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Introduction

Models (theories, hypotheses) pervade science. Some

are mental, others physical, some are deterministic, others

stochastic, and some are qualitative and others quantita-

tive. In this paper, I want to examine statistical models

which are derived from observed data by induction. For

some, the fundamental proposition in science is the use of

falsification (Popper 1968). Several authors have argued

strongly that ecology will progress only through the test-

ing of clear null hypotheses (Simberloff 1980, Wilson et

al. 1994, Wisheu and Keddy 1992). However falsification

is certainly not the only criterion, a fact known to Cicero,

who comments in “De Natura Deorum”, ‘Would that I

could discover truth as easily as I can uncover falsity’.

The call for simple, clear hypotheses to be tested may not

be answerable in the complexity and murk of ecological

situations and will depend markedly on being able to

choose a method of suitable method of description of the

system, or more succinctly an alphabet.

Other views suggest that there are several stages in the

process of scientific endeavour; for example, the four

stages of saturation, incubation, illumination and verifica-

tion attributed to Von Helmholtz and Poincaré. The prob-

lem here is that we are not sure how illumination proceeds

from incubation! This can be alternatively interpreted as

meaning that we first make observations, in which we

seek patterns. These patterns form the basis of our models,

which are then subject to verification. Falsification ap-

plies only to the last stage, while induction is pertinent to

the detection of pattern and perhaps to the formation of

models. So clearly the induction of patterns is a crucial

stage, and falsification contributes nothing to it!

A more modern phraseology was adopted by Hájek

and Havránek (1977), who argued that ‘the logic of dis-

covery is twofold: to choose a language in which to ex-

press the hypothesis and to choose a satisfactory sentence

which solves it’. Unfortunately they provide no definition

of ‘satisfactory’ nor do they suggest how the language

choice might be made. In fact they are asking for a means

of determining a class of languages based on some spe-

cific lexicon which is acceptable and within that class the

specific language which best fits the data we have (cf.

Dale 1980). Thus, if we seek to decide between individu-

alistic and community-unit concepts of vegetation

(Shipley and Keddy 1987), falsification is largely irrele-
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vant. The problem is one of trying to distinguish between

two classes of models, not individual models within a

class. – perhaps a comment here on the importance of per-

ception in model-building and model-choice—. To do this

we need some means of valorising models, and classes of

models, which falsification does not supply.

The arguments for falsification have about them the

same scent of illusion as that attributed by Williams

(1972) to the scientific paper. We first state a null hy-

pothesis, triumphantly demonstrate its falsity and present,

as from a hat, an alternative which we claim is acceptable,

though, in due modesty, we may add some expression of

possible dubiety! Where did the null hypothesis come

from? Why is it so special? From where did the alternative

hypothesis appear? Is there only a single such alternative

and, if not, why choose a particular one? In complex prob-

lems such as are found in ecology, what we need is some

means of constructing models as well as disposing of

them by falsification, and such construction is a problem

in induction not deduction.

There are more subtle effects as well. In the develop-

ment of any science, as in other human activities, there is

a tendency for people interested in a subject to develop

their own interpretative community (Carley and Palm-

quist 1992). Such a group builds up, in its own field of

endeavour, a series of propositions that enable its mem-

bers to communicate effectively, inventing its own jar-

gon, and perhaps initiating its own journal. Members are

more or less agreed about the nature of their topic and

what form interesting questions should take. What is less

commonly realised is that, in so doing, it is also the case

that propositions not within this community are regarded

as irrelevant, second class, even indicative of loose think-

ing and hence ignorable. As an example, the case for con-

servation was so regarded until quite recently. Proposals

for evaluating the ecological impact of any development

were regarded as trivialities propounded by weak and

woolly-minded thinkers, pejoratively termed ‘Greenies’.

In some cases, as Thucydides noted, this results in ‘words

become fair phrases used to cover guilty ends’. Biology

provides an excellent example in Bishop Wilberforce’s

attack on Darwin
�
!

Falsification is, then, a necessary component of scien-

tific method but it is not itself sufficient. It tells us what

is not, but not what is. There may be several different

classes of alternatives, any of which would cause rejec-

tion of the null hypothesis (see e.g., Paluš 1996a). Overall

it is a pessimistic approach (Fisher 1992), based on ac-

cepting only propositions for which there is positive evi-

dence in favour. In contrast, for building models with

sparse and noisy data, we may profit by employing opti-

mistic approaches, which reject only propositions for

which there is strong negative evidence. In this paper I

suggest that at least three stages are needed; description,

pattern-formationing and verification. I shall be primarily

concerned with pattern finding and assessment of models,

with the comparison of multiple models, and with the role

of prediction in these tasks. I shall not address verifica-

tion.

Focus of attention and description

One of the very basic questions is determining what

type of hypothesis space must we assume so that we are

assured of finding a developmental system consistent

with our observations? In other words, the hypothesis

space itself is dependent on the input data. By changing

those data we implicitly change the hypothesis space as

well, and it is desirable that we change it to make it both

simpler and smaller! (cf. Domingos 1996). There are two

aspects involved here:

• How to determine the descriptors to be used to de-

scribe the system since these determine the space in

which the system is embedded? This also involves

selecting the scale and precision of measurement.

• How to determine the focus of attention, which gov-

erns the specific objects examined, what they are,

where they are, when they are and what sizes and

shapes we take them to have? This also involves dis-

criminating characteristics of these objects from

those of the environment, thus separating the two.

Such selection questions will generally be answered

in the light of some general theory. It is possible to assess

how effective such selection may be, in comparison with

some other choice but analysis cannot commence without

some initial choices.

In vegetation studies, the selection of the ‘things’ in

which patterns are sought is itself a difficult task. The im-

portance of scale in model inference is well illustrated by

May’s (1995) examination of measles epidemics. Indeed,

Hogeweg (2002) comments that “processes do not, in bi-

otic systems, operate in isolation and the existence of en-

tanglement at different time and space scales does not

need explanation, being there by default. Ignoring it by

segregating time and space scales is simply a modelling

artefact”. In vegetation studies we often use samples

which exhibit dependence, spatial, temporal or both. Such
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dependence must be accounted for in any analysis (see eg.

Wallace, 1998, and Dale et al. 2002a). Such dependence

is related to questions of scale.

Description

We have first to identify a descriptive language. We

must first recognise that choosing descriptors for vegeta-

tion carries semantic implications. Riddle and Hafner

(1999) argued recently that species are not the most ap-

propriate units for all purposes. Taxonomic species im-

port phylogenetic information, whereas structural de-

scriptions more likely reflect local habitat factors and

biogeographic or other descriptors will carry still other in-

formation. Thus, in place of the traditional floristic de-

scriptions, Dale and Barson (1989, see also Dale et al.

1988), used cluster labels in grammatical studies of vege-

tation, Dale et al. (1984) used structural features of the

canopy, Noble and Slatyer (1980) isolated features which

were deemed to have dynamic importance (vital attrib-

utes) while Webb et al. (1976) found floristic descriptions

desirable for simple communities although structural

form was effective in complex ones. Pillar (1999a) has

even considered how we might optimise the description

by selection within the class of functional types, using

correlation between plant traits and environment.

Composite descriptions are also possible; Lux and

Bemmerlein-Lux (1998) address the equilibration of time

responses between trees and ground flora by using mixed

descriptions, structural for the former, floristic for the lat-

ter. But how might we compare the effectiveness of these

alternatives, which differ in their semantics? If we can

identify a value for a model then such comparisons could

be made in terms of the amount of pattern captured by the

various choices. This can be measured using the differ-

ence between the value of the optimal model and the value

of the null model, appropriately normalised although

other suboptimal models could be used if there were some

specific reason for so doing. The larger the difference, the

‘better’ the optimal model.

Such considerations also apply wherever dissimilari-

ties are involved, as shown by Watanabe’s (1969) ‘ugly

duckling’ theorem. This proves that the investigator must

choose the attributes for describing a system, for without

such a selection all pairs of objects have the same dissimi-

larity. This means that the adoption of lazy, case-based

approaches (see Lekkas and Avouris 1994) instead of

eager, rule-based systems does not avoid the choice, al-

though the former may be preferred in that the choice can

be made to vary depending on where you are in the space.

Distinguishing the environment

I do not propose to provide here a detailed examina-

tion of all aspects of determining the focus of attention.

Instead, I shall concentrate on one major feature of this

choice, the distinction between the system and its envi-

ronment.

Herman and Rozenberg (1975) indicate that if the en-

vironment is unspecified then we can always chooose a

grammatical model (specifically a D1L parallel grammar)

simply by assigning any abnormalities and infelicities to

environmental events. Brokaw and Busing (2000) re-

cently emphasised the importance of contingent effects in

maintaining diversity (see also Niven’s, 1992, malenti-

ties). Antonelli (1990) goes further and suggests that it is

desirable to export complexity from the ecosystem into

the environment. He replaced a complex graph of popu-

lation dynamics by more or less straight lines by embed-

ding his data in Finsler space (which is a generalisation of

Riemannian space). In other words, he had a very twisted

environmental space, but this permitted the population

dynamics to be expressed simply. Such a suggestion re-

lates to the problems of selecting an appropriate metric for

the space in which we embed our model (cf. Dale 1994).

Environment is not everything, however. Austin

(1970) argued that interpretation of patterns in vegetation

will be accomplished by developing environmental corre-

lates, but we know that autopoietic generation of patterns

is possible (Boerlijst and Hogeweg 1991), so that not all

patterns in vegetation are necessarily environmentally de-

termined. Dale and Hogeweg (1998) and Dale (1999)

identified three distinct dynamic types of vegetation with-

out any initial environmental variation, which indicates

that there may be no single model suitable for modelling

all vegetation. Once patterns have formed, selection can

take place, which may result in environmental differen-

tiation (Savill et al. 1997). If the vegetation patterns pre-

cede the environmental differences, Austin’s (1970) reli-

ance on environment as a means of interpreting

vegetation patterns becomes suspect.

Measuring models

I shall confine myself to the following six topics, each

of which has a general application to a variety of models:

• degree of fit to observed data;

• consistency of estimation;

• simplicity and/or complexity of the model;

• precision. of measurement;
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• prediction and causality; and

• interest and ‘actionability’.

It is also necessary to be able to compute the model.

Posse (1995) has shown how projection pursuit methods

were handicapped initially by the use of inexact and inap-

propriate algorithms. But there can be more subtle effects

arising from the choice of computational procedure.

Howard and Oakley (1994) suggested the use of genetic

programming for finding patterns in short time series.

Pagie and Hogeweg (1997) show that by using sparse

evaluation in a genetic algorithm, a more generalisable re-

sult can be obtained than can be obtained using a global

evaluation; the manner of the search affects the quality of

the results.

The models with which I shall be concerned are sta-

tistical models. This class includes such different types as

regression, decision trees and graphs, Linear Structural

models, unsupervised clustering, ordination, directed

acyclic graphs and Markov models. It is perhaps obvious

that there can be no universally applicable method of de-

termining the ‘best’ model from observational data. Con-

sider a series starting 2, 4, 6, 8. What number do we expect

to follow? Schmidhuber (1994) shows two models which

provide different answers. For the ith position return 2i

(which gives 10 as the next number) or use i
�

- 10i
�

+ 35i
�

- 48i + 24 (which gives 34!). There are, of course, still

other expressions that might lead to still other answers yet

still fit the observed series. We need criteria that permit

us to rank the models so we can choose between them.

Degree of fit

The quality of fit (also known as coverage) is perhaps

the commonest criterion we use to assess a model. Many

papers contain references to R
�

values, many applications

use forms of stepwise regression where selection is based

on ‘better’ fit while ordinations commonly use ‘propor-

tion of captured variance’ to determine dimensionality.

But fit is a dangerous ally, for if we add sufficient com-

plexity to our model we can fit anything perfectly! Thus,

if we have n observations, a polynomial of degree (n-1)

will fit them perfectly. This is a major problem with meth-

ods such as Ivakhnenko’s (1971) which use extremely

high order polynomials. Wallace (1996) adds a variant of

fit which he terms plausibility a priori. He suggests that a

theory should be less favoured if it is at odds with prior

knowledge. This means data should fit not only the given

data but also any previous data that seem relevant. And if

prediction is important, then the model must fit future data

as well! Obviously fit is of interest – it is not much use

having a result which does not fit the observations at all!

But equally obviously, it cannot be the sole criterion of

model value.

Consistency of estimation

It is desirable that the estimates we obtain for parame-

ters are consistent and unbiased. Usually we adopt maxi-

mum likelihood as the means of selecting estimators. Yet,

it is well known that the maximum likelihood estimator

for variance is biased; the correction is simple in that case

involving replacement of the denominator n by (n-1).

There are other estimators that are unbiased for this case

(minimum message length, for example), though they

may have other problems. It is also known that for esti-

mating large numbers of parameters, maximum likeli-

hood estimation does not perform very well. We must

therefore take care that our choice of estimation procedure

is appropriate.

As an example, consider multiple factor analysis.

Jöreskog (1966) presented a maximum likelihood estima-

tion procedure that has been widely used. However, Wal-

lace (1995) has examined this and compared the results

with an alternative estimation procedure using minimum

message length (MML) principles (Wallace and Freeman

1987; see also Wallace 1996, Wallace and Dowe 2000).

Wallace (1995) found that the maximum likelihood pro-

cedure had several drawbacks. First, it does not consis-

tently estimate the factor scores, since such estimates are

conditional on the estimates of factor loadings and of di-

mensionality. Second, maximum likelihood did not per-

form well in estimating the dimensionality. Third, even in

those cases where the dimensionality was estimated cor-

rectly, the results were biased, with axes often set parallel

to one or other of the variables and thus essentially use-

less! In contrast the MML estimation was consistent,

could estimate the factor scores unconditionally, gave on

average better estimates of the number of factors and had

no tendency to identify useless axes.

Consistency can assist us in choosing between classes

of models. For example, most clustering methods identify

crisp clusters with sharp boundaries (segmentation) al-

though some permit fuzzy assignments of various kinds.

In Figure 5 of Dale et al. (2001), we show two overlapping

clusters and remark that the parameters for these clusters

will be inconsistently estimated if a crisp separation is im-

posed. However, if a fuzzy assignment is used, whereby

the things forming the clusters are but partially assigned

to clusters, then consistent estimation is possible. Obvi-

ously, this is a considerable advantage and suggests that,

for vegetation study, fuzzy clustering should be preferred

to crisp. Since the samples we take of vegetation can eas-

ily result in elements of several clusters being present in
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a single plot (Dale 1988) we should generally avoid crisp

clustering solutions.

Simplicity and complexity

Since complex models improve fit, several authors

(e.g., Iba et al. 1988) have suggested a trade off between

simplicity and degree of fit. This is an appeal to William

of Occam’s famous razor
�

and does not enjoy universal

support (see Webb 1994, 1996). Indeed, Wittgenstein

(1995) states that ‘It is clear there are no grounds for be-

lieving that the simplest course of events will really hap-

pen’. Domingos (1999) identifies two aspects to using

the razor. One is for understanding and this is generally a

good reason. The other is to increase accuracy (or gener-

alisability) at which it may fail. But predictivity is not in-

dependent of simplicity and van den Bosch (1997) pro-

vides strong support for seeking simple solutions for

prediction problems.

To make use of the razor we need a measure of sim-

plicity or its inverse, complexity. There seem to be two

major approaches to measuring complexity. Kolmogorov

(1965) introduced a measure of information that treats

uniformity as the simplest situation and randomness as

the most complex and this has been widely adopted. Kol-

mogorov’s information measure cannot be calculated di-

rectly but can be approximated (see Wallace and Dowe

2000, who base their estimation of complexity on prior

probabilities).

Kolmogorov’s information complexity is not the only

such measure. Gunther et al. (1994) and Wackerbauer et

al. (1994) examine other various choices. Lloyd and

Pagels (1988), Gell-Mann (1994) and Grassberger (1991)

concentrate on complexity of a model and not the ob-

served data, emphasising time required or resources nec-

essary to accomplish a computation. This turns out to be

related to the difference between coarse- and fine-grained

entropy; simple systems have small differences, complex

ones have large differences. This view is largely shared

by Crutchfield and Shalizi (1999) although the details are

different. Indeed, there is a well-known theoretical and

measurable relationship between the entropy and Kolmo-

gorov complexity of systems (Anand and Orlóci 1996).

One result of this model-based approach is that ran-

domness is no longer the most complex situation. Con-

sider binary patterns being generated by two finite state

machines, each of which has only one state. The first

emits a value, say 1, with probability 1 while the second

emits a value of 1 with probability of 0.5, and a value of

0 with probability 0.5. This is illustrated in Fig. 1. Both

models are very simple, although one involves random-

ness. Calculating Kolmogorov’s information for the se-

ries produced, the first is extremely simple whereas the

second is extremely complex. Crutchfield and Shalizi

(loc. cit.) are concerned with prediction and want the shal-

lowest past for causal states that provide predictions of the

future. But whichever view we adopt, the complexity is

estimable.

Choice between these alternatives may rest with the

observation that complexity is in part a function of the ob-

server (Löfgren 1974) and what is appropriate in one cir-

cumstance is not in another. For example, many studies in

phytosociology concentrate on deriving a static taxon-

omy, whereas we may desire a dynamic representation.

Precision and fit

Much data in vegetation science is measured using

coarse scales, such as ordered categories. When estimat-

ing parameters we therefore need to maintain a balance

between excessive precision and lack of fit due to coarse-
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ness of estimates. Viswanathan et al. (1999) note that

when segmenting a series, there is no point in specifying

the cut-points to a precision greater than can be estimated.

Georgeff and Wallace’s (1984) MML-based procedures

encode parameters and real numbers with a finite preci-

sion only, based on a Dirichlet tesselation. An optimal

precision is determined as a trade-off between the cost of

encoding extra precision and the cost of encoding the data

using a suboptimal hypothesis due to rounding. Other ar-

guments against overmuch precision deprecate the sensi-

tivity of a model to extremely precise values for parame-

ters

Paluš (1996b) has examined the case of quantised

variables and provided several estimators for their char-

acterisation, though most of them still require relatively

long and noise-free observations, a situation not likely to

occur in vegetation studies. Oates and Jensen (1998) have

shown that simplicity can be compromised if the dataset

used for induction is very large so there may be a conflict.

It is odd, perhaps, to find too much data a problem!

Prediction and cause

Prediction is generally regarded as of great impor-

tance, since it is required for applying falsification, but it

is not without its own problems. Yamada and Amoroso

(1971) distinguished two sorts of models, termed ‘behav-

iourally isomorphic’ and ‘structurally isomorphic’. In be-

haviourally isomorphic models we adopt a black-box ap-

proach, being concerned solely with the accuracy of the

output. Such a view generally restricts generalisability,

that is the range of prediction, permitting interpolation but

not extrapolation. In contrast, structurally isomorphic

models seek to capture, in some idealised way, the ‘real’

structure of our system and as such can be used for ex-

trapolation as well (see Dale 1970).

Behavioural models

The ‘black box’ approach can work well as a means

of making predictions, until we consider the difficulties

resulting from model uncertainty. A single behaviourally

isomorphic model is not the optimal method of making

predictions, and several alternative models may give very

similar results. In such circumstances, we can do better by

introducing model averaging (Mac Nally 2000, Hoeting

et al. 1998) which uses a weighted average of predictions

from all possible models, or at least some large sample of

them. Usually the weights are derived from the posterior

probabilities. But how do we assign blame or credit to any

particular model or attempt to falsify it? If prediction is

our sole aim we should certainly seek the optimal result,

but this means falsification is not applicable at all!

Model averaging can also be useful when estimating

dissimilarities. Yee and Allison (1993) found that better

estimates of the evolutionary distance between organisms

could be derived from model averaging than from a single

‘best’ model. The superiority was maintained over a wide

range of values of the actual dissimilarity.

Structural models

Farrands (1990) has given an account of the tradi-

tional view of how models are developed. We start with a

general model then cycle between complication to take

account of other factors, thereby gaining in precision but

losing in generality and further generalisation to regain

elegance and understanding. If we can map the phenom-

ena of the perceived world onto a plane where it can be

manipulated intellectually, then we say we understand the

phenomenon. If we cannot, we review matters and may

introduce new explanations. If the model explains our

previous experience, that is good. If it leads necessarily to

a new testable hypothesis that is better; if it leads to a new

view of the world that is best. But note that in moving

from behavioural to structural isomorphism we may tem-

porarily lose quality of prediction (Yamada and Amoroso

1971).

Wallace (1996) has examined the relationship of pre-

diction and induction and concludes that using a specific

method of valuing models, the MML principle, ‘mini-

mises the degree to which future data will surprise us’. A

theory is to be preferred if it is applicable to a wide range

of, possibly yet unseen, instances. A theory which is re-

stricted to just the instances in known data is not of much

use. We do not, after all, set much store by a degree (n-1)

polynomial as a model of n observations! Wallace further

points out that if we are seeking a minimal cost prediction,

induction is not suitable. The conventional Bayesian

minimum-cost estimation avoids commitment to any

model of the real world at all. However, it is often infea-

sible and the true cost functions may be unknown. In this

case, induction can be used but it will rarely be optimal

for any specific cost function. This situation can some-

times be improved if we average over several ‘reasonably

good’ models but this again shifts us away from structural

isomorphism..

I suggest that predictivity is not a primary charac-

teristic of models which provides a unique valuation, a

view supported by Provost et al. (1998) for different rea-

sons. Good predictions can be obtained from models that

are far from structurally isomorphic with the real system,

relying instead on the occurrence of strong correlations.

This is not to say that prediction is uninteresting, only to

regard its role in structural modelling as belonging to a
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later stage in the process of model forming and verifying.

As our structural model becomes perfected, the quality of

its predictions will generally improve, but not monotoni-

cally. As an example consider Figure 2. Attempting to

predict the unknown value using its immediate neigh-

bours will fail and we shall only obtain an accurate pre-

diction once we have grasped the periodic nature of the

pattern.

Causality

Mac Nally (2000) identified the search for structural

isomorphism with search for cause (or explanations)

while Domingos (1998) suggested that it was desirable to

combine prediction with causality, thus emphasising their

distinctiveness. Hume (1999) provided a definition of de-

terministic causation as follows: ‘We may define a cause

to be an object, followed by another, and where all the

objects similar to the first kind are followed by objects

similar to the second’. Recent logical approaches would

probably rephrase this by a counterfactual definition that

if A causes B then without the event A we never have

event B; i.e., not A implies not B. In fact, we cannot real-

istically assume that any such simple causal relationships

exist in ecology. Pagie and Hogeweg (1997) indicate that

biologically there may be several ‘causes’ for an observed

phenomenon. For example, there can be many-one map-

pings from genotypes to phenotype; and in ecology there

may be several different mechanisms for the maintenance

of high diversity.

Such deterministic definitions are unsuitable for sto-

chastic modelling such as path analysis. In contrast to the

determinism of Hume’s definition, probabilistic causa-

tion characterises the relationship between cause and ef-

fect using the tools of probability theory. The central idea

behind these theories is that causes raise the probabilities

of their effects, all else being equal. But some causes can

reduce the immediate probability. A golfer slicing a ball

is not expecting to improve the chances of getting an

eagle, but if the ball hits a tree and bounces into the hole

it still may succeed. The usual cause-effect relationship is

defeated by a contingent event.

The usual methods of examining causality involve

linear structural models. Procedures such as path analysis

(Wright 1934) rely on correlations, which are known to

be deficient in capturing causality. The techniques of path

analysis can be used to estimate the strength of various

connections, given a particular graph structure showing

inter-relationships between variables. Hájek and

Havránek (1977) in the GUHA programs, rely on the con-

cept of ‘almost implication’, again a correlation measure.

Wallace et al. (1996) infer Bayesian networks, which

identify the most probable a posteriori model for some set

of models, while Neil and Korb (1998) extend the meth-

odology to examine ways in which the connection pattern

of variables can also be inferred (at least within the limits

of statistically equivalent classes). Chambers (1991) has

proposed the method of ‘Corresponding Regressions’, a

method which does allow causal inference.

Measures of interestingness

Interpretability and expectation

One of the more obvious properties we might like of

our models is that they be interesting and interpretable,

and also that they form a reasonable basis for actions. In-

terpretability probably implies conformity with known

beliefs or facts (Pazzani and Kibler 1992) and (possibly)

with simplicity, while interestingness relates to deviation

from expectation and, in goal-directed situations, to ac-

tionability (Barsalou 1995, Hilderman and Hamilton

1999), i.e., given that our focus of interest is in obtaining

some specific ends, how easy it is to use the result for

those purposes? MacKay (1969) argued that all patterns

were ultimately for an agent, who presumably will have

some personal agenda. How much ontogenetic complex-

ity an agent is willing to accept in pursuing this agenda

Figure 2. �����������	� ��� ��		���
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then becomes a personal choice although there are

grounds for desiring simplicity (van den Bosch 1994).

We mostly do not know what criteria have actually

been used in published studies, although in some cases

users may have recorded their expectations prior to analy-

sis. However, I have one example where expectation can

be reconstructed. Williams et al. (1969) analysed secon-

dary successional data from subtropical rainforest using

cluster analysis. Presence data were analysed using Ag-

glomerative Information Analysis (Williams et al. 1966)

and the number of clusters chosen (7) was a subjective

decision. Surprisingly, a re-analysis using density data

and an objective determination of the number of clusters

(Dale 2000), showed more or less the same number of

clusters (8), while re-analysis of the presence data showed

3 clusters but with the density-based clusters neatly

nested within them. Williams et al. (1969) did not provide

any precise information on the criteria actually used to es-

tablish the number of clusters. The clustering method is

both crisp and hierarchical so it would be possible to work

down the hierarchy examining the resultant groupings for

spatial or other environmental coherence as Austin (1970)

recommends.

This does not appear to have happened. Webb (pers.

comm.) has indicated that the choice was made largely on

the basis of habitat types visible on site after the initial

clearance; for example areas with soil scraped by bulldoz-

ers and with timber heaps. To these observers, such dif-

ferences were likely to result in different development

patterns. Webb’s observation indicates that conformity

with such expectation was a primary reason for fixing the

number of clusters at 7, perhaps a surprising conclusion.

Temporal and/or spatial coherence were, apparently, not

regarded as important, nor did the interpreters investigate

alternative possibilities implied by the hierarchical clus-

tering scheme, though this may have helped confirm their

initial presumptions and was certainly a component of

their subsequent interpretations.

Klemettinen et al. (1994) point out that formation of

rules is easy, finding interesting ones is not. There are

many proposals for measuring interest, some objective,

some subjective; Schmidhuber (1994) lists 14 measures

and Hilderman and Hamilton (1999) present others. Most

of the objective rules involve GUHA-like (Hájek et al.

1966) ‘almost implication’, that is rules of the form ‘the

set of conditions A ‘almost always’ implies the result B’.

Objective measures indicating potential interest of such

rules include coverage (fit), certainty, strength, sensitiv-

ity, predictiveness, statistical significance and simplicity

and most have already been considered here as part of the

model evaluation process.

Actionability and agents

Subjective indicators of interestingness include both

unexpectedness (Padmanabhan and Tuzhilin 1999) and

actionability (Adomavicius and Tuzhilin. 1997). In order

to determine unexpectedness an obvious approach is to

adopt a Bayesian viewpoint, and incorporate our expecta-

tions in the prior probabilities. Bayesian analysis in effect

asks how much we have to change our prior view in the

light of the observed data. This would require a user to

explicitly state expectations, but this is complicated by

the possibility that the user will regard some things as ‘too

obvious for comment’ and will in consequence ignore

them.

Mackay’s (1969) notion of ‘patterns for agents’ sug-

gests that every investigator has a singular agenda which

will be reflected in the selection of the focus of attention.

One aspect of this will commonly be the desire to accom-

plish some aim, perhaps to maximise productivity, main-

tain diversity or ensure survival. Appraisal of a model will

then involve assessment of its value in meeting these

ends. Such actionability is difficult to assess, even if we

have prior information on the user‘s interests; we need to

know what the user desires to accomplish. Perhaps multi-

ple predictive analysis (Beeston and Dale 1975) provides

a possible mechanism for assessing the potential useful-

ness since it incorporates information on alternative pos-

sibilities for modifying the system.

Another aspect of actionability which might be quan-

tified, concerns the extent to which there is consistency

with prior knowledge (Murphy and Allopenna 1994).

Thus, in some decision making situations it may be desir-

able that the rules to be used do not appear counter-intui-

tive to a human user otherwise reliant on previous knowl-

edge (cf. Pazzani et al. 1997). This means adopting rules

that fit human expectations in preference to those that do

not. Psychological investigations can indicate the forms

of acceptable rules (see e.g., Kelley 1971). But while this

may seem attractive in a behaviourally isomorphic model,

in a structurally isomorphic model we might well seek in-

novation and revolution. Actionability, I suggest, like pre-

dictivity is not a primary criterion in valorising models

Aesthetics

As a final criterion we might look to aesthetics (Reich

1993). Exactly how a valuation could be developed to

capture the concept of a ‘beautiful’ or ‘elegant’ model is

not clear, though it probably would include features of

simplicity, fit, predictiveness and interest. But if mathe-

matical proofs and computer programs can be deemed

beautiful, then why not ecological models of romantic and
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classical kinds, one emphasising function, the other form!

That beauty is truth and truth beauty may be more than a

poetic fantasy.

Other considerations

Dynamics and dependencies

In building models we often have observations organ-

ised in time and space, as discussed for example by Anand

(1997, 2000). In such cases there exists, potentially, a de-

pendency between the observations. Furthermore, along

any gradient we can also expect a variation of interest,

novelty, surprisingness, uncertainty, even conflict and we

match complexity against our processing power to deter-

mine attractiveness. Anderson and McMaster (1982) ex-

amined ebb and flo of interest (in their case the affective

tone of a sentence or paragraph) along a gradient, and

identified fluctuations of emotional tension and the com-

plexity of pattern as aesthetic components which corre-

lated well with the ‘popularity of the books. Similar vari-

ation in the values associated with quality of models

provides a means of characterising the nature of the un-

derlying series (Paluš 1997). Instead of purely pheno-

menological parameters used in stochastic methods, we

have invariants characterising dynamic properties, which

can be used as a first step to building a model.

Wolpert and Macready (1997) used self-dissimilarity

measures based on entropy to obtain a scale-related char-

acterisation of a complexity spectrum. Scale-dependency

of this kind can be used to define information dimensions

relevant to characterising chaotic series (Grassberger and

Procaccia 1983). Entropy measures the error we have in

determining our location in a state space while entropy

rate considers how this error changes with time and can

be measured using the Kolmogorov-Sinai or metric en-

tropy rate (Paluß 1997). Entropy rate is the maximal di-

versity of patterns in a data stream and can be related both

to mutual information between parts of the series and sys-

tem memory. It is also related to Lyapunov exponents (see

Osledec 1968, Devaney 1985, Abarbanel et al. 1992) be-

ing the sum of the positive exponents which is commonly

just the largest of them and Kolmogorov complexity

(Anand and Orlóci 1996).

For time series, one characteristic of interest is the

‘memory’ of the system – how far back do we have to

move before the present becomes independent of the past.

This is important in the definition of causal states
�

(Crutchfield and Shalizi 1999) and is also related to the

Effective Entropy of Grassberger (1989, 1991). Such a

measure indicates the period we need to observe a series

in order to make effective predictions. The technique is to

divide the series into parts, assess the value of each part

separately and also assess the entire series. If there is any

shared pattern, then the value for the entire series should

be smaller than the sum of values for the parts, at least in

the simplest case. If it is not then the parts share no pat-

terns, no common information on which correlation might

rest.

Other approaches to the analysis of temporally de-

pendent observations which employ explicit valuation of

models include Edgoose and Alison (1999) and Li and

Biswas (1999; see also Dale et al. 2002) while Wallace

(1998) has developed a method suited to the study of spa-

tial dependency, where there are 2-dimensional depend-

encies.

Practical measures

So far I have been discussing what qualities might be

useful to characterise model value. Various proposals

have been made as to how such properties might be quan-

tified in practice and several authors have suggested pos-

sible schemes. Kohavi (1995, see also Pillar 1999b) has

looked at cross-validation and bootstrapping for accuracy

estimation and model selection; it is known that, in the

limit, this converges to Akaike’s (1977) criterion, which

uses a complexity-fit trade-off. Vapnik and Chervonenkis

(1971) suggested guaranteed risk minimisation which is a

non-Bayesian criterion. Schwarz (1978) proposed the

Bayesian Information Criterion, which has been used by

Li and Biswas (1999). Crutchfield and Young (1989) used

a causal information measure which captures aspects of

the memory of the system. Related to this view is that of

Badii and Politi (1997) who identify complexity with

what happens to the error rate as the level of resolution of

a model is increased: the slower the convergence, the

higher the complexity. Wallace and Freeman (1987) and

Rissanen (1995) have used estimates of Kolmogorov’s in-

formation in slightly different ways, the latter using mini-

mum description length to compare model classes, the

former using MML to identify the ‘best’ model within a

class. MML could be, but has not yet, extended to allow

comparisons of model classes, and such a comparison

would involve stating prior probabilities for those classes.

Such priors would presumably reflect both the particular

situation and the personal bias of the user. Most of these
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measures are concerned with the fit-complexity trade-off,

though Wallace and Freeman (1987) also consider the

question of precision. Kontkainen et al. (1999) discuss the

impact of missing data in the estimation of complexity but

found considerable robustness.

Viswanathan et al. (1999) have compared several of

these estimates using the task of segmenting a series,

They found in general that the MML criterion was supe-

rior. Forster and Sober (1994) found that none of the

methods they examined (which did not include MML)

was universally preferable, which is to be expected, since

no universal pattern-finding mechanism can exist.

The mechanism of use of the valuation is simple

enough in principle. We can examine a class of models

with a number of parameters. For example, consider the

model class of fuzzy clustering. Investigating such a class

involves estimating the number of clusters, the parame-

ters of the clusters, the precision warranted for these pa-

rameters and the (partial) assignment of the things being

clustered to clusters. However, the critical parameter is

clearly the number of clusters. For each model with a dif-

ferent number of clusters, we calculate a value and that

model with the smallest (or largest) value is taken to be

the optimal one. The range of models considered can in-

clude one equivalent to a null hypothesis; e.g., the null

hypothesis in clustering is a single cluster and this is one

possible choice for the optimal solution.

Discussion

I have indicated that it is possible to obtain measures

of fit and complexity of models, and to balance the com-

ponents of precision and fit. It is also possible to balance

coarseness of estimate and the lack of fit that this neces-

sitates. I have further argued that predictivity should not

be a component of the valuation of models in the induc-

tive stages, except in so far as we require some of it. Good

prediction can be made with a model of no structural

merit, and partial structural merit does not guarantee good

prediction! Finally I have argued that various measures of

interest and actionability might be available if we accept

the use of prior probabilities. More mundanely I have in-

dicated that clustering of vegetation should be ‘fuzzy’

rather than crisp in order to obtain consistency.

It is tempting to ask which patterns are the ones really

there in the world – ours, or the cuttlefish’s? or the crab’s

or even those of E. coli as it hunts for glucose – but the

temptation must be resisted. All patterns provide predic-

tive leverage, or we would be around to carve them out of

‘black and jointless’ continuity; and that is as far as reality

extends for patterns (Dennett 1991).

Eco (1980) confirms the temporary nature of models.

He argues that we build nets to enable us to scale an ob-

stacle blocking our view. Once atop the wall, we can see

where to go, and we can throw the net away. In this sense

it does not actually matter whether the net represents any

particular truth, provided it is useful in scaling the wall.

A model is always a simplification of a real system. In

fact, a model is both an idealisation and a simplification.

Real systems have the same properties ‘in so far as’ they

approximate the idealisation, but this is never complete

even if, for some purposes, it is adequate and effective.

However, models also need to be interesting; a com-

pletely random model is decidedly uninteresting since it

has no patterns (that we can perceive) while a regular un-

changing model is equally boring.

Models are useful for comparison. I can ask if this

model (in some class) is more effective at capturing pat-

terns that some other model in some other class. And I can

ask which of two classes provides the greater capture of

pattern. I first ask for a value for the null case and for the

case when pattern has been captured. Assuming that the

procedure for capturing pattern is effective I can then cal-

culate the change in value. This can be done for both

classes of model, using the optimal model within each

class, and thus we can decide both which patterns provide

us with the greatest change in value and which has the

greatest overall value. The next step is to use model valu-

ations in the analysis of data and determine if the obtained

patterns are useful, interesting and effective in compari-

sons.

The consilience of induction

How can one justify the use of induction? Basically

because it works, though this, as Hume pointed out, is it-

self an induction. Reichenbach (1950) suggests that we

are acting like fishermen who cast nets into an unknown

part of the ocean. They do not know if they will catch fish,

but they do know that without casting the net they will

certainly catch none. They try because they wish to eat.

Our predictions of the future may not be true, but they are

the best available (we hope). Induction is then the best

available instrument of action available to us.

But what exactly are we modelling and is it what we

want to model? Taking Antonelli’s (1990) example of an

ant traversing a landscape. It is possible to identify se-

quences of events which reflect iterative application of

solutions to particular local problems: such actions might

include ‘goes over’, ‘goes under’, ‘goes around’, ‘moves

forward’ patterns although these may be incomplete when

recursively applied as when ‘going over’ in the middle of
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‘going over’. (For finding such motifs, see Rigoutsos and

Floratos 1998).

This does not do us much good. Teleologically, the

ant is going home and its behaviour in overcoming obsta-

cles need not be interesting to us. In fact, the mechanisms

lack discriminatory power when considering what the ant

is doing. They would also be used if the ant were seeking

food through exploration, i.e., proceeding in an opposite

direction! So how does knowledge of the local mecha-

nism get transformed into some higher level of compre-

hension?

Note, too, that an individualistic approach to model-

ling requires us to specify exactly the interactions permit-

ted between pairs of organisms and between organisms

and environment, as is done in cellular automaton models

(Dale and Hogeweg 1998). The clarity obtained makes

such models very attractive, if we can recognise emergent

properties of the system. This difficulty was recognised

by Kaufman (2001) who defines life in terms of self-rep-

lication and ‘doing’. He then insists that we shall need a

new mathematics to be able to capture this.

Dennett (1991) suggests we adopt one of three stances

to explain and predict what something will do: inten-

tional, design and physical. What is odd here is that Kauf-

man’s view seems to relate to the intentional stance which

Dennett regards as least powerful! I would expect some

relationship between Dennett’s stances and Aristotle’s

four kinds of causes: material, efficient, formal and final

(see Chambers 1991). Much scientific study emphasises

efficient and formal causes, whereas Antonelli’s ant is

seemingly concerned with final causes. Traditional meth-

ods of empirical research have a tendency to reduce telic

theories to non-telic, billiard ball type models (Rychlak

1988, Chambers 1991). Is Antonelli’s ant concerned with

final causes, or simply to be regarded as a machine? It is

difficult, though, to conceive of vegetation ‘doing’ any-

thing in a teleological sense, so that Kaufman’s problems

may not arise in practice – but does ‘doing’ necessarily

imply teleological? I do not think so, especially with re-

spect to Kaufman’s definition of self-replication.
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