
Introduction

Succession

Filed data of succession over long time periods are

rare (Foster and Tilman 2000). For the investigation of

long-term change, the chrono-sequence approach some-

times offers the only alternative to excessively long ob-

servation time. In a chrono-sequence, trends observed in

plots from different locations are averaged. It is therefore

also known as space-for-time substitution (Pickett 1989).

The approach involves several well-known risks. The

most obvious is that the ecological conditions in two dif-

ferent plots are often close, but never identical. Despite

many potential pitfalls in the interpretation of results, the

fact that rates of change in succession as well as the direc-

tion are directly related to the initial conditions has been

shown in various investigations (Myster and Pickett

1994), a prerequisite of space-for-time substitution. The

data I analyse here are of this type. We took relevés from

59 plots, where the earliest observations started in 1917

until present with time intervals of 5 years. Using space-

for-time substitution we obtained succession series of up

to 585 years (Wildi and Schütz 2000). Such a series can-

not be verified in practice or even observed directly.

Therefore, I was seeking a model that would explain past

observations and the actual state of the system and predict

its future dynamics.

Models

It is relatively easy to find mathematical functions that

reconstruct short-term dynamics. When field data from

permanent plots are inspected, simple temporal patterns

can be detected, such as linear increase, linear decrease,

constancy or undirected fluctuation of the parameters

(Huisman et al. 1993, Schütz et al. 1998). A straightfor-

ward method to describe transitions in multi-state systems

is based on a Markov-process (Horn 1976, Usher 1981,

1992, Orlóci et al. 1993, Balzter 2000). It merely assumes

that the components involved change type according to a

set of probabilities, the transition coefficients. Time series

data alone do not yield a unique Markov model (Orlóci et

al. 1993), but including some straightforward assump-

tions, like the existence of a mass-effect, the transition

matrix is easily approximated from permanent plot data.

Markov models work in many cases, but they reach their

limits when the systems properties and hence the transi-

tion probabilities change. This is the case when species

vanish, and even more, when new species enter the sys-

tem. In my data, a linear Markov process successfully

simulates changes within the range of up to one half-

��������� �����	� ����� ���	��
� ����
��������� � ���	
���� ��	�� ��	�����

Modelling succession from pasture to forest in time and space

O. Wildi

Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland. Phone: +41 1 739 23 61,

E-mail: otto.wildi@wsl.ch

��������� ������������ 	�
����� 
����� 	��
���� ����������� ����������� ������� ����������

	
������ � ��� �� ������� ��
����� 
���� ��������� �� ���� �� �������� ��� ������� ���������� �� ��
������� �������� � 
������
���������� ������ ������������ ������� ��� ���� ����� �� � ! �� !"! ���� �#������ ��� ����� �������
������ �� ��� ����� $�������
%�& ��$%�� ������
� ��� ����� ��� ��� ��� �� ��� ��������� ����� �� ���������
� ��� ���������� ���� ��� ������� ���� #� ������ ��
��� #�
�����
 �� ��� ���������� ��� ���� ��� �#����� �� �������� �� ����� �� ��� ��������� '� ������� ����� ��� ����� �� ��������
�� ������� ����� ��� �� ���� �� ���������
 ��� ���������� �� �� �#������� ������ �� ��� �$%� �� ���
 �� ���� ��
������� ����
� ��
��� ���������� ������� �� ��������� ���������� ��
������� #�������� ����� ������
�� ��� ��� ��������� ����� �� �(( ����� )���
������� �� ������� �� ���� #������ �������� ��� ������� ������ ����
�� ��� ��� ��������� ����� ��� ����� ���� ��� #� ��&�� ��
#������ ���������� �� ������������ �������� ����
�� *� �� ��������� ���� ������� �������� ���� #� ��&�� ���� ������� �� �����
���
���� �����������

������������ +��� �� ��� � ,-.��

	

���������/ �$% � ����� $������� %�&�



change (Hill and Gauch 1980), but then it approaches a

stationary stage and no further development occurs.

A classical way of simulating succession is by the use

of gap models (Botkin et al. 1972, Shugart and West 1977,

Shugart 1984, Bugmann 2001). In these, the life cycle of

individuals (trees) is simulated and different competition

behaviour causes species performance to change. Stand

development in a great number of model plots is aver-

aged. More advanced versions use a distribution based

model of populations, deterministically computing height

classes (Lischke and Zierl 2002). As our community starts

out as grassland, a gap-model would have to deal with

plants of vastly different sizes. Another problem is the in-

vasion of new species (Price et al. 2001): all species need

to be present in all plots from the start, if only with mini-

mal cover values. Although this may not be realistic, it

suggests that the introduction of movement of species is

crucial in long-term changes (Solomon and Kirilenko

1997). I therefore also use spatial information, assuming

that ‘time and space are related, in that forcing functions

for vegetation change over large areas tend to be the same

as those causing change over long time periods’ (Glenn-

Lewin and van der Maarel 1992).

Reductionist view

Our time series data conform to the often described,

bell-shaped model of succession (Whittaker 1953, Gauch

and Whittaker 1972, Austin 1990). What I intend to pre-

sent in the sequel is not a global explanation of a large

number of processes, but rather a reductionist view. The

type of succession intended is deterministic, its trajectory

pointing towards a stationary stage. Van Hulst (1992) has

shown that different, simple dynamic models easily simu-

late such a process involving species replacement. How-

ever, even in more trivial cases, they involve a consider-

able number of parameters, which have to be fitted. Van

Hulst warns that this may lead to a kind of ‘pheno-

menological curve fitting’. I do not intend to avoid this,

but rather follow his suggestion ‘to construct a predictive

model by attempting to emulate in a more formal manner

the intuition-based predictions of the expert’.

Methods

Investigation area and data

The Swiss National Park (SNP) was created in 1914

to conserve and protect an area of subalpine and alpine

habitats from adverse human impacts. In 1917, Braun-

Blanquet and colleagues established permanent plots in

the area to investigate vegetation recovery processes fol-

lowing the removal of domestic cattle and sheep (Braun-

Blanquet et al. 1931). Stüssi (1970) continued these long-

term observations and established some additional plots

after 1940. Most of the resulting data were never publish-

ed. There are approximately 150 well-documented time

series, many spanning 50 years and some almost 90 years.

The collection of vegetation information, usually done at

5-year intervals, has continued to this day. The two time

series derived from this using space-for-time substitution

(Wildi and Schütz 2000) are shown in Figure 1. They

stretch over a time-span of 415 and 585 years respec-

tively.

The spatially explicit data used to test the model de-

scribe the state of a meadow at 1900 m a.s.l., Alp Stabel-

chod (Figure 2). Until 1914, this was a pasture surrounded

by Pinus mugo forest, and the vegetation found there is a

result of cattle grazing, clear-cutting, and related manage-

ment activities. Some of the plots used to derive the time

series shown in figure 1 are located inside this meadow,

others in remote, but ecologically similar locations. For

documenting today’s state, the vegetation has been sur-

veyed in a regular grid. Using the time series data, the

state of 1917 was taken as the outset (Braun-Blanquet et

al. 1931, Achermann 2000). The vegetation types distin-

guished in this map carry the names of the dominant spe-

cies (i.e., Aconitum, Trisetum, etc.).

The temporal model

In order to avoid excessive complexity of the model,

the species are grouped into six guilds, i.e., assemblages

of species (Wildi and Schütz 2000). These are the state

variables. The basic process considered is thus coloniza-

tion of plots and subsequent species interactions. The

plots follow the research grid established in the SNP. Plot

size is 20 m x 20 m, the number of plots within the un-for-

ested area of Alp Stabelchod is 286 (Achermann 2000).

For simplicity, it is assumed that there is no overlap of

species guilds in space, occurring in the grassland vegeta-

tion. The model plot is eventually overgrown by one or

several species guilds, so that the total cover will reach

100% and the “open soil” 0%.

The objective then is to quantify overgrowth includ-

ing replacement. In the original time series from the per-

manent plots it can be observed that overgrowth always

starts slowly (Wildi and Schütz 2000). With increased

cover of the guilds, the spread accelerates. When ap-

proaching 100%, overgrowth slows down. This finding is

illustrated graphically in Figure 3. A function that has this

behaviour is the logistic growth equation which, in case

of only one guild, has the general form of

dX/dt = X·r·(100% – X)/K
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(Wissel 1989). Here, r is the growth rate of guild X and K

is the carrying capacity, i.e., 100%. As X is also measured

in percent, the space not yet occupied is 100%–X. Colo-

nization stops when X reaches 100%. The growth is regu-

lated by X itself, as a result of intra-specific competition.

It must be noted that logistic growth requires all guilds X�

to be present at the beginning of any simulation run.

Competition comes into play because of two assump-

tions. First, the gain of guild X� in cover is lost by any

other guild of lower competition power (or by open

ground). In order to keep the cover percentages balanced,

dX�/dt will always occur in the model twice, i.e., once as

a gain and once as a loss. Second, 100%–X� is the avail-

able space only for the best competing guild i. If there is

another, even better competing guild X�, then the space

reduces to 100%–X�–X�. As will be seen in the description

of the model, the mechanism has to make provision for

many more competing guilds, six in the present case.

Based on previous findings (Wildi and Schütz 2000) the

following order of competition power has been estab-

lished:

Pinus (1) → Carex (2) → Festuca (3) → Trisetum (4) →
Deschampsia (5) → Aconitum (6)

The logistic growth equation for Carex (X�), which is out-

competed by Pinus (X�) is given by

dX dt X r
X X X

K2 3 3
1 2 3100%

/ = ⋅ ⋅ − − − −
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It can be seen that Carex loses a proportion of the space

gained by Pinus. For Festuca (X�), there is additional loss

to Carex:

The third important factor in this pasture is recurrent dis-

turbance. Here, it is trampling by grazing deer (Schloeth

1972, Krüsi et al. 1998). I assume that it affects all the

plants equally within a plot. The intensity will of course

vary depending on animal density. Trampling is a very

fast process, instantly generating open space. This causes

a loss t� for guild i which is simply proportional to the state

X�. Re-colonization c� is also relatively fast. I assume that

it happens instantly, i.e., within the relative short time

span of one year. It is proportional to the exponential

growth of each guild. Direct competition as happens in

species replacement is not assumed. Trampling and re-

colonization are balanced within the year:

This assumes that growth is fast enough to colonize any

gap that has occurred within one year. Furthermore, tram-

pling leads to a yearly change of the system provided that

the growth rates r� vary among guilds.

The spatial model

The following notation is used:

x�������= | i = 1,..., 6; x = 1,...,25; y = 1,..., 30; t = 1,...,400

Here, i stands for guild, x and y are the spatial co-ordinates

and t is time in years. The model space is a grid of plots

of dimension 25 by 30. Not only the pasture, but also the

adjacent forest stands fit into this rectangle. The spread of

any particular guild happens by spatial exchange. A por-

tion of the content of any plot is transferred yearly to the

neighbouring plots as shown in Figure 4. The gains, g, and

losses, l, are balanced:

x��������� = x�������+g�������– l�������

g�������= d(x���	����� + x���
�����+ x��������� +x���������)

l�������= 4d(l�������)

This means that any plot receives a portion of the vegeta-

tion from each neighbouring plot. Simultaneously, it

looses the same amount from its own vegetation to these

same neighbouring plots. The speed of the exchange is

given by the exchange factor, d. This is assumed constant,

even though spatial processes may be faster where more

animals circulate. Having no measurements of exchange

at hand, I keep it at the very low level of d=0.001.

Along the edges of the system, outside the meadow,

the exchange is mirrored. All these plots are covered by

Pinus mugo forest, the final state of the succession so far.

Results

The comparison of Figures 1 and 5 shows that, with a

suitable choice of parameter values, the temporal model

can reproduce the basic pattern of the time series. In the

model, output fluctuations are absent. The results shown

in Figure 5 were obtained only after carefully adjusting

the initial conditions (the state variables) and estimating

the growth rates of the guilds by trial and error. Both are

shown in Table 1. The initial states of the model are

within the range of the values observed in the field (Wildi

and Schütz 2000). It must be noted that the observed in-

itial cover values are themselves subjected to random

fluctuation whereas in the deterministic model, a fixed

value is needed. Sensitivity tests showed that the time of
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emergence of late successional guilds depends on the in-

itial states. In other words, the initial state of the guilds

determines the speed of succession. This is not a realistic

feature. Even worse: to allow growth to occur, all species

guilds have to be present in the model (i.e., within all pix-

els) from the very beginning of the simulation.

Interestingly, the estimated growth rates that were

compatible with a realistic model behaviour do not differ

much among guilds. The model is not too sensitive to the

growth rates (Table 1). The two time series differ in

growth rates. In the 415-year model, they are by a factor

of 2 larger than in the 585-year model, and they are not

proportional. Using identical rates for all guilds repro-

duces the temporal pattern shown in Figure 1 as well. If

all are set to 0.045 (Table 1), succession will last about

400 years, if values of 0.022 are taken, this will be about

600 years.

Including spatial extent in the model poses serious

problems. The initial condition of the meadow, i.e., the

state in the year 1917, is not known precisely. Only the

discrete states can be inferred from the present state and

the temporal model (Figure 6, upper left). The spatial sys-

tem could of course be fine-tuned using the simulated

states from the temporal model. This would be highly un-

Figure 5. ���'��� ���������&
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realistic as the initial parameters of all 268 plots would

have to be precisely set. Instead, I use mean values for all

guilds to define the composition of the plots. These are

shown in Table 2. As a result, at the beginning of the

simulation the system consists of a limited number of dis-

crete states, whereas in reality, the vegetation forms a con-

tinuum.

The domination of the meadow by subsequent succes-

sional guilds and finally by Pinus forests lasts about 500

years in individual simulations using the temporal model.

In this case, the edges of the individual plots dominated

by different “guilds” are not moving in space as observed

in the survey data (Wildi and Schütz 2000). As a result,

the pattern of edges remains unchanged over the entire

simulation time. This can be seen, e.g., in the state shown

in Figure 6, lower left. There, the boundaries from the in-

itial state are still visible. Only the states of the pixels have

changed.

The effect of spatial exchange among pixels can be

tested in isolation. Assuming the extremely low rate of

exchange of d=0.001, the state of the system after 400

years is shown in Figure 6, upper right. The overall com-

position is almost the same as at the beginning. But

patches of similar composition have become more homo-

geneous compared to the initial state. Along the forest

edges, Pinus mugo has invaded the first row of plots.

Other types have spread as well. The Aconitum-stage has

increased in surface. After all, the spatial process does not

reflect ordinary succession.

Finally, the spatial and temporal processes are run si-

multaneously. This accelerates the simulation of succes-

sion and the meadow is already covered by Pinus mugo

after 360 years (not shown here). In Figure 6, lower right,

the state after 200 years is presented. It can now be seen

that the vegetation boundaries have moved and differ

from the initial state. The diffusion process causes Pinus

to invade the meadow from the edges to the centre.

Discussion

The model shown above describes secondary succes-

sion (Van Andel et al. 1993). The initial state of the sys-

tem is assumed to be the result of disturbance or, in ex-

treme cases, of fertilization, irrigation and grazing after

logging. It is known that in previous centuries, almost all

forests in the SNP have been logged, some for timber ex-

port and some for extraction of charcoal for iron melting.

From the originally dominating species, Pinus mugo,

Pinus cembra and Larix decidua, the first is nowadays

dominating in the area. It is a pioneer species as trees are

concerned. This indicates that the vegetation of the entire

area is still undergoing a long-term recovery process un-

der which the dominance pattern is subjected to slow, but

distinct change. The initial stage of the succession consid-

ered here, the Aconitum dominated, highly fertilized rest-

ing places of cattle, are a result of trampling and over-fer-

tilization. This phase can no longer be observed

nowadays. The first phase of regeneration must therefore

have been invasion, mainly of tall herb species coming

from lower elevation sites, like Aconitum compactum,

Rumex alpinus or Chenopodium bonus-henricus. This is

modelled here as an event of “instantaneous replace-

ment”, i.e., replacement of open soil within one season.

As I start here with already closed vegetation, overgrowth

plays a role only in case of trampling damage by browsing

deer. In terms of the life strategies of Grime (1979), the

initial stage is formed by ruderals.

The competition implemented in the model consists

of simple replacement events. Guilds of species suppress

others of lower competitive power while spreading over a

plot. This involves a fairly high level of abstraction, about

the same as in an ordinary Markov chain where random

events determine the change of the system (Usher 1992,

Balzter 2000).

In the temporal model, the complex temporal pattern

of guilds is a result of their initial quantities. Although

these quantities conform to the field records (Wildi and

Schütz 2000), the presence of a strong competitor in an

early phase would speed up the succession drastically.

Yet, there has no case been observed in which, as an ex-

ample, the Pinus guild directly followed the Aconitum

guild. Furthermore, it must be noted that the modelled

succession follows just one pathway. This is not surpris-

ing, as the environmental conditions as well as the rules

of competition are kept constant during simulation time.

Achermann et al. (2000) showed, that different succes-

sional patterns can in fact be found in the area. From many

other investigations, alternative pathways can generally

be expected (Cattelino et al. 1979, Peet 1992, Van Andel

et al. 1993, McCook 1994). The present model would

yield these, e.g., under altered disturbance regimes.

Returning to the terminology of Grime (1979), ruder-

als are followed by competitors, and later on, by stress tol-

erant species (the Pinus guild). As shown by Achermann

(2000), the phosphorous content decreases continuously

in time. But nutrient content does not seem to be the main

factor in succession. Species in highly fertilized patches

can survive for more than a hundred years, even if the nu-

trients have been exported. If deer invade into the system,

the nutrients are removed by grazing (Achermann 2000).

Animals play an important role in later stages of succes-

sion as well. The establishment of Pinus montana seed-
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lings is fostered by disturbance of deer (Krüsi et al. 1998).

At this time, the phosphorous content is almost stable.

The second model used here focuses on spatial out-

comes. Without considering space, the first model re-

quires all species to be present in the system from the very

first moment. This is highly unrealistic. Moving edges

can be observed in many records of permanent plots

(Achermann et al. 2000), especially along forest bounda-

ries (Matlack 1994). In many cases, considerable increase

in the number of species has been observed (Camenisch

and Schütz 2000, p. 179). Over long time periods, the

movement of species in space seems to be the most im-

portant factor of change. The lack of explicit spatial proc-

esses has also been identified as the most serious short-

coming in gap modelling. Price et al. (2001) argue that the

assumption that seeds of all species are uniformly avail-

able over space leads to wrong estimates in species diver-

sity. Just as in the present case, they conclude that the in-

teractions between herbivores and (forest) plants are a big

unknown.

One property of many models of vegetation change is

the fact that species tend to disappear over long simula-

tion periods. This is the case for most types of models, for

the present as well as for Markov- and gap models. In my

model, there is finally one guild of species left. This still

holds fairly high species diversity. Species diversity there

can be assumed to persist for several reasons, like spatial

heterogeneity and disturbance. By accepting guilds as

units of interest and not individual species, our models do

not address diversity explicitly. It is an as yet open ques-

tion what would happen if the models would be extended

to the species level. According to Gause’s principle, a

complete breakdown of diversity would be expected, a

case never observed in the investigation area. To avoid

this, inclusion of spatial processes in the models is indi-

cated. The attempt used here, an undirected diffusion,

needs to be extended to include varying site conditions,

dispersal mechanisms and specifically the impact of ani-

mals.
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