is an unbiased estimator of λ”.

If repeated samples of size N are drawn for the same popu-

lation, the values of l obtained will be distributed about λ
with variance:

It is easy to see that:

Now, observing that 0≤π	≤1 implies π	
�≤π	

�
and then that

we have

Observing that the quadratic function:

f(λ) = λ(1-λ)

( )π j
j

Z

=
∑ =

1

1

π j
j

Z

=
∑

1

( )n j
j

Z

=
∑

1

l N N n nj j
j

Z

= − −−

=
∑( ( )) . ( )1 11

1

π πj j
j

z

j

z
3 2

11

≤
==
∑∑
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reaches its maximum value at λ=1/2 and then that:

f(λ) ≤ f(1/2) = 1/4 for all λ,

we finally have

Variance (l) ≤ 1 / N + 4 /[N(N- 1)].

A more realistic approach

Let P be defined by

In the preceding section we proved that if 0≤π	≤1 for

1≤j≤z and Σπ	 = 1, then:

P ≤ 1/4

and as a consequence of this inequality we obtained that

Variance (l) ≤ 1 / N + 4 /[N(N- 1)].

In this line of argument we considered all (mathematical)

possibilities, but it is possible that most of them cannot

occur in any natural (biological) situation. Then, instead

of using 1/4 as a lower bound of P, we can use the maxi-

mum value of P we know. Let us denote this maximum

value by P���.

We proved in the preceding section that:

then (in any situation we know) we have:

Variance(l) ≤ 4 / N . P���+ 4 /[N(N- 1)] .

P j
j

Z

j
j

Z

= −
= =
∑ ∑π π3

1

2 2

1

( )
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